Modeling and Assessing the Spatial and Vertical Distributions of Potentially Toxic Elements in Soil and How the Concentrations Differ
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Laboratory Analysis
Chemical Analysis and Instrument
2.3. Contamination Level Analysis for PTEs
2.3.1. Contamination Factor
2.3.2. Pollution Load Index (PLI)
2.4. Source Apportionment Using a Positive Matrix Factorization (PMF) Model
2.5. Statistical Analysis and Spatial Modeling
3. Results and Discussion
3.1. General Description of PTEs Concentrations and Their Spatial Distribution in the Soil
3.2. Relationships among the PTE Concentrations in the Organic and Mineral Soils
3.3. Source Apportionment by the Positive Matrix Factorization (PMF) Model
3.4. Contamination Factor and Pollution Load Index of PTEs for Organic Soil and Mineral Soil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alloway, B.J. Micronutrient Deficiencies in Global Food Production; Springer: Heidelberg, Germany, 2008. [Google Scholar]
- Eriksson, J.; Dahlin, S.A.; Sohlenius, G.; Söderström, M.; Öborn, I. Spatial patterns of essential trace element concentrations in Swedish soils and crops. Geoderma Reg. 2017, 10, 163–174. [Google Scholar] [CrossRef]
- Agyeman, P.C.; Ahado, S.K.; Kingsley, J.; Kebonye, N.M.; Biney, J.K.M.; Borůvka, L.; Vasat, R.; Kocarek, M. Source apportionment, contamination levels, and spatial prediction of potentially toxic elements in selected soils of the Czech Republic. Environ. Geochem. Health 2020, 43, 601–620. [Google Scholar] [CrossRef] [PubMed]
- Barker, B.J.; Clausen, J.L.; Douglas, T.L.; Bednar, A.J.; Griggs, C.S.; Martin, W.A. Environmental impact of metals resulting from military training activities: A review. Chemosphere 2021, 265, 129110. [Google Scholar] [CrossRef]
- Borůvka, L.; Vašát, R.; Němeček, K.; Novotný, R.; Šrámek, V.; Vacek, O.; Pavlů, L.; Fadrhonsová, V.; Drábek, O. Application of regression-kriging and sequential Gaussian simulation for the delineation of forest areas potentially suitable for liming in the Jizera Mountains region, Czech Republic. Geoderma Reg. 2020, 21, e00286. [Google Scholar] [CrossRef]
- Chen, L.; Lowenthal, D.H.; Watson, J.G.; Koracin, D.; Kumar, N.; Knipping, E.M.; Wheeler, N.; Craig, K.; Reid, S. Toward effective source apportionment using positive matrix factorization: Experiments with simulated PM2.5 data. J. Air Waste Manag. Assoc. 2010, 60, 43–54. [Google Scholar] [CrossRef]
- Chien, C.S.; Wang, H.; Chen, Y.; Wang, M.; Liu, C. Removal of heavy metals from contaminated paddy soils using chemical reductants coupled with dissolved organic carbon solutions. J. Hazard. Mater. 2021, 403, 123549. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Cheng, G.; Wang, Y.; Zhuang, D. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Sci. Total Environ. 2017, 578, 577–585. [Google Scholar] [CrossRef]
- Gerdol, R.; Bragazza, L. Effects of altitude on element accumulation in alpine moss. Chemosphere 2020, 64, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press Taylor & Francis Group: New York, NY, USA, 2011. [Google Scholar]
- Liu, X.; Shi, H.; Bai, Z.; Zhou, W.; Liu, K.; Wang, M.; He, Y. Heavy metal concentrations of soils near the large opencast coal mine pits in China. Chemosphere 2020, 244, 125360. [Google Scholar] [CrossRef]
- Marcantonio, R.A.; Field, S.P.; Sesay, P.B.; Lamberti, G.A. Identifying human health risks from precious metal mining in Sierra Leone. Reg. Environ. Chang. 2021, 21, 1–12. [Google Scholar] [CrossRef]
