Phytochemical Screening, Free Radical Scavenging and α-Amylase Inhibitory Activities of Selected Medicinal Plants from Western Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials
2.3. Extraction
2.4. Phytochemical Screening
2.5. Determination of Total Phenolic Content (TPC)
2.6. Determination of Total Flavonoid Content (TFC)
2.7. Free Radical Scavenging Activity
2.8. In Vitro α-Amylase Inhibitory Activity
2.9. Statistical Analysis
3. Results
3.1. Extraction and Phytochemical Screening
3.2. Total Phenolic and Flavonoid Contents (TPC and TFC)
3.3. DPPH Free Radical Scavenging Activity
3.4. α-Amylase Inhibitory Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Devkota, H.P.; Adhikari-Devkota, A.; Takano, A.; Yahara, S.; Basnet, P. HPLC and TLC Fingerprints of Selected Nepalese Natural Medicines and Medicinal Plants. J. Nepal Pharm. Assoc. 2017, 28, 1–11. [Google Scholar]
- Joseph, B.; Jini, D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pac. J. Trop. Dis. 2013, 3, 93–102. [Google Scholar] [CrossRef]
- Pandey, M.M.; Rastogi, S.; Rawat, A.K.S. Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid. Based Complement. Altern. Med. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Manandhar, N.P. Plants and People of Nepal; Timber Press, Inc.: Portland, OR, USA, 2002. [Google Scholar]
- Watanabe, T.; Rajbhandari, K.R.; Malla, K.J.; Devkota, H.P.; Yahara, S. A Handbook of Medicinal Plants of Nepal Supplement I; Kobfai Publ. Project: Kanagawa, Japan, 2013. [Google Scholar]
- Middleton, D.J. A Revision of Aeschynanthus (Gesneriaceae) in Cambodia, Laos and Vietnam. Edinb. J. Bot. 2009, 66, 391–446. [Google Scholar] [CrossRef]
- Lalzarzovi, S.T.; Lalramnghinglova, H. Traditional use of medicinal plants found within Aizawl city in Mizoram, India. Pleione 2016, 10, 269–277. [Google Scholar]
- Sundararajan, R.; Ilengesan, R. In vitro Antioxidant Assay of Methanol Extract of Buddleja asiatica. Free Radic. Antioxid. 2018, 8, 55–61. [Google Scholar]
- Namsa, N.D.; Mandal, M.; Tangjang, S.; Mandal, S.C. Ethnobotany of the Monpa ethnic group at Arunachal Pradesh, India. J. Ethnobiol. Ethno. 2011, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- El Moussaoui, A.; Nijs, M.; Paul, C.; Wintjens, R.; Vincentelli, J.; Azarkan, M.; Looze, Y. Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism. Cell. Mol. Life Sci. 2001, 58, 556–570. [Google Scholar] [CrossRef]
- Krishna, K.L.; Paridhavi, M.; Patel, J.A. Review on nutritional, medicinal and pharmacological properties of Papaya (Carica papaya Linn.). Nat. Prod. Radiance 2008, 7, 364–373. [Google Scholar]
- Gurung, S.; Škalko-Basnet, N. Wound healing properties of Carica papaya latex: In vivo evaluation in mice burn model. J. Ethnopharmacol. 2009, 121, 338–341. [Google Scholar] [CrossRef]
- Satrija, F.; Nansen, P.; Murtini, S.; He, S. Anthelmintic activity of papaya latex against patent Heligmosomoides polygyrus infections in mice. J. Ethnopharmacol. 1995, 48, 161–164. [Google Scholar] [CrossRef]
- Stapleton, C.M.A. The bamboos of Nepal and Bhutan. Part III: Drepanostachyum, Himalayacalamus, Ampelocalamus, Neomicrocalamus and Chimonobambusa (Gramineae: Poaceae, Bambusoideae). Edinb. J. Bot. 1994, 51, 301–330. [Google Scholar] [CrossRef]
- Nepal, P.; Singh, M.; Baniya, A.; Singh, S.; Sainju, H.K.; Shrestha, R. Comparative Antioxidant, Antimicrobial and Phytochemical Assesments of Leaves of Desmostachya bipinnata L. Stapf, Hordeum vulgare L. and Drepanostachyum falcatum (Nees) Keng f. Nepal J. Biotechnol. 2019, 6, 1–10. [Google Scholar] [CrossRef]
