An Investigation of 5-Halogenated N-Indolylsulfonyl-2-fluorophenol Derivatives as Aldose Reductase Inhibitors
Abstract
1. Introduction
2. Design
3. Materials and Methods
3.1. Synthesis
3.1.1. Chemical Reagents and Equipment
3.1.2. Synthesis of Intermediate Compounds 2a-c
3.1.3. Synthesis of Intermediate Compound 2d
3.1.4. Synthesis of Final Compounds 3a-d
3.2. Biological Evaluation
3.2.1. Animals
3.2.2. Biological Reagents and Equipment
3.2.3. ALR2 Preparation
3.2.4. ALR2 Enzymatic Assay
3.2.5. Docking Analysis
4. Results
4.1. Chemistry
4.2. ALR2 Inhibition
4.3. Docking Simulation
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sacks, D.B.; Arnold, M.; Bakris, G.L.; Bruns, D.E.; Horvath, A.R.; Lernmark, Å.; Metzger, B.E.; Nathan, D.M.; Kirkman, M.S. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Diabetes Care 2023, 46, 151–199. [Google Scholar] [CrossRef] [PubMed]
- Umpierrez, G.E.; Davis, G.M.; ElSayed, N.A.; Fadini, G.P.; Galindo, R.J.; Hirsch, I.B.; Klonoff, D.C.; McCoy, R.G.; Misra, S.; Gabbay, R.A.; et al. Hyperglycemic Crises in Adults with Diabetes: A Consensus Report. Diabetes Care 2024, 47, 1257–1275. [Google Scholar] [CrossRef]
- Mauricio, D.; Alonso, N.; Gratacòs, M. Chronic Diabetes Complications: The Need to Move beyond Classical Concepts. Trends Endocrinol. Metab. 2020, 31, 287–295. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48, 27–49. [Google Scholar] [CrossRef]
- Mobasseri, M.; Shirmohammadi, M.; Amiri, T.; Vahed, N.; Hosseini Fard, H.; Ghojazadeh, M. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis. Health Promot. Perspect. 2020, 10, 98–115. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Pan, Y.; Zhou, K.; Liu, H.; Zhong, S. Correlation Between Glycemic Variability and Diabetic Complications: A Narrative Review. Int. J. Gen. Med. 2023, 16, 3083–3094. [Google Scholar] [CrossRef]
- Balestri, F.; Moschini, R.; Mura, U.; Cappiello, M.; Del Corso, A. In Search of Differential Inhibitors of Aldose Reductase. Biomolecules 2022, 12, 485. [Google Scholar] [CrossRef]
- Del-Corso, A.; Balestri, F.; Di Bugno, E.; Moschini, R.; Cappiello, M.; Sartini, S.; La-Motta, C.; Da-Settimo, F.; Mura, U. A new approach to control the enigmatic activity of aldose reductase. PLoS ONE 2013, 8, e74076. [Google Scholar] [CrossRef]
- Maccari, R.; Ottanà, R. Targeting aldose reductase for the treatment of diabetes complications and inflammatory diseases: New insights and future directions. J. Med. Chem. 2015, 58, 2047–2067. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Liu, S.; Gao, M.; Wang, W.; Chen, K.; Huang, L.; Liu, Y. Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduct. Target. Ther. 2023, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Shyam, M.; Sidharth, S.; Veronica, A.; Jagannathan, L.; Srirangan, P.; Radhakrishnan, V.; Sabina, E.P. Diabetic retinopathy: A comprehensive review of pathophysiology and emerging treatments. Mol. Biol. Rep. 2025, 52, 380. [Google Scholar] [CrossRef]
- Handelsman, D.J.; Turtle, J.R. Clinical trial of an aldose reductase inhibitor in diabetic neuropathy. Diabetes 1981, 30, 459–464. [Google Scholar] [CrossRef]