- Pavlů, L.; Drábek, O.; Stejskalová, Š.; Tejnecký, V.; Hradilová, M.; Nikodem, A.; Borůvka, L. Distribution of aluminium fractions in acid forest soils: Influence of vegetation changes. iForest Biogeosci. For. 2018, 11, 721–727. [Google Scholar] [CrossRef]
- Peli, M.; Bostick, B.C.; Barontini, S.; Lucchini, R.G.; Ranzi, R. Profiles and species of Mn, Fe and trace metals in soils near a ferromanganese plant in Bagnolo Mella (Brescia, IT). Sci. Total Environ. 2021, 755, 143123. [Google Scholar] [CrossRef]
- Salvador-Blanes, S.; Cornu, S.; Bourennane, H.; King, D. Controls of the spatial variability of Cr concentration in topsoils of a central French landscape. Geoderma 2006, 132, 143–157. [Google Scholar] [CrossRef]
- Sungur, A.; Kavdir, Y.; Özcan, H.; İlay, R.; Soylak, M. Geochemical fractions of trace metals in surface and core sections of aggregates in agricultural soils. Catena 2021, 197, 104995. [Google Scholar] [CrossRef]
- Kalkhajeh, Y.K.; Huang, B.; Hu, W.; Ma, C.; Gao, H.; Thompson, M.L.; Hansen, H.C.B. Environmental soil quality and vegetable safety under current greenhouse vegetable production management in China. Agric. Ecosyst. Environ. 2021, 307, 107230. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, C.; Qi, S.; Kong, X.; Yue, X. Concentration and Spatial Distribution of Potentially Toxic Elements in Surface Soil of a Peak-Cluster Depression, Babao Town, Yunnan Province, China. Int. J. Environ. Res. Public Health 2021, 18, 3122. [Google Scholar] [CrossRef]
- Shar, S.; Reith, F.; Ball, A.S.; Shahsavar, E. Long-term Impact of Gold and Platinum on Microbial Diversity in Australian Soils. Microb. Ecol. 2021, 81, 977–989. [Google Scholar] [CrossRef]
- Matys Grygar, T.; Nováková, T.; Bábek, O.; Elznicová, J.; Vadinová, N. Robust assessment of moderate heavy metal contamination levels in floodplain sediments: A case study on the Jizera River, Czech Republic. Sci. Total Environ. 2013, 452–453, 233–245. [Google Scholar] [CrossRef]
- Kváčová, M.; Ash, C.; Borůvka, L.; Pavlů, L.; Nikodem, A.; Němeček, K.; Tejnecký, V.; Drábek, O. Contents of Potentially Toxic Elements in Forest Soils of the Jizera Mountains Region. Environ. Model. Assess. 2015, 20, 183–195. [Google Scholar] [CrossRef]
- Demková, L.; Jezný, T.; Bobuľská, L. Assessment of soil heavy metal pollution in a former mining area before and after the end of mining activities. Soil Water Res. 2017, 12, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Kabala, C.; Galka, B.; Jezierski, P. Assessment and monitoring of soil and plant contamination with trace elements around Europe’s largest copper ore tailings impoundment. Sci. Total Environ. 2020, 738, 139918. [Google Scholar] [CrossRef]
- Juhos, K.; Czigány, S.; Madarász, B.; Ladányi, M. Interpretation of soil quality indicators for land suitability assessment using multivariate approach for Central European arable soils. Ecol. Indic. 2019, 99, 261–272. [Google Scholar] [CrossRef]
- Ahmadi, M.; Akhbarizadeh, R.; Haghighifard, N.J.; Barzegar, G.; Jorfi, S. Geochemical determination and pollution assessment of heavy metals in agricultural soils of south western of Iran. J. Environ. Health Sci. Eng. 2019, 17, 657–669. [Google Scholar] [CrossRef]
- Hoaghia, M.A.; Levei, E.A.; Cadar, O.; Senila, M.; Hognogi, G.G. Assessment of metal contamination and ecological risk in urban soils situated near a metallurgical complex. Environ. Eng. Manag. J. 2017, 16, 1623–1630. [Google Scholar] [CrossRef]
- Alloway, B. Heavy Metals in Soils; Chapman and Hall: London, UK, 1995. [Google Scholar]
- Nwaogu, C.; Ogbuagu, D.H.; Abrakasa, S.; Olawoyin, M.A.; Pavlů, V. Assessment of the impacts of municipal solid waste dumps on soils and plants. Chem. Ecol. 2017, 33, 589–606. [Google Scholar] [CrossRef]