- Baral, S.R.; Kurmi, P.P. A Compendium of Medicinal Plants in Nepal; International Union for the Conservation of Nature and Natural Resources: Kathmandu, Nepal, 2006. [Google Scholar]
- Rammant, E.; Bultijnck, R.; Sundahl, N.; Ost, P.; Pauwels, N.S.; Deforche, B.; Pieters, R.; Decaestecker, K.; Fonteyne, V. Rehabilitation interventions to improve patient-reported outcomes and physical fitness in survivors of muscle invasive bladder cancer: A systematic review protocol. BMJ Open 2017, 7, e016054. [Google Scholar] [CrossRef] [PubMed]
- Akter, K.; Harrington, D.; Vemulpad, S.R.; Malewska, T.; Kichu, M.; Imchen, I.; Kohen, J.; Jamie, J.F. An ethnobotanical study of medicinal plants of Chungtia village, Nagaland, India. J. Ethnopharmacol. 2015, 166, 5–17. [Google Scholar]
- Attanayake, A.P.; Jayatilaka, K.A.P.W.; Pathirana, C.; Mudduwa, L.K.B. Antihyperglycaemic, antihyperlipidaemic and β cell regenerative effects of Spondias pinnata (Linn. f.) Kurz. bark extract on streptozotocin induced diabetic rats. Eur. J. Integr. Med. 2014, 6, 588–596. [Google Scholar] [CrossRef]
- Das, J.; Mannan, A.; Rahman, M.; Dinar, A.M.; Uddin, M.E.; Khan, I.N.; Habib, R.; Hasan, N. Chloroform and Ethanol Extract of Spondias pinnata and its Different Pharmacological activity Like—Antioxidant, Cytotoxic, Antibacterial Potential and Phytochemical Screening through In-Vitro Method. Int. J. Res. Pharma. Biomed. Sci. 2011, 2, 1806–1812. [Google Scholar]
- Panda, B.K.; Patra, V.J.; Mishra, U.S.; Kar, S.; Panda, B.R.; Hati, M.R. Analgesic activities of the stem bark extract of Spondias pinata (Linn. f.) Kurz. J. Pharm. Res. 2009, 2, 825–827. [Google Scholar]
- Dirar, A.I.; Alsaadi, D.H.M.; Wada, M.; Mohamed, M.A.; Watanabe, T.; Devkota, H.P. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S. Afr. J. Bot. 2018, 120, 261–267. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Sahoo, S.; Mohapatra, A.K.; Behera, D.R. Phytochemical analysis, antioxidant and cytotoxic activity of medicinal plant Combretum roxburghii (Family: Combretaceae). Int. J. Drug Dev. Res. 2012, 4, 193–202. [Google Scholar]
- Hazra, B.; Biswas, S.; Mandal, N. Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement. Altern. Med. 2008, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Islam, A.F.M.M.; Hasan, M.R.; Hasan, A.H.M.N.; Rana, M.S.; Chowdhury, M.M.H.; Sarker, A.; Uddin, N.; Hossain, M.M. In vitro α–amylase inhibitory activity and in vivo hypoglycemic effect of methanol extract of Citrus macroptera Montr. fruit. Asian Pac. J. Trop. Biomed. 2014, 4, 473–479. [Google Scholar]
- Watson, D.; Baharlouei, A.; Altemimi, A.; Lightfoot, D.; Lakhssassi, N. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar]
- Yeung, A.W.K.; Aggarwal, B.B.; Barreca, D.; Battino, M.; Belwal, T.; Horbańczuk, O.K.; Berindan, I.; Bishayee, A.; Daglia, M.; Devkota, H.P.; et al. Dietary natural products and their potential to influence health and disease including animal model studies. Anim. Sci. Pap. Rep. 2018, 36, 345–358. [Google Scholar]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- John, B.; Sulaiman, C.T.; George, S.; Reddy, V.R.K. Total phenolics and flavonoids in selected medicinal plants from Kerala. Int. J. Pharm. Pharm. Sci. 2014, 6, 406–408. [Google Scholar]
- Azeez, K.O.; Shaker, N.M.; El Shamy, M.M.; Mogib, M.A. Phytochemical and biological evaluation of Tephrosia apollinea. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 195–202. [Google Scholar]
- Hossain, M.A.; Shah, M.D.; Gnanaraj, C.; Iqbal, M. In vitro total phenolics, flavonoids contents and antioxidant activity of essential oil, various organic extracts from the leaves of tropical medicinal plant Tetrastigma from Sabah. Asian Pac. J. Trop. Med. 2011, 4, 717–721. [Google Scholar] [CrossRef] [Green Version]