- Giugliano, D.; Acampora, R.; Marfella, R.; Di Maro, G.; De Rosa, N.; Misso, L.; Ceriello, A.; Quatraro, A.; D’Onofrio, F. Tolrestat in the primary prevention of diabetic neuropathy. Diabetes Care 1995, 18, 536–541. [Google Scholar] [CrossRef]
- Foppiano, M.; Lombardo, G. Worldwide pharmacovigilance systems and tolrestat withdrawal. Lancet 1997, 349, 399–400. [Google Scholar] [CrossRef] [PubMed]
- Van Zandt, M.C.; Jones, M.L.; Gunn, D.E.; Geraci, L.S.; Jones, J.H.; Sawicki, D.R.; Sredy, J.; Jacot, J.L.; Dicioccio, A.T.; Petrova, T.; et al. Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J. Med. Chem. 2005, 48, 3141–3152. [Google Scholar] [CrossRef]
- Noh, H.L.; Hu, Y.; Park, T.S.; DiCioccio, T.; Nichols, A.J.; Okajima, K.; Homma, S.; Goldberg, I.J. Regulation of plasma fructose and mortality in mice by the aldose reductase inhibitor lidorestat. J. Pharmacol. Exp. Ther. 2009, 328, 496–503. [Google Scholar] [CrossRef] [PubMed]
- The Institute for Diabetes Discovery, LLC. Lidorestat (IDD 676) for the Treatment of Diabetic Neuropathy [Clinical Trial: NCT00043797]; The Institute for Diabetes Discovery, LLC: Branford, CT, USA, 2005. [Google Scholar]
- Greene, D.A.; Arezzo, J.C.; Brown, M.B. Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Zenarestat Study Group. Neurology 1999, 53, 580–591. [Google Scholar] [CrossRef]
- Zenarestat. Drugs R D 2002, 3, 235–237. [CrossRef]
- Brown, M.J.; Bird, S.J.; Watling, S.; Kaleta, H.; Hayes, L.; Eckert, S.; Foyt, H.L. Zenarest study. Natural progression of diabetic peripheral neuropathy in the Zenarestat study population. Diabetes Care 2004, 27, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
- Inskeep, P.B.; Ronfeld, R.A.; Peterson, M.J.; Gerber, N. Pharmacokinetics of the aldose reductase inhibitor, zopolrestat, in humans. J. Clin. Pharmacol. 1994, 34, 760–766. [Google Scholar] [CrossRef]
- Arezzo, J.; Klioze, S.; Peterson, M.; Lakshminarayanan, M. Zopolrestat Phase II Neuropathy Study Group: Efficacy and Safety Results of a Phase II Multicenter Study of the Aldose Reductase Inhibitor Zopolrestat in Patients with Peripheral Symmetrical Diabetic Polyneuropathy. Diabetes Care 1996, 45, 276. [Google Scholar]
- Florkowski, C.M.; Rowe, B.R.; Nightingale, S.; Harvey, T.C.; Barnett, A.H. Clinical and neurophysiological studies of aldose reductase inhibitor ponalrestat in chronic symptomatic diabetic peripheral neuropathy. Diabetes 1991, 40, 129–133. [Google Scholar] [CrossRef]
- Ziegler, D.; Mayer, P.; Rathmann, W.; Gries, F.A. One-year treatment with the aldose reductase inhibitor, ponalrestat, in diabetic neuropathy. Diabetes Res. Clin. Pract. 1991, 14, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Sundkvist, G.; Armstrong, F.M.; Bradbury, J.E.; Chaplin, C.; Ellis, S.H.; Owens, D.R.; Rosén, I.; Sönksen, P. Peripheral and autonomic nerve function in 259 diabetic patients with peripheral neuropathy treated with ponalrestat (an aldose reductase inhibitor) or placebo for 18 months. United Kingdom/Scandinavian Ponalrestat Trial. J. Diabetes Complicat. 1992, 6, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Arauz-Pacheco, C.; Ramirez, L.C.; Pruneda, L.; Sanborn, G.E.; Rosenstock, J.; Raskin, P. The effect of the aldose reductase inhibitor, ponalrestat, on the progression of diabetic retinopathy. J. Diabetes Complicat. 1992, 6, 131–137. [Google Scholar] [CrossRef]