- Mondal, S.; Singh, G. Pollution evaluation, human health effect and tracing source of trace elements on road dust of Dhanbad, a highly polluted industrial coal belt of India. Environ. Geochem. Health 2021, 43, 2081–2103. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.S.; Yu, S.; Zhu, Y.G.; Li, X.D. Trace metal contamination in urban soils of China. Sci. Total Environ. 2012, 421–422, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.A.H.; Bodrud-Doza, M.; Rakib, M.A.; Saha, B.B.; Didar-Ul Islam, S.D. Appraisal of pollution scenario, sources and public health risk of harmful metals in mine water of Barapukuria coal mine industry in Bangladesh. Environ. Sci. Pollut. Res. 2021, 28, 22105–22122. [Google Scholar] [CrossRef]
- Simionov, I.A.; Cristea, D.S.; Petrea, S.M.; Mogodan, A.; Nicoara, M.; Plavan, G.; Baltag, E.S.; Jijie, R.; Strungaru, S.A. Preliminary investigation of lower Danube pollution caused by potentially toxic metals. Chemosphere 2021, 264, 128496. [Google Scholar] [CrossRef]
- Tamilmani, A.; Venkatesan, G. Assessment of trace metals and its pollution load indicators in water and sediments between Upper and Grand Anicuts in the Cauvery. Int. J. Environ. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Komárek, M.; Ettler, V.; Chrastný, V.; Mihaljevic, M. Lead isotopes in environmental sciences: A review. Environ. Int. 2008, 34, 562–577. [Google Scholar] [CrossRef]
- Brüggemann, J.; Dörfner, H.H.; Hecht, H.; Kumpulainen, J.T.; Westermair, T. Status of Trace Elements in Staple Foods from Germany 1990–1994. In Trace Elements, Natural Antioxidants and Contaminants in European Foods and Diets; Kumpulainen, J.T., Ed.; FAO: Rome, Italy, 1996; Volume 49, p. 5. [Google Scholar]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Staniszewski, P.; Bilek, M.; Szwerc, W.; Tomusiak, R.; Osiak, P.; Kocjan, R.; Moskalik, T. The effect of tree age, daily sap volume and date of sap collection on the content of minerals and heavy metals in silver birch (Betula pendula Roth) tree sap. PLoS ONE 2020, 15, e0244435. [Google Scholar] [CrossRef]
- Ren, H.Y.; Zhuang, D.F.; Singh, A.; Pan, J.J.; Qiu, D.S.; Shi, R.H. Estimation of as and Cu contamination in agricultural soils around a mining area by reflectance spectroscopy: A case study. Pedosphere 2009, 19, 719–726. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Boruvka, L.; Saberioon, M.; Vasat, R. Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: State-of-the-art and key issues. Appl. Spectrosc. 2013, 67, 1349–1362. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Boruvka, L.; Vasat, R.; Saberioon, M.; Klement, A.; Kratina, J.; Tejnecky, V.; Drabek, O. Estimation of potentially toxic elements contamination in anthropogenic soils on a Brown coal mining dumpsite by reflectance spectroscopy: A case study. PLoS ONE 2015, 10, e0117457. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, A.; Saberioon, M.; Ben-Dor, E.; Rossel, R.A.V.; Boruvka, L. Modelling potentially toxic elements in forest soils with viseNIR spectra and learning algorithms. Environ. Pollut. 2020, 267, 115574. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L.; Lv, J. Spatial assessment models to evaluate human health risk associated to soil potentially toxic elements. Environ. Pollut. 2021, 268, 115699. [Google Scholar] [CrossRef] [PubMed]
- Chodak, M.; Khanna, P.; Horvath, B.; Beese, F. Near infrared spectroscopy for determination of total and exchangeable cations in geologically heterogeneous forest soils. J. Near Infrared Spectrosc. 2004, 12, 315–324. [Google Scholar] [CrossRef]
