Contamination Assessment of Heavy Metals in Agricultural Soil, in the Liwa Area (UAE)
Abstract
:1. Introduction
Description of the Study Area
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howari, F.M.; Abu-Rukah, Y.; Goodell, P.C. Heavy metal pollution of soils along North Shuna-Aqaba Highway, Jordan. Int. J. Environ. Pollut. 2004, 22, 597–607. [Google Scholar] [CrossRef]
- Al-Taani, A.A.; Nazzal, Y.; Howari, F.M. Assessment of heavy metals in roadside dust along the Abu Dhabi–Al Ain National Highway, UAE. Environ. Earth Sci. 2019, 78, 411. [Google Scholar] [CrossRef]
- Al-Taani, A.A.; Nazzal, Y.; Howari, F.M.; Yousef, A. Long-term trends in ambient fine particulate matter from 1980 to 2016 in United Arab Emirates. Environ. Monit. Assess. 2019, 191, 143. [Google Scholar] [CrossRef] [PubMed]
- Barbeş, L.; Bărbulescu, A. Monitoring and statistical assessement of heavy metals in soil and leaves of Populus nigra L. Environ. Eng. Manag. J. 2017, 16, 187–196. [Google Scholar]
- Barbeş, L.; Bărbulescu, A.; Rădulescu, C.; Stihi, C. Determination of heavy metals in leaves and bark of Populus nigra L. Rom. Rep. Phys. 2014, 66, 877–886. [Google Scholar]
- Barbeş, L.; Bărbulescu, A.; Stanciu, G. Statistical analysis of mineral elements content in different melliferous plants from the Dobrogea region, Romania. Rom Rep. Phys. 2020, 72, 705. [Google Scholar]
- Rădulescu, C.; Stihi, C.; Barbeş, L.; Chilian, A.; Chelărescu, D.E. Studies concerning heavy metals accumulation of Carduus nutans L. and Taraxacum officinale as potential soil bioindicator species. Rev. Chim. 2013, 64, 754–760. [Google Scholar]
- Aguilera, I.; Daponte, A.; Gil, F.; Hernández, A.F.; Godoy, P.; Pla, A.; Ramos, J.L. Urinary levels of arsenic and heavy metals in children and adolescents living in the industrialised area of Ria of Huelva (SW Spain). Environ. Int. 2010, 36, 563–569. [Google Scholar] [CrossRef]
- Ljung, K.; Selinus, O.; Otabbong, E. Metals in soils of children’s urban environments in the small northern European city of Uppsala. Sci. Total Environ. 2006, 366, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Bărbulescu, A.; Postolache, F. New approaches for modeling the regional pollution in Europe. Sci. Total Environ. 2021, 753, 141993. [Google Scholar] [CrossRef]
- Al-Taani, A.A.; Al-Qudah, K.A. Investigation of desert subsoil nitrate in Northeastern Badia of Jordan. Sci. Total Environ. 2013, 442, 111–115. [Google Scholar] [CrossRef]
- Poggio, L.; Vrščaj, B.; Schulin, R.; Hepperle, E.; Ajmone Marsan, F. Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environ. Pollut. 2008, 157, 680–689. [Google Scholar] [CrossRef]
- Vimercati, L.; Baldassarre, A.; Gatti, M.F.; Gagliardi, T.; Serinelli, M.; De Maria, L.; Caputi, A.; A Dirodi, A.; Galise, I.; Cuccaro, F.; et al. Non-occupational exposure to heavy metals of the residents of an industrial area and biomonitoring. Environ. Monit. Assess. 2016, 188, 673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USEPA. Risk Assessment: Technical Background Information. 2002. Available online: https://www.epa.gov/risk/risk-assessment-guidance (accessed on 1 December 2020).