- Krentz, A.J.; Honigsberger, L.; Ellis, S.H.; Hardman, M.; Nattrass, M. A 12-month randomized controlled study of the aldose reductase inhibitor ponalrestat in patients with chronic symptomatic diabetic neuropathy. Diabet. Med. 1992, 9, 463–468. [Google Scholar] [CrossRef]
- Faes, T.J.; Yff, G.A.; DeWeerdt, O.; Lanting, P.; Heimans, J.J.; Bertelsmann, F.W. Treatment of diabetic autonomic neuropathy with an aldose reductase inhibitor. J. Neurol. 1993, 240, 156–160. [Google Scholar] [CrossRef]
- Januzzi, J.L.J.; Butler, J.; Del Prato, S.; Ezekowitz, J.A.; Ibrahim, N.E.; Lam, C.S.P.; Lewis, G.D.; Marwick, T.H.; Perfetti, R.; Rosenstock, J.; et al. Randomized Trial of a Selective Aldose Reductase Inhibitor in Patients with Diabetic Cardiomyopathy. J. Am. Coll. Cardiol. 2024, 84, 137–148. [Google Scholar] [CrossRef]
- Ramirez, M.A.; Borja, N.L. Epalrestat: An aldose reductase inhibitor for the treatment of diabetic neuropathy. Pharmacotherapy 2008, 28, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Nakamura, J. Clinical potential of aldose reductase inhibitors in diabetic neuropathy. Treat. Endocrinol. 2004, 3, 245–255. [Google Scholar] [CrossRef]
- Sorbinil Retinopathy Trial Research Group. A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Arch Ophthalmol. 1990, 108, 1234–1244. [Google Scholar] [CrossRef]
- Sorbinil Retinopathy Trial Research Group. The sorbinil retinopathy trial: Neuropathy results. Neurology 1993, 43, 1141–1149. [Google Scholar] [CrossRef]
- Hotta, N.; Toyota, T.; Matsuoka, K.; Shigeta, Y.; Kikkawa, R.; Kaneko, T.; Takahashi, A.; Sugimura, K.; Koike, Y.; Ishii, J.; et al. Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: A 52-week multicenter placebo-controlled double-blind parallel group study. Diabetes Care 2001, 24, 1776–1782. [Google Scholar] [CrossRef]
- Asano, T.; Saito, Y.; Kawakami, M.; Yamada, N.; Fidarestat Clinical Pharmacology Study Group. Fidarestat (SNK-860), a potent aldose reductase inhibitor, normalizes the elevated sorbitol accumulation in erythrocytes of diabetic patients. J. Diabetes Complicat. 2002, 16, 133–138. [Google Scholar] [CrossRef]
- Brazzell, R.K.; Mayer, P.R.; Dobbs, R.; McNamara, P.J.; Teng, R.L.; Slattery, J.T. Dose-dependent pharmacokinetics of the aldose reductase inhibitor imirestat in man. Pharm. Res. 1991, 8, 112–118. [Google Scholar] [CrossRef]
- Averbuch, M.; Weintraub, M.; Liao, J.C.; Brazzell, R.K.; Dobbs, R.E. Red blood cell sorbitol lowering effects and tolerance of single doses of AL 1576 (HOE 843) in diabetic patients. J. Clin. Pharmacol. 1988, 28, 757–761. [Google Scholar] [CrossRef]
- Bril, V.; Hirose, T.; Tomioka, S.; Buchanan, R.; Ranirestat Study Group. Ranirestat for the management of diabetic sensorimotor polyneuropathy. Diabetes Care 2009, 32, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Polydefkis, M.; Arezzo, J.; Nash, M.; Bril, V.; Shaibani, A.; Gordon, R.J.; Bradshaw, K.L.; Junor, R.W.; Ranirestat Study Group. Safety and efficacy of ranirestat in patients with mild-to-moderate diabetic sensorimotor polyneuropathy. J. Peripher. Nerv. Syst. 2015, 20, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Satoh, J.; Kohara, N.; Sekiguchi, K.; Yamaguchi, Y. Effect of Ranirestat on Sensory and Motor Nerve Function in Japanese Patients with Diabetic Polyneuropathy: A Randomized Double-Blind Placebo-Controlled Study. J. Diabetes Res. 2016, 5383797. [Google Scholar] [CrossRef]