- Hang, X.; Wang, H.; Zhou, J.; Ma, C.; Du, C.; Chen, X. Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environ. Pollut. 2009, 157, 2542–2549. [Google Scholar] [CrossRef]
- Liu, M.; Wang, T.; Skidmore, A.K.; Liu, X. Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images. Sci. Total Environ. 2018, 637–638, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Arellano, P.; Tansey, K.; Balzter, H.; Boyd, D.S. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environ. Pollut. 2015, 205, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Chen, Y.; Huang, L.; Yang, Z.; Zhu, K. Human health risk visualization of potentially toxic elements in farmland soil: A combined method of source and probability. Ecotoxicol. Environ. Saf. 2021, 211, 111922. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Yu, D.; Zhang, L.; Wang, J.; Lv, J. Source apportionment and spatial distribution of potentially toxic elements in soils: A new exploration on receptor and geostatistical models. Sci. Total Environ. 2021, 759, 143428. [Google Scholar] [CrossRef]
- Skeffington, R.A.; Cosby, B.J.; Whitehead, P.G. Long-term predictions of ecosystem acidification and recovery. Sci. Total Environ. 2016, 568, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Akselsson, C.; Hultberg, H.; Karlsson, P.E.; Pihl Karlsson, G.; Hellsten, S. Acidification trends in south Swedish forest soils 1986–2008-Slow recovery and high sensitivity to sea-salt episodes. Sci. Total Environ. 2013, 444, 271–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, A.; Hintze, S.; Sanda, M.; Jankovec, J.; Oulehle, F.; Dusek, J.; Vitvar, T.; Vogel, T.; van Geldern, R.; Barth, J.A.C. Acid rain footprint three decades after peak deposition: Long-term recovery from pollutant sulphate in the Uhlirska catchment (Czech Republic). Sci. Total Environ. 2017, 598, 1037–1049. [Google Scholar] [CrossRef]
- EscartÍn, E.; Porte, C. Biomonitoring of PAH Pollution in High-Altitude Mountain Lakes through the Analysis of Fish Bile. Environ. Sci. Technol. 1999, 33, 406–409. [Google Scholar] [CrossRef]
- Kopáček, J.; Hejzlar, J.; Krám, P.; Oulehle, F.; Posch, M. Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. Water Res. 2016, 103, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Křeček, J.; Palán, L.; Stuchlík, E. Impacts of land use policy on the recovery of mountain catchments from acidification. Land Use Policy 2019, 80, 439–448. [Google Scholar] [CrossRef]
- U.S. EPA. EPA Positive Matrix Factorization (PMF) 3.0 Model; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2010. Available online: http://www.epa.gov/heasd/products/pmf/pmf.html (accessed on 20 March 2021).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. Available online: http://www.fao.org/publications/card/en/c/942e424c-85a9-411d-a739-22d5f8b6cc41 (accessed on 2 December 2019).
- Vacek, O.; Vašát, R.; Borůvka, L. Quantifying the pedodiversity-elevation relations. Geoderma 2020, 373, 114441. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Pavlů, L.; Borůvka, L.; Drábek, O.; Nikodem, A. Effect of natural and anthropogenic acidification on aluminium distribution in forest soils of two regions in the Czech Republic. J. For. Res. 2021, 32, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Melo, B.A.G.; Motta, F.L.; Santana, M.H.A. Humanic acids: Structural properties and multiple functionalities for novel technical development. Mater. Sci. Eng. 2016, 62, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; U.S. Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 2014.
- ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2019. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2007. [Google Scholar]
- Brus, D.J.; Kempen, B.; Heuvelink, G.B.M. Sampling for validation of digital soil maps. Eur. J. Soil Sci. 2011, 62, 394–407. [Google Scholar] [CrossRef]
- Vašát, R.; Pavlů, L.; Borůvka, L.; Drábek, O.; Nikodem, A. Mapping the topsoil pH and humus quality of forest soils in the north bohemian Jizerské hory Mts. Region with ordinary, universal and regression kriging: Cross-validation comparison. Soil Water Res. 2013, 8, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Karami, M.; Afyuni, M.; Khoshgoftarmanesh, A.H.; Papritz, A.; Schulin, R. Grain zinc, iron, and copper concentrations of wheat grown in central Iran and their relationships with soil and climate variables. J. Agric. Food Chem. 2009, 57, 10876–10882. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Wiacek, K. Excessive uptake of heavy metals by plants from contaminated soil. Soil Sci. Ann. 1985, 36, 33. [Google Scholar]
- Guagliardi, I.; Cicchella, D.; De Rosa, R. A geostatistical approach to assess concentration and spatial distribution of heavy metals in urban soils. Water Air Soil Pollut. 2012, 223, 5983–5998. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements, 2nd ed.; Wyd. Nauk PWN: Warsaw, Poland, 1999. [Google Scholar]
- Černik, J.; Kunc, J.; Martinat, S. Territorial-technical and socio-economic aspects of successful brownfield regeneration: A case study of the liberec region (Czech Republic). Geogr. Tech. 2016, 11, 22–38. [Google Scholar] [CrossRef] [Green Version]
- Novák, M.; Erel, Y.; Zemanová, L.; Bottrel, S.H.; Adamová, M. A comparison of lead pollution record in Sphagnum peat with known historical Pb emission rates in the British Isles and the Czech Republic. Atmos. Environ. 2008, 42, 8997–9006. [Google Scholar] [CrossRef]
- Oulehle, F.; Hruska, J. Tree species (Picea abies and Fagus sylvatica) effects on soil water acidification and aluminium chemistry at sites subjected to long term acidification in the Ore Mts., Czech Republic. J. Inorg. Biochem. 2005, 99, 1822–1829. [Google Scholar] [CrossRef]
- Wei, W.; Ma, R.; Sun, Z.; Zhou, A.; Bu, J.; Long, X.; Liu, Y. Effects of Mining Activities on the Release of Heavy Metals (HMs) in a Typical Mountain Headwater Region, the Qinghai-Tibet Plateau in China. Int. J. Environ. Res. Public Health 2018, 15, 1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maján, G.; Kozak, M.; Püspöki, Z.; McIntosh, R.; Miko, L. Environmental geological examination of chromiumcontamination in Eastern Hungary. Environ. Geochem. Health 2001, 23, 229–233. [Google Scholar] [CrossRef]
- Glasshiem, E. Most, the Town that Moved: Coal, Communists and the ‘Gypsy Question’ in Post-War Czechoslovakia. Environ. Hist. 2007, 13, 447–476. [Google Scholar] [CrossRef]
- Zuna, M.; Mihaljevic, M.; Sebek, O.; Ettler, V.; Handley, M.; Navrátil, T.; Goliás, V. Recent lead deposition trends in the Czech Republic as recorded by peat bogs and tree rings. Atmos. Environ. 2011, 45, 4950–4958. [Google Scholar] [CrossRef]
Properties (Unit) | Organic Soil | Mineral Soil |
---|---|---|
Sand (%) | 29.7 | 28.2 |
Silt (%) | 44.2 | 25.3 |
Clay (%) | 26.1 | 46.5 |
Texture | Sandy clay-loam | Clay-loam |
N (%) | 1.6 | 0.5 |
C (%) | 30.9 | 7.5 |