- Adhikari-Devkota, A.; Elbashir, S.M.I.; Watanabe, T.; Devkota, H.P. Chemical constituents from the flowers of Satsuma mandarin and their free radical scavenging and α-glucosidase inhibitory activities. Nat. Prod. Res. 2019, 33, 1670–1673. [Google Scholar] [CrossRef] [PubMed]
- Thilagam, E.; Parimaladevi, B.; Kumarappan, C.; Chandra Mandal, S. α-Glucosidase and α-Amylase Inhibitory Activity of Senna surattensis. JAMS J. Acupunct. Meridian Stud. 2013, 6, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Song, Y.; Gu, X. α-glucosidase inhibitory in vitro and antidiabetic activity in vivo of Osmanthus fragrans. J. Med. Plants Res. 2012, 6, 2850–2856. [Google Scholar]
- Yang, S.; Meng, Y.; Yan, J.; Wang, N.; Xue, Z.; Zhang, H.; Fan, Y. Polysaccharide-enriched fraction from Amillariella mellea fruiting body improves insulin resistance. Molecules 2019, 24, 46. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Amodeo, V.; Statti, G.; Conforti, F. Biological properties and bioactive components of Allium cepa L.: Focus on potential benefits in the treatment of obesity and related comorbidities. Molecules 2019, 24, 119. [Google Scholar] [CrossRef] [PubMed]
- Hamden, K.; Allouche, N.; Mnafgui, K.; Damak, M.; Keskes, H.; El Feki, A. In vitro anti-diabetic, anti-obesity and antioxidant proprieties of Juniperus phoenicea L. leaves from Tunisia. Asian Pac. J. Trop. Biomed. 2015, 4, S649–S655. [Google Scholar]
- Panda, D.K. Assessing The Impact Of Participation In Women Self-Help Group-Based Microfinance: Non-Experimental Evidences from rural Households In India. Int. J. Rural Manag. 2009, 5, 197–215. [Google Scholar] [CrossRef]
- Barrett, M.L.; Udani, J.K. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): A review of clinical studies on weight loss and glycemic control. Nutr. J. 2011, 10, 24. [Google Scholar] [CrossRef]
- Raja, S.; Ramya, I. A review on ethnopharmacology, phytochemistry and pharmacology of Buddleja asiatica. Int. J. Pharm. Sci. Res. 2016, 7, 4697–4709. [Google Scholar]
- El-Domiaty, M.M.; Wink, M.; Aal, M.M.A.; Abou-Hashem, M.M.; Abd-Alla, R.H. Antihepatotoxic Activity and Chemical Constituents of Buddleja asiatica Lour. Z. Nat. C 2015, 64, 11–19. [Google Scholar] [CrossRef]
- Mona, M.; Allia, A.; Amal, S.; Magda, I. Cytotoxic activity of Buddleja asiatica. Life Sci. J. 2013, 10, 2773–2777. [Google Scholar]
- Liao, Y.H.; Houghton, P.J.; Hoult, J.R.S. Novel and known constituents from Buddleja species and their activity against leukocyte eicosanoid generation. J. Nat. Prod. 1999, 62, 1241–1245. [Google Scholar] [CrossRef] [PubMed]
- Oloyede, O.I. Chemical profile of unripe pulp of Carica papaya. Pak. J. Nutr. 2005, 4, 379–381. [Google Scholar]
- Julianti, T.; De Mieri, M.; Zimmermann, S.; Ebrahimi, S.N.; Kaiser, M.; Neuburger, M.; Raith, M.; Brun, R.; Hamburger, M. HPLC-based activity profiling for antiplasmodial compounds in the traditional Indonesian medicinal plant Carica papaya L. J. Ethnopharmacol. 2014, 155, 426–434. [Google Scholar] [CrossRef]
- Otsuki, N.; Dang, N.H.; Kumagai, E.; Kondo, A.; Iwata, S.; Morimoto, C. Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J. Ethnopharmacol. 2010, 127, 760–767. [Google Scholar] [CrossRef]
- Sameh, S.; Al-Sayed, E.; Labib, R.M.; Singab, A.N. Genus Spondias: A Phytochemical and Pharmacological Review. Evid. Based Complement. Altern. Med. 2018, 2018, 5382904. [Google Scholar] [CrossRef]
- Dash, G.K.; Mondal, S. Hypoglycemic activity of the bark of Spondias pinnata Linn. kurz. Pharmacogn. Mag. 2009, 5, 42–45. [Google Scholar]
- Chaudhuri, D.; Ghate, N.B.; Singh, S.S.; Mandal, N. Methyl gallate isolated from Spondias pinnata exhibits anticancer activity against human glioblastoma by induction of apoptosis and sustained extracellular signal-regulated kinase 1/2 activation. Pharmacogn. Mag. 2015, 11, 269. [Google Scholar]
- Satpathy, G.; Tyagi, Y.K.; Gupta, R.K. Preliminary evaluation of nutraceutical and therapeutic potential of raw Spondias pinnata K., an exotic fruit of India. Food Res. Int. 2011, 44, 2076–2087. [Google Scholar] [CrossRef]
S.N. | Scientific Name (Family) | Local Name (Nepali) | Parts Used | Voucher Specimen No. | Extract Yield (%) |
---|---|---|---|---|---|
1 | A. parviflorus | Thirjo | Whole plant | PUCD-2018-11 | 8.3 |
2 | B. asiatica | Bhimsen-pati | Leaves | PUCD-2018-9 | 22.3 |
3 | C. papaya | Mewa | Unripe fruits | PUCD-2018-10 | 4.0 |
4 | D. falcatum | Nigalo | Young shoots | PUCD-2018-12 | 13.2 |
5 | S. pinnata | Amara | Leaves | PUCD-2018-07/08 | 32.1 |
Phytochemical Constituents | Specific Tests | Samples | ||||
---|---|---|---|---|---|---|
A. parviflorus | B. asiatica | C. papaya | D. falcatum | S. pinnata | ||
Alkaloids | Mayer’s test | - | - | - | - | - |
Hager’s test | - | - | + | - | - | |
Wagner test | - | - | - | - | - | |
Carbohydrates | Molisch’s test | - | + | + | - | - |
Benedict’s test | - | - | - | - | - | |
Fehling’s test | - | + | + | - | + | |
Saponins | Foam test | - | + | + | - | + |
Phenolic Compounds | Ferric chloride test | - | + | - | - | + |
Flavonoids | Alkaline reagent test | - | + | - | - | + |
Tannins | Gelatin test | - | - | + | - | - |
Terpenoids | Salkowski test | + | + | + | + | + |
Sample Extract | Total Phenolic Content (mg GAE/g of Extract) | Total Flavonoid Content (mg QE/g of Extract) |
---|---|---|
A. parviflorus | 27.48 ± 0.25 | 51.75 ± 2.50 |
B. asiatica | 127.48 ± 1.58 | 648.42 ± 2.88 |
C. papaya | 2.53 ± 0.25 | 81.75 ± 2.50 |
D. falcatum | 2.43 ± 0.29 | 13.41 ± 1.44 |
S. pinnata | 71.50 ± 1.39 | 425.08 ± 1.44 |
Sample | IC50 Values for the DPPH Free Radical Scavenging Assay (μg/mL) | IC50 Values for the α-Amylase Inhibitory Assay (mg/mL) |
---|---|---|
A. parviflorus | 40.26 ± 3.44 | 4.76 ± 0.03 |
B. asiatica | 3.04 ± 0.04 | 1.59 ± 0.01 |
C. papaya | 41.73 ± 0.07 | 0.45 ± 0.02 |
D. falcatum | > 100 | 2.82 ± 0.05 |
S. pinnata | 4.84 ± 0.12 | 2.11 ± 0.01 |
Positive control | 3.16 ± 0.03 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sai, K.; Thapa, R.; Devkota, H.P.; Joshi, K.R. Phytochemical Screening, Free Radical Scavenging and α-Amylase Inhibitory Activities of Selected Medicinal Plants from Western Nepal. Medicines 2019, 6, 70. https://doi.org/10.3390/medicines6020070
Sai K, Thapa R, Devkota HP, Joshi KR. Phytochemical Screening, Free Radical Scavenging and α-Amylase Inhibitory Activities of Selected Medicinal Plants from Western Nepal. Medicines. 2019; 6(2):70. https://doi.org/10.3390/medicines6020070
Chicago/Turabian StyleSai, Kusum, Rashmi Thapa, Hari Prasad Devkota, and Khem Raj Joshi. 2019. "Phytochemical Screening, Free Radical Scavenging and α-Amylase Inhibitory Activities of Selected Medicinal Plants from Western Nepal" Medicines 6, no. 2: 70. https://doi.org/10.3390/medicines6020070
APA StyleSai, K., Thapa, R., Devkota, H. P., & Joshi, K. R. (2019). Phytochemical Screening, Free Radical Scavenging and α-Amylase Inhibitory Activities of Selected Medicinal Plants from Western Nepal. Medicines, 6(2), 70. https://doi.org/10.3390/medicines6020070