- Robinson, W.G., Jr.; Laver, N.M.; Jacot, J.L.; Glover, J.P.; Basso, M.D.; Blouin, P.; Hohman, T.C. Diabetic-like retinopathy ameliorated with the aldose reductase inhibitor WAY-121,509. Invest. Ophthalmol. Vis. Sci. 1996, 37, 1149–1156. [Google Scholar]
- Akamine, E.H.; Hohman, T.C.; Nigro, D.; Carvalho, M.H.; de Cássia Tostes, R.; Fortes, Z.B. Minalrestat, an aldose reductase inhibitor, corrects the impaired microvascular reactivity in diabetes. J. Pharmacol. Exp. Ther. 2003, 304, 1236–1242. [Google Scholar] [CrossRef]
- Ohashi, Y.; Matsuda, M.; Hosotani, H.; Tano, Y.; Ishimoto, I.; Fukuda, M.; Manabe, R. Aldose reductase inhibitor (CT-112) eyedrops for diabetic corneal epitheliopathy. Am. J. Ophthalmol. 1988, 105, 233–238. [Google Scholar] [CrossRef]
- Hosotani, H.; Ohashi, Y.; Yamada, M.; Tsubota, K. Reversal of abnormal corneal epithelial cell morphologic characteristics and reduced corneal sensitivity in diabetic patients by aldose reductase inhibitor, CT-112. Am. J. Ophthalmol. 1995, 119, 288–294. [Google Scholar] [CrossRef]
- Nakahara, M.; Miyata, K.; Otani, S.; Miyai, T.; Nejima, R.; Yamagami, S.; Amano, S. A randomised, placebo controlled clinical trial of the aldose reductase inhibitor CT-112 as management of corneal epithelial disorders in diabetic patients. Br. J. Ophthalmol. 2005, 89, 266–268. [Google Scholar] [CrossRef]
- Kousaxidis, A.; Petrou, A.; Lavrentaki, V.; Fesatidou, M.; Nicolaou, I.; Geronikaki, A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur. J. Med. Chem. 2020, 207, 112742. [Google Scholar] [CrossRef]
- Mylari, B.L.; Armento, S.J.; Beebe, D.A.; Conn, E.L.; Coutcher, J.B.; Dina, M.S.; O’Gorman, M.T.; Linhares, M.C.; Martin, W.H.; Oates, P.J.; et al. A highly selective, non-hydantoin, non-carboxylic acid inhibitor of aldose reductase with potent oral activity in diabetic rat models: 6-(5-chloro-3-methylbenzofuran- 2-sulfonyl)-2-H-pyridazin-3-one. J. Med. Chem. 2003, 46, 2283–2286. [Google Scholar] [CrossRef]
- Koutsopoulos, K.; Lavrentaki, V.; Antoniou, I.; Kousaxidis, A.; Lefkopoulou, M.; Tsantili-Kakoulidou, A.; Kovacikova, L.; Stefek, M.; Nicolaou, I. Design synthesis and evaluation of novel aldose reductase inhibitors: The case of indolyl-sulfonyl-phenols. Bioorg. Med. Chem. 2020, 28, 115575. [Google Scholar] [CrossRef] [PubMed]
- Kousaxidis, A.; Paoli, P.; Kovacikova, L.; Genovese, M.; Santi, A.; Stefek, M.; Petrou, A.; Nicolaou, I. Rational design and synthesis of novel N-benzylindole-based epalrestat analogs as selective aldose reductase inhibitors: An unexpected discovery of a new glucose-lowering agent (AK-4) acting as a mitochondrial uncoupler. Eur. J. Med. Chem. 2025, 281, 117035. [Google Scholar] [CrossRef] [PubMed]