S (%) | 0.34 | 0.26 |
P (mg kg−1) | 946.9 | 386.2 |
K (mg kg−1) | 811.6 | 935.3 |
Ca (mg kg−1) | 915.2 | 327.9 |
Mg (mg kg−1) | 839.5 | 1078.1 |
Al (mg kg−1) | 9473.5 | 8614.4 |
pH | 3.6 | 3.8 |
Soil Horizons | Parameters † | Cr | Cu | Fe ‡ | Mn ‡ | Pb |
---|---|---|---|---|---|---|
Organic soil | Count | 221 | 221 | 221 | 221 | 221 |
Mean | 11.0 | 16.2 | 7357.8 | 149.6 | 99.2 | |
Median | 9.1 | 15.5 | 7010 | 73 | 92.9 | |
Mode | 7.2 | 18.5 | 10,200 | 32 | 104 | |
Minimum | 3.1 | 2.3 | 1004 | 1.0 | 7.1 | |
Maximum | 85.2 | 81.9 | 21,000 | 1650 | 339 | |
Std dev | 10.6 | 8.9 | 3407.5 | 145.2 | 49 | |
Coef of Var. (CV) | 96.36 | 54.94 | 46.31 | 97.06 | 49.4 | |
Mineral soil | Count | 221 | 221 | 221 | 221 | 221 |
Mean | 4.5 | 6.4 | 6744.3 | 168.0 | 65.6 | |
Median | 3.8 | 3.8 | 6194.4 | 68.4 | 58.8 | |
Mode | 3.9 | 1.0 | 3610 | 248 | 111 | |
Minimum | 0.4 | 0.2 | 159.3 | 0.5 | 6.7 | |
Maximum | 26.5 | 38.3 | 24,274.0 | 1940.0 | 281.0 | |
Std dev | 3.0 | 6.2 | 4054.5 | 137.6 | 42.3 | |
Coef of Var. (CV) * Czech Republic | 66.7 <11.0 | 96.88 <16.0 | 60.12 >8000 | 81.9 <150.0 | 64.48 <60.0 | |
** European mean value | 94.8 | 17.3 | 38,000 | 524 | 32 | |
** World mean value | 59.5 | 38.9 | 35,000 | 488 | 27 | |
** Crati Basin | 90.54 | 44.36 | 54,700 | 1300 | 63.67 |
Parameters | Cr_tot_org | Cu_tot_org | Fe_tot_org | Mn_tot_org | Pb_tot_org | Cr_tot_A | Cu_tot_A | Fe_tot_A | Mn_tot_A | Pb_tot_A |
---|---|---|---|---|---|---|---|---|---|---|
Cr_tot_org | 1.00 | |||||||||
Cu_tot_org | 0.03 | 1.00 | ||||||||
Fe_tot_org | 0.77 * | 0.43 * | 1.00 | |||||||
Mn_tot_org | 0.52 ** | −0.40 | 0.19 | 1.00 | ||||||
Pb_tot_org | 0.00 | 0.71 ** | 0.64 * | −0.56 * | 1.00 | |||||
Cr_tot_A | 0.53 * | −0.14 | 0.10 | 0.58 | −0.21 | 1.00 | ||||
Cu_tot_A | 0.10 | −0.13 | −0.10 | 0.20 | −0.26 * | 0.78 * | 1.00 | |||
Fe_tot_A | 0.03 | 0.16 | 0.50 * | −0.06 | 0.43 | 0.56 ** | 0.00 | 1.00 | ||
Mn_tot_A | 0.10 | −0.22 * | −0.05 | 0.73 * | −0.59 ** | 0.60 * | 0.58 * | 0.03 | 1.00 | |
Pb_tot_A | 0.05 | −0.12 | −0.08 | 0.10 | −0.10 | 0.76 ** | 0.81 ** | 0.19 | 0.54 * | 1.00 |
Soil Parameters | df | F-Statistics | p-Value * |
---|---|---|---|
Cr_tot_org | 220 | 2.12 | 0.019 |
Cu_tot_org | 220 | −3.73 | <0.001 |
Fe_tot_org | 220 | −1.40 | <0.001 |
Mn_tot_org | 220 | 3.31 | 0.685 |
Pb_tot_org | 220 | 0.63 | <0.001 |
Cr_tot_A | 220 | 2.06 | 0.016 |
Cu_tot_A | 220 | −1.94 | 0.021 |
Fe_tot_A | 220 | −1.13 | <0.001 |
Mn_tot_A | 220 | 4.91 | 0.283 |
Pb_tot_A | 220 | 0.82 | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahado, S.K.; Nwaogu, C.; Sarkodie, V.Y.O.; Borůvka, L. Modeling and Assessing the Spatial and Vertical Distributions of Potentially Toxic Elements in Soil and How the Concentrations Differ. Toxics 2021, 9, 181. https://doi.org/10.3390/toxics9080181
Ahado SK, Nwaogu C, Sarkodie VYO, Borůvka L. Modeling and Assessing the Spatial and Vertical Distributions of Potentially Toxic Elements in Soil and How the Concentrations Differ. Toxics. 2021; 9(8):181. https://doi.org/10.3390/toxics9080181
Chicago/Turabian StyleAhado, Samuel Kudjo, Chukwudi Nwaogu, Vincent Yaw Oppong Sarkodie, and Luboš Borůvka. 2021. "Modeling and Assessing the Spatial and Vertical Distributions of Potentially Toxic Elements in Soil and How the Concentrations Differ" Toxics 9, no. 8: 181. https://doi.org/10.3390/toxics9080181