- Lado, L.R.; Hengl, T.; Reuter, H.I. Heavy metals in European soils: A geostatistical analysis of the FOREGS Geochemical database. Geoderma 2008, 148, 189–199. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 1–20. [Google Scholar] [CrossRef] [Green Version]
- T1eng, Y.; Wu, J.; Lu, S.; Wang, Y.; Jiao, X.; Song, L. Soil and Soil Environmental Quality Monitoring in China: A Review. Environ. Int. 2014, 69C, 177–199. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Leung, J.; Geng, X.; Chen, S.; Huang, X.; Li, H.; Huang, Z.; Zhu, L.; Chen, J.; Lu, Y. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals. Sci. Total Environ. 2015, 506, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Peng, S.; Zhang, X.; Wu, D.; Luo, W.; Zhang, T.; Zhou, S.; Yang, G.; Wan, H.; Wu, L. Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. J. Geochem. Explor. 2015, 148. [Google Scholar] [CrossRef]
- Streets, D.; Lu, Z.; Levin, L.; Ter schure, A.; Sunderland, E. Historical releases of mercury to air, land, and water from coal combustion. Sci. Total Environ. 2017, 615, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, S.; Everett, M.; McCarthy, R.; Ordóñez, A.; de Miguel, E. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ. Int. 2003, 29, 563–573. [Google Scholar] [CrossRef]
- Weissmannová, H.; Pavlovský, J. Indices of soil contamination by heavy metals—Methodology of calculation for pollution assessment (minireview). Environ. Monit. Assess. 2017, 189. [Google Scholar] [CrossRef] [PubMed]
- Bărbulescu, A. Assessing the groundwater vulnerability: DRASTIC method and its versions. A review. Water 2020, 12, 1356. [Google Scholar] [CrossRef]
- El-Radaideh, N.; Al-Taani, A.A.; Al Khateeb, W.M. Status of sedimentation in King Talal Dam, case study from Jordan. Environ. Earth Sci. 2017, 76, 132. [Google Scholar] [CrossRef]
- El-Radaideh, N.; Al-Taani, A.A.; Al Khateeb, W.M. Characteristics and quality of reservoir sediments, Mujib Dam, Central Jordan, as a case study. Environ. Monit. Assess. 2017, 189, 143. [Google Scholar] [CrossRef] [PubMed]
- El-Radaideh, N.; Al-Taani, A. Geo-environmental study of heavy metals of the agricultural highway soils, NW Jordan. Arab. J. Geosci. 2018, 11. [Google Scholar] [CrossRef]
- Chrastný, V.; Vaněk, A.; Teper, L.; Cabala, J.; Procházka, J.; Pechar, L.; Drahota, P.; Penížek, V.; Komárek, M.; Novák, M. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/ smelter, South Poland: Effects of land use, type of contamination and distance from pollution source. Environ. Monit. Assess. 2012, 184, 2517–2536. [Google Scholar] [CrossRef] [PubMed]
- Khlifi, R.; Olmedo, P.; Gil, F.; Feki-Tounsi, M.; Hammami, B.; Rebai, A.; Hamza-Chaffai, A. Biomonitoring of cadmium, chromium, nickel and arsenic in general population living near mining and active industrial areas in Southern Tunisia. Environ. Monit. Assess. 2014, 186, 761–779. [Google Scholar] [CrossRef]
- Vimercati, L.; Gatti, M.F.; Gagliardi, T.; Cuccaro, F.; De Maria, L.; Caputi, A.; Quarato, M.; Baldassarre, A. Environmental exposure to arsenic and chromium in an industrial area. Environ. Sci. Pollut. Res. Int. 2017, 24, 11528–11535. [Google Scholar] [CrossRef] [Green Version]
- Nazzal, Y.; Rosen, M.; Al-Rawabdeh, A. Assessment of metal pollution in urban road dusts from selected highways of the Greater Toronto Area in Canada. Environ. Monit. Assess. 2012, 185. [Google Scholar] [CrossRef] [PubMed]
- Guillén, M.T.; Delgado, J.; Albanese, S.; Nieto, J.M.; Lima, A.; De Vivo, B. Environmental geochemical mapping of Huelva municipality soils (SW Spain) as a tool to determine background and baseline values. J. Geochem. Explor. 2011, 109, 59–69. [Google Scholar] [CrossRef]
- Pastor, J.; Hernández, A.J. Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: Determinants for restoring their impact. J. Environ. Manag. 2011, 95, S42–S49. [Google Scholar] [CrossRef]
- Wang, Y.; Sikora, S.; Kim, H.; Dubey, B.; Townsend, T. Mobilization of iron and arsenic from soil by construction and demolition debris landfill leachate. Waste Manag. 2011, 32, 925–932. [Google Scholar] [CrossRef]
- Werkenthin, M.; Kluge, B.; Wessolek, G. Metals in European Roadside Soils and Soil solution—A Review. Environ. Pollut. 2014, 189C, 98–110. [Google Scholar] [CrossRef]
- El-Radaideh, N.; Al-Taani, A.A.; Al-Momani, T.; Tarawneh, K.; Batayneh, A.; Taani, A. Evaluating the potential of sediments in Ziqlab Reservoir (northwest Jordan) for soil replacement and amendment. Lake Reserv. Manag. 2014, 30, 32–45. [Google Scholar] [CrossRef]
- Al-Taani, A.; Batayneh, A.; El-Radaideh, N.; Ghrefat, H.; Zumlot, T.; Al-Rawabdeh, A.; Momani, T.; Taani, A. Spatial Distribution and Pollution Assessment of Trace Metals in Surface Sediments of Ziqlab Reservoir, Jordan. Environ. Monit. Assess. 2015, 187, 1–14. [Google Scholar] [CrossRef]
- Al-Taani, A.A.; Rashdan, M.; Khashashneh, S. Atmospheric dry deposition of mineral dust to the Gulf of Aqaba, Red Sea: Rate and trace elements. Mar. Pollut. Bull. 2015, 92, 252–258. [Google Scholar] [CrossRef]
- Batayneh, A.T.; Al-Taani, A.A. Integrated resistivity and water chemistry for evaluation of groundwater quality of the Gulf of Aqaba coastal area in Saudi Arabia. Geosci. J. 2016, 20, 403–413. [Google Scholar] [CrossRef]
- Nazzal, Y.; Barbulescu, A.; Howari, F.; Yousef, A.; Al-Taani, A.A.; Al Aydaroos, F.; Naseem, M. New insights on sand dust storm from historical records, UAE. Arab. J. Geosci. 2019, 12, 396. [Google Scholar] [CrossRef]
- Baran, A.; Wieczorek, J. Application of geochemical and ecotoxicity indices for assessment of heavy metals content in soils. Arch. Environ. Prot. 2015, 41, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Baran, A.; Wieczorek, J.; Mazurek, R.; Urbański, K.; Klimkowicz-Pawlas, A. Potential ecological risk assessment and predicting zinc accumulation in soils. Environ. Geochem. Health 2018, 40, 435–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieczorek, J.; Baran, A.; Urbański, K.; Mazurek, R.; Klimowicz-Pawlas, A. Assessment of the pollution and ecological risk of lead and cadmium in soils. Environ. Geochem. Health 2018, 40, 2325–2342. [Google Scholar] [CrossRef] [PubMed]
- Sutkovska, K.; Teper, L.; Czech, T.; Hulok, T.; Olszak, M.; Zogala, J. Quality of Peri-Urban Soil Developed from Ore-Bearing Carbonates: Heavy Metal Levels and Source Apportionment Assessed Using Pollution Indices. Minerals 2020, 10, 1140. [Google Scholar] [CrossRef]
- Fragaszy, S.; Mcdonnell, R. Oasis At a Crossroads: Agriculture and Groundwater in Liwa, United Arab Emirates. 2016. Available online: http://gw-mena.iwmi.org/wp-content/uploads/sites/3/2017/04/Rep.15-Groundwater-governance-in-Liwa-oasis-report_final_cover.pdf (accessed on 1 December 2020).
- Al-Katheeri, E.S.; Howari, F.M.; Murad, A.A. Hydrogeochemistry and pollution assessment of quaternary–tertiary aquifer in the Liwa area, United Arab Emirates. Environ. Earth Sci. 2009, 59, 581. [Google Scholar] [CrossRef]
- Iqbal, J.; Nazzal, Y.; Howari, F.; Xavier, C.; Yousef, A. Hydrochemical processes determining the groundwater quality for irrigation use in an arid environment: The case of Liwa Aquifer, Abu Dhabi, United Arab Emirates. Groundw. Sustain. Dev. 2018, 7, 212–219. [Google Scholar] [CrossRef]
- Sinex, S.A.; Helz, G.R. Regional geochemistry of trace elements in Chesapeake Bay sediments. Environ. Geol. 1981, 3, 315–323. [Google Scholar] [CrossRef]
- Clemente, R.; Walker, D.; Pilar Bernal, M. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): The effect of soil amendments. Environ. Pollut. 2005, 138, 46–58. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: New York, NY, USA, 2001. [Google Scholar]
- Zhang, J.; Liu, C.L. Riverine Composition and Estuarine Geochemistry of Particulate Metals in China—Weathering Features, Anthropogenic Impact and Chemical Fluxes. Estuar. Coast. Shelf Sci. 2002, 54, 1051–1070. [Google Scholar] [CrossRef]
- Müller, G. The Heavy Metal Pollution of the Sediments of Neckars and its Tributary: A Stocktaking. Chem. Zeitung 1981, 105, 157–164. [Google Scholar]
- Fortescue, J.A. Landscape geochemistry: Retrospect and prospect. Appl. Geochem. 1992, 7, 1–53. [Google Scholar] [CrossRef]
- Chen, T.-B.; Zheng, Y.-M.; Lei, M.; Huang, Z.-C.; Wu, H.-T.; Chen, H.; Fan, K.-K.; Yu, K.; Wu, X.; Tian, Q.-Z. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 2005, 60, 542–551. [Google Scholar] [CrossRef]
- Håkanson, L. An Ecological Risk Index for Aquatic Pollution Control—A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Salomons, W.; Förstner, U. Metals in the Hydrocycle; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Angulo, E. The Tomlison Pollution Load Index applied to heavy metal, ‘Mussel-Watch’ data: A useful index to assess coastal pollution. Sci. Total Environ. 1996, 187, 19–56. [Google Scholar] [CrossRef]
- Roberts, T.L. Cadmium and Phosphorous Fertilizers: The Issues and the Science. Procedia Eng. 2014, 83, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Basta, N.; Ryan, J.A.; Chaney, R. Trace Element Chemistry in Residual-Treated Soil: Key Concepts and Metal Bioavailability. J. Environ. Qual. 2005, 34, 49–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaren, S.; Aljuaidi, F.; Bateman, M.; Millington, A. First evidence for episodic flooding events in the arid interior of central Saudi Arabia over the last 60 ka. J. Quat. Sci. 2009, 24, 198–207. [Google Scholar] [CrossRef]
- Gonçalvès, J.; Petersen, J.; Deschamps, P.; Hamelin, B.; Baba-Sy, O. Quantifying the modern recharge of the “fossil” Sahara aquifers. Geophys. Res. Lett. 2013, 40, 2673–2678. [Google Scholar] [CrossRef]
- Teh, T.; Norulaini, N.; Shahadat, M.; WONG, Y.; Kadir, M. Risk Assessment of Metal Contamination in Soil and Groundwater in Asia: A Review of Recent Trends as well as Existing Environmental Laws and Regulations. Pedosphere 2016, 26, 431–450. [Google Scholar] [CrossRef]
- Yaroshevsky, A. Abundances of chemical elements in the Earth’s crust. Geochem. Int. 2006, 44, 48–55. [Google Scholar] [CrossRef]
- Mcbride, M.; Cherney, J. Molybdenum, Sulfur, and Other Trace Elements in Farm Soils and Forages After Sewage Sludge Application. Commun. Soil Sci. Plant Anal. 2004, 35, 517–535. [Google Scholar] [CrossRef]
- McBride, M.B. Toxic metals in sewage sludge-amended soils: Has promotion of beneficial use discounted the risks? Adv. Environ. Res. 2003, 8, 5–19. [Google Scholar] [CrossRef]
- Chaney, R.L.; Reeves, R.D.; Baklanov, I.A.; Centofanti, T.; Broadhurst, C.L.; Baker, A.J.; Van der Ent, A.; Roseberg, R.J. Phytoremediation and phytomining: Using plants to remediate contaminated or mineralized environments. In Phytoremediation and Phytomining: Using Plants to Remediate Contaminated or Mineralized Environments; US Department of Agriculture: Beltsville, MD, USA, 2014; pp. 365–391. [Google Scholar]
- Fan, Y.; Zhu, T.; Li, M.; He, J.; Huang, R. Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China. J. Healthc. Eng. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Mao, L.; Liu, S.; Mao, Y.; Ye, H.; Huang, T.; Li, F.; Chen, L. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads. Sci. Total Environ. 2018, 631, 942–950. [Google Scholar] [CrossRef]
- Padoan, E.; Romè, C.; Ajmone-Marsan, F. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Sci. Total Environ. 2017, 601–602, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, C.L.S.; Zereini, F.; Püttmann, W. Metal and metalloid accumulation in cultivated urban soils: A medium-term study of trends in Toronto, Canada. Sci. Total Environ. 2015, 538, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Rashdi, S.; Arabi, A.; Howari, F.; Siad, A. Distribution of heavy metals in the coastal area of Abu Dhabi in the United Arab Emirates. Mar. Pollut. Bull. 2015, 97. [Google Scholar] [CrossRef]
- Farahat, A. Air pollution in the Arabian Peninsula (Saudi Arabia, the United Arab Emirates, Kuwait, Qatar, Bahrain, and Oman): Causes, effects, and aerosol categorization. Arab. J. Geosci. 2016, 9. [Google Scholar] [CrossRef]
- EAD (Environment Agency of Abu Dhabi). Waste and Pollution Sources of Abu Dhabi Emirate, State of Environment, Abu Dhabi, UAE; Environment Agency of Abu Dhabi: Abu Dhabi, United Arab Emirates, 2008.
- Ministry of Presidential Affairs. Dust sources affecting the United Arab Emirates; National Center of Meteorology and Seismology, Ministry of Presidential Affairs: Abu Dhabi, United Arab Emirates, 2011.
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Mmolawa, K.B.; Likuku, A.S.; Gaboutloeloe, G.K. Assessment of heavy metal pollution in soils along major roadside areas in Botswana. Afr. J. Environ. Sci. Technol. 2011, 5, 186–196. [Google Scholar] [CrossRef]
- Mielke, J. Composition of the Earth’s Crust and Distribution of the Elements. Rev. Res. Mod. Probl. Geochem. 1979, 16, 13–37. [Google Scholar]
- Jones, L.H.P.; Jarvis, S.C. The fate of heavy metals. In The Chemistry of Soil Processes; John Wiley & Sons: New York, NY, USA, 1981. [Google Scholar]
- Loranger, S.; Zayed, J.; Kennedy, G. Contribution of methylcyclopentadienyl manganese tricarbonyl (MMT) to atmospheric Mn concentration near expressway: Dispersion modeling estimations. Atmos. Environ. 1995, 29, 591–599. [Google Scholar] [CrossRef]
Element | Mass | Certified Value (mg/Kg) | Measured Value (mg/Kg) * | Recovery (%) |
---|---|---|---|---|
Mn | 55 | 631 | 641.1 | 101.6 |
Zn | 66 | 104 | 101.94 | 98.02 |
Cr | 52 | 60 | 61.71 | 102.85 |
Ni | 60 | 26 | 26.76 | 102.92 |
Cu | 63 | 11 | 10.82 | 98.36 |
Pb | 208 | 60 | 61.6 | 102.67 |
Cd | 111 | 1.3 | 1.31 | 100.77 |
Co | 59 | 8.9 | 9.76 | 109.66 |
As | 75 | 13.4 | 14.01 | 104.01 |
Mean | Min | Max | SD | Median | CV | |
---|---|---|---|---|---|---|
Mn | 273.9 | 220.02 | 311.21 | 21.49 | 277.22 | 0.08 |
Zn | 54.08 | 42.39 | 66.92 | 7.47 | 54.07 | 0.14 |
Cr | 59 | 43.43 | 71.55 | 7.85 | 58.5 | 0.13 |
Ni | 40.83 | 32.86 | 52.12 | 5.74 | 39.24 | 0.14 |
Cu | 14.17 | 10.29 | 21.7 | 2.68 | 14.07 | 0.19 |
Pb | 5.28 | 2.83 | 8.84 | 1.72 | 4.89 | 0.32 |
Cd | 0.58 | 0.46 | 0.69 | 0.06 | 0.58 | 0.11 |
Co | 0.18 | 0.03 | 0.37 | 0.08 | 0.17 | 0.45 |
As | 0.016 | 0.01 | 0.01 | 0.01 | 0.01 | 0.06 |
Present Study | Continental Crust [48,49] | Worldwide Soils [49] | Abu Dhabi Coastal Sediment [71] | Abu Dhabi Roadside Dust [2] | |
---|---|---|---|---|---|
As | 0.01 | 1.8 | 6.83 | 1 | 0.23 |
Cd | 0.58 | 0.1 | 0.41 | 0 | 0.48 |
Cr | 59 | 100 | 59.5 | - | 306.3 |
Co | 0.18 | 10 | 11.3 | 4.1 | - |
Cu | 14.17