- Mylari, B.L.; Armento, S.J.; Beebe, D.A.; Conn, E.L.; Coutcher, J.B.; Dina, M.S.; O’Gorman, M.T.; Linhares, M.C.; Martin, W.H.; Oates, P.J.; et al. A novel series of non-carboxylic acid, non-hydantoin inhibitors of aldose reductase with potent oral activity in diabetic rat models: 6-(5-chloro-3-methylbenzofuran-2-sulfonyl)-2H-pyridazin-3-one and congeners. J. Med. Chem. 2005, 48, 6326–6339. [Google Scholar] [CrossRef] [PubMed]
- Kousaxidis, A.; Kovacikova, L.; Nicolaou, I.; Stefek, M.; Geronikaki, A. Non-acidic bifunctional benzothiazole-based thiazolidinones with antimicrobial and aldose reductase inhibitory activity as a promising therapeutic strategy for sepsis. Med. Chem. Res. 2021, 30, 1837–1848. [Google Scholar] [CrossRef] [PubMed]
- Steuber, H.; Zentgraf, M.; Podjarny, A.; Heine, A.; Klebe, G. High-resolution crystal structure of aldose reductase complexed with the novel sulfonyl-pyridazinone inhibitor exhibiting an alternative active site anchoring group. J. Mol. Biol. 2006, 356, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Papastavrou, N.; Chatzopoulou, M.; Pegklidou, K.; Nicolaou, I. 1-Hydroxypyrazole as a bioisostere of the acetic acid moiety in a series of aldose reductase inhibitors. Bioorg. Med. Chem. 2013, 21, 4951–4957. [Google Scholar] [CrossRef] [PubMed]
- Pegklidou, K.; Koukoulitsa, C.; Nicolaou, I.; Demopoulos, V.J. Design and synthesis of novel series of pyrrole based chemotypes and their evaluation as selective aldose reductase inhibitors. A case of bioisosterism between a carboxylic acid moiety and that of a tetrazole. Bioorg. Med. Chem. 2010, 18, 2107–2114. [Google Scholar] [CrossRef]
- Shinada, N.K.; de Brevern, A.G.; Schmidtke, P. Halogens in Protein-Ligand Binding Mechanism: A Structural Perspective. J. Med. Chem. 2019, 62, 9341–9356. [Google Scholar] [CrossRef]
Compound | IC50 ± SD (μΜ) | pKa 4 | logD7.4 4 |
---|---|---|---|
3a | 3.02 ± 0.45 | 7.3 ± 0.8 | 2.48 |
3b | 2.22 ± 0.28 | 7.3 ± 0.8 | 2.94 |
3c | 1.85 ± 0.15 | 7.3 ± 0.8 | 3.23 |
3d | >10 | 9.2 ± 0.8 | 3.54 |
IIc | 0.98 ± 0.16 1 | 7.3 ± 0.8 | 2.29 |
sorbinil | 0.25 ± 0.01 2 | 8.3 ± 0.5 | 0.88 |
epalrestat | 0.25 ± 0.02 3 | 2.4 ± 0.8 | −1.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kousaxidis, A.; Kalfagianni, K.-M.; Seretouli, E.; Nicolaou, I. An Investigation of 5-Halogenated N-Indolylsulfonyl-2-fluorophenol Derivatives as Aldose Reductase Inhibitors. Medicines 2025, 12, 16. https://doi.org/10.3390/medicines12030016
Kousaxidis A, Kalfagianni K-M, Seretouli E, Nicolaou I. An Investigation of 5-Halogenated N-Indolylsulfonyl-2-fluorophenol Derivatives as Aldose Reductase Inhibitors. Medicines. 2025; 12(3):16. https://doi.org/10.3390/medicines12030016
Chicago/Turabian StyleKousaxidis, Antonios, Konstantina-Malamati Kalfagianni, Eleni Seretouli, and Ioannis Nicolaou. 2025. "An Investigation of 5-Halogenated N-Indolylsulfonyl-2-fluorophenol Derivatives as Aldose Reductase Inhibitors" Medicines 12, no. 3: 16. https://doi.org/10.3390/medicines12030016
APA StyleKousaxidis, A., Kalfagianni, K.-M., Seretouli, E., & Nicolaou, I. (2025). An Investigation of 5-Halogenated N-Indolylsulfonyl-2-fluorophenol Derivatives as Aldose Reductase Inhibitors. Medicines, 12(3), 16. https://doi.org/10.3390/medicines12030016