Metabolic Syndrome and Framingham Risk Score: Observation from Screening of Low-Income Semi-Urban African Women
Abstract
:1. Introduction
2. Methods and Settings
- Raised TG level: ≥ 1.7 mmol/L, or specific treatment for this lipid abnormality
- Reduced HDLchol cholesterol: <1.29 mmol/L in females, or specific treatment for this lipid abnormality
- Raised blood pressure: Systolic BP ≥ 130 or diastolic BP ≥ 85 mmHg, or treatment of previously diagnosed hypertension
- Raised fasting plasma glucose (FPG) ≥ 5.6 mmol/L, or previously diagnosed type 2 diabetes.
3. Statistical Analyses
4. Results
5. Discussion
6. Conclusions
7. Limitations
Author Contributions
Conflicts of Interest
Abbreviations
FRS | Framingham risk score |
MetS | Metabolic syndrome |
BMI | body mass index |
Tchol | total cholesterol |
HDLchol | high density cholesterol |
LDLchol | low density cholesterol |
CVD | cardiovascular disease |
References
- Banerjee, M.; Cruickshank, J. Pregnancy as the prodrome to vascular dysfunction and cardiovascular risk. Nat. Clin. Pract. Cardiovasc. Med. 2006, 3, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Rapeport, N. Cardiovascular disease prevention in women: Are we up to date? Cardiovasc. J. Afr. 2011, 22, 119–120. [Google Scholar] [PubMed]
- Ford, E.S.; Ajani, U.A.; Croft, J.B.; Critchley, J.A.; Labarthe, D.R.; Kottke, T.E.; Giles, W.H.; Capewell, S. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N. Engl. J. Med. 2007, 356, 2388–2398. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Statistics 2010; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Gaziano, T.A. Cardiovascular disease in the developing world and its cost-effective management. Circulation 2005, 112, 3547–3553. [Google Scholar] [CrossRef] [PubMed]
- Alwan, A. Global Status Report on Noncommunicable Diseases 2010; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Kelly, B.B.; Fuster, V. Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Lopez, A.D. Alternative projections of mortality and disability by cause 1990–2020: Global burden of disease study. Lancet 1997, 349, 1498–1504. [Google Scholar] [CrossRef]
- Kaur, J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014, 2014, 943162. [Google Scholar] [CrossRef] [PubMed]
- Wenger, N.K. Women and coronary heart disease: A century after Herrick understudied, underdiagnosed, and undertreated. Circulation 2012, 126, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.W.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Bazzarre, T.; Cleeman, J.; D’Agostino, R.B.; Hill, M.; Houston-Miller, N.; Kannel, W.B.; Krauss, R.; Krumholz, H.M.; Lauer, R.M. Prevention conference V beyond secondary prevention: Identifying the high-risk patient for primary prevention: Medical office assessment: Writing group I. Circulation 2000, 101, e3–e11. [Google Scholar] [CrossRef] [PubMed]
- Akintunde, A.; Salawu, A.; Opadijo, O. Prevalence of traditional cardiovascular risk factors among staff of Ladoke Akintola University of Technology, Ogbomoso, Nigeria. Niger. J. Clin. Pract. 2015, 17, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Ejim, E.; Okafor, C.; Emehel, A.; Mbah, A.; Onyia, U.; Egwuonwu, T.; Akabueze, J.; Onwubere, B. Prevalence of cardiovascular risk factors in the middle-aged and elderly population of a Nigerian rural community. J. Trop. Med. 2011, 2011, 308687. [Google Scholar] [CrossRef] [PubMed]
- Oguoma, V.M.; Nwose, E.U.; Skinner, T.C.; Digban, K.A.; Onyia, I.C.; Richards, R.S. Prevalence of cardiovascular disease risk factors among a Nigerian adult population: Relationship with income level and accessibility to CVD risks screening. BMC Public Health 2015, 15, 397. [Google Scholar] [CrossRef] [PubMed]
- Warnick, G.R.; Knopp, R.H.; Fitzpatrick, V.; Branson, L. Estimating low-density lipoprotein cholesterol by the friedewald equation is adequate for classifying patients on the basis of nationally recommended cutpoints. Clin. Chem. 1990, 36, 15–19. [Google Scholar] [PubMed]
- Alberti, G.; Zimmet, P.; Shaw, J.; Grundy, S. IDF Worldwide Definition of the Metabolic Syndrome. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [PubMed]
- Gholizadeh, L.; Davidson, P. More similarities than differences: An international comparison of CVD mortality and risk factors in women. Health Care Women Int. 2007, 29, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Mathers, C.; Fat, D.M.; Boerma, J.T. The Global Burden of Disease: 2004 Update; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Mosca, L.; Grundy, S.M.; Judelson, D.; King, K.; Limacher, M.; Oparil, S.; Pasternak, R.; Pearson, T.A.; Redberg, R.F.; Smith, S.C., Jr.; et al. Guide to preventive cardiology for women. AHA/ACC scientific statement consensus panel statement. Circulation 1999, 99, 2480–2484. [Google Scholar] [CrossRef] [PubMed]
- Mosca, L.; Banka, C.L.; Benjamin, E.J.; Berra, K.; Bushnell, C.; Dolor, R.J.; Ganiats, T.G.; Gomes, A.S.; Gornik, H.L.; Gracia, C.; et al. Evidence-based guidelines for cardiovascular disease prevention in women: 2007 update. Circulation 2007, 115, 1481–1501. [Google Scholar] [CrossRef] [PubMed]
- Deepa, M.; Farooq, S.; Datta, M.; Deepa, R.; Mohan, V. Prevalence of metabolic syndrome using WHO, ATPIII and IDF definitions in Asian Indians: The chennai urban rural epidemiology study (cures-34). Diabetes Metab. Res. Rev. 2007, 23, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Ogbu, I.; Chukwukelu, E. Prevalence of metabolic syndrome using weight and weight indices in an apparently healthy Nigerian population. Int. J. Med. Biomed. Res. 2013, 1, 141–146. [Google Scholar] [CrossRef]
- Oguoma, V.; Nwose, E.; Richards, R. Prevalence of cardio-metabolic syndrome in Nigeria: A systematic review. Public Health 2015, 129, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Zhu, S.; Palaniappan, L.; Heshka, S.; Carnethon, M.R.; Heymsfield, S.B. The metabolic syndrome: Prevalence and associated risk factor findings in the U.S. population from the third national health and nutrition examination survey, 1988–1994. Arch. Intern. Med. 2003, 163, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Ramos, R.G.; Olden, K. The prevalence of metabolic syndrome among U.S. women of childbearing age. Am. J. Public Health 2008, 98, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Tran, A.; Gelaye, B.; Girma, B.; Lemma, S.; Berhane, Y.; Bekele, T.; Khali, A.; Williams, M.A. Prevalence of metabolic syndrome among working adults in Ethiopia. Int. Hypertens. 2011, 2011, 193719. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.-Y.; Hong, Y.S.; Sung, Y.-A.; Barrett-Connor, E. Prevalence and factor analysis of metabolic syndrome in an urban Korean population. Diabetes Care 2004, 27, 2027–2032. [Google Scholar] [CrossRef] [PubMed]
- Adediran, O.; Akintunde, A.A.; Edo, A.E.; Opadijo, O.G.; Araoye, A.M. Impact of urbanization and gender on frequency of metabolic syndrome among native Abuja settlers in Nigeria. J. Cardiovasc. Dis. Res. 2012, 3, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, O.A.; Adedoyin, R.A.; Balogun, M.O.; Adebayo, R.A.; Bisiriyu, L.A.; Salawu, A.A. Prevalence of metabolic syndrome in a rural community in Nigeria. Metab. Syndr. Relat. Disord. 2010, 8, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Ulasi, I.I.; Ijoma, C.K.; Onodugo, O.D. A community-based study of hypertension and cardio-metabolic syndrome in semi-urban and rural communities in Nigeria. BMC Health Serv. Res. 2010, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bonora, E.; Kiechl, S.; Willeit, J.; Bonadonna, R.; Muggeo, M. The Metabolic Syndrome in Subjects Aged 40–79 from the Bruneck Study. Epidemiology and Cardiovascular Risk; American Diabetes Association: Alexandria, VA, USA, 2001; p. A203. [Google Scholar]
- Rantala, A.; Kauma, H.; Lilja, M.; Savolainen, M.; Reunanen, A.; Kesäniemi, Y. Prevalence of the metabolic syndrome in drug-treated hypertensive patients and control subjects. J. Intern. Med. 1999, 245, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, J.; Banerjee, M.; Heald, A.; Cruickshank, K. Diabetes and ethnic minorities. Postgrad. Med. J. 2005, 81, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Bruno, G.; Merletti, F.; Biggeri, A.; Bargero, G.; Ferrero, S.; Runzo, C.; Cerai, S.P.; Pagano, G.; Cavallo-Perin, P. Metabolic syndrome as a predictor of all-cause and cardiovascular mortality in type 2 diabetes the casale monferrato study. Diabetes Care 2004, 27, 2689–2694. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Giles, W.H.; Dietz, W.H. Prevalence of the metabolic syndrome among U.S. adults: Findings from the third national health and nutrition examination survey. JAMA 2002, 287, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Bender, R.; Jöckel, K.-H.; Richter, B.; Spraul, M.; Berger, M. Body weight, blood pressure, and mortality in a cohort of obese patients. Am. J. Epidemiol. 2002, 156, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Vorster, H.H. The emergence of cardiovascular disease during urbanisation of Africans. Public Health Nutr. 2002, 5, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Njelekela, M.A.; Mpembeni, R.; Muhihi, A.; Mligiliche, N.L.; Spiegelman, D.; Hertzmark, E.; Liu, E.; Finkelstein, J.L.; Fawzi, W.W.; Willett, W.C.; et al. Gender-related differences in the prevalence of cardiovascular disease risk factors and their correlates in urban Tanzania. BMC Cardiovasc. Disord. 2009, 9, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wannamethee, S.G.; Shaper, A.G.; Lennon, L.; Morris, R.W. Metabolic syndrome vs. Framingham risk score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Arch. Intern. Med. 2005, 165, 2644–2650. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Gaw, A.; Scherbakova, O.; Ford, I.; O’Reilly, D.S.J.; Haffner, S.M.; Isles, C.; Macfarlane, P.W.; Packard, C.J.; Cobbe, S.M. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the west of Scotland coronary prevention study. Circulation 2003, 108, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Gami, A.S.; Witt, B.J.; Howard, D.E.; Erwin, P.J.; Gami, L.A.; Somers, V.K.; Montori, V.M. Metabolic syndrome and risk of incident cardiovascular events and death: A systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol. 2007, 49, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Najarian, R.M.; Sullivan, L.M.; Kannel, W.B.; Wilson, P.W.; D’Agostino, R.B.; Wolf, P.A. Metabolic syndrome compared with type 2 diabetes mellitus as a risk factor for stroke: The Framingham offspring study. Arch. Intern. Med. 2006, 166, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Brewer, H.B.; Cleeman, J.I.; Smith, S.C.; Lenfant, C. Definition of metabolic syndrome report of the national heart, lung, and blood institute/american heart association conference on scientific issues related to definition. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Stern, M.P.; Williams, K.; González-Villalpando, C.; Hunt, K.J.; Haffner, S.M. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care 2004, 27, 2676–2681. [Google Scholar] [CrossRef] [PubMed]
- Zarich, S.; Luciano, C.; Hulford, J.; Abdullah, A. Prevalence of metabolic syndrome in young patients with acute mi: Does the Framingham risk score underestimate cardiovascular risk in this population? Diabetes Vasc. Dis. Res. 2006, 3, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Yousefzadeh, G.; Shokoohi, M.; Najafipour, H.; Shadkamfarokhi, M. Applying the Framingham risk score for prediction of metabolic syndrome: The kerman coronary artery disease risk study, Iran. ARYA Atheroscler. 2015, 11, 179–185. [Google Scholar] [PubMed]
- Galassi, A.; Reynolds, K.; He, J. Metabolic syndrome and risk of cardiovascular disease: A meta-analysis. Am. J. Med. 2006, 119, 812–819. [Google Scholar] [CrossRef] [PubMed]
Characteristic | All Participants N (%) | Individuals with MetS N (%) | Individuals without MetS N (%) |
---|---|---|---|
Occupation | |||
House wife | 6 (3.2) | - | 6 (3.2) |
Business | 74 (39.2) | 6 (3.2) | 68 (36) |
Civil servant | 78 (41.3) | 13 (6.9) | 65 (34.4) |
Farming | 16 (8.5) | - | 16 (8.5) |
Clergy | 15 (7.9) | - | 15 (7.9) |
Average monthly income | |||
<90 Dollars | 114 (60.3) | 8 (4.2) | 106 (56.1) |
90–250 | 36 (19.0) | 3 (1.6) | 33 (17.5) |
251–500 | 35 (18.5) | 8 (4.2) | 27 (14.3) |
>500 | 4 (2.1) | - | 4 (2.1) |
Educational attainment | |||
None | 10 (5.3) | 1 (0.5) | 9 (4.8) |
Primary | 48 (25.4) | 5 (2.6) | 43 (22.8) |
Secondary | 61 (32.3) | 6 (3.2) | 55 (29.1) |
Tertiary | 59 (31.2) | 5 (2.9) | 54 (28.6) |
Others | 11 (5.8) | 2 (1.1) | 9 (4.8) |
Characteristic | All Participants | Individuals with MetS | Individuals without MetS | p Value |
---|---|---|---|---|
Age | 53.5 | 54.33 ± 10.55 | 53.24 ± 9.35 | |
Weight (kg) | 70.12 ± 13.12 | 70.41 ± 12.47 | 70.02 ± 13.35 | |
BMI (kg/m2) | 27.97 ± 4.79 | 26.98 ± 2.90 | 27.30 ± 6.83 | |
Waist hip ratio | 0.87 ± 0.074 | 0.88 ± 0.059 | 0.86 ± 0.78 | |
Tchol (mmol/L) | 5.43 ± 1.06 | 5.47 ± 0.78 | 5.41 ± 1.14 | |
TG (mmol/L) | 1.14 ± 0.46 | 1.25 ± 0.43 | 1.11 ± 0.46 | |
HDLchol (mmol/L) | 1.62 ± 0.47 | 1.50 ± 0.48 | 1.66 ± 0.47 | |
LDLchol (mmol/L) | 3.28 ± 0.48 | 3.40 ± 0.70 | 3.23 ± 0.90 | |
BP (mmHg) | ||||
Systolic | 131.80 ± 30.17 | 152.39 ± 41.05 | 125.17 ± 22.13 | |
Diastolic | 78.28 ± 13.58 | 85.54 ± 13.91 | 75.94 ± 12.66 | |
FBS (mmol) | 5.40 ± 1.76 | 6.07 ± 2.82 | 5.18 ± 1.17 | |
Categorical Data | ||||
FRS ≤ 10% | 187 (98.9) | 44 (23.3) | 143 (75.7) | |
FRS 10%–20% | 2 (1.1) | 2 (1.1) | - | 0.012 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dada, A.S.; Ajayi, D.D.; Areo, P.O.; Raimi, T.H.; Emmanuel, E.E.; Odu, O.O.; Aremu, O.A. Metabolic Syndrome and Framingham Risk Score: Observation from Screening of Low-Income Semi-Urban African Women. Medicines 2016, 3, 15. https://doi.org/10.3390/medicines3020015
Dada AS, Ajayi DD, Areo PO, Raimi TH, Emmanuel EE, Odu OO, Aremu OA. Metabolic Syndrome and Framingham Risk Score: Observation from Screening of Low-Income Semi-Urban African Women. Medicines. 2016; 3(2):15. https://doi.org/10.3390/medicines3020015
Chicago/Turabian StyleDada, Ayokunle S., Daisi D. Ajayi, Peter O. Areo, Taiwo H. Raimi, Eyitayo E. Emmanuel, Olusola O. Odu, and Olusegun A. Aremu. 2016. "Metabolic Syndrome and Framingham Risk Score: Observation from Screening of Low-Income Semi-Urban African Women" Medicines 3, no. 2: 15. https://doi.org/10.3390/medicines3020015
APA StyleDada, A. S., Ajayi, D. D., Areo, P. O., Raimi, T. H., Emmanuel, E. E., Odu, O. O., & Aremu, O. A. (2016). Metabolic Syndrome and Framingham Risk Score: Observation from Screening of Low-Income Semi-Urban African Women. Medicines, 3(2), 15. https://doi.org/10.3390/medicines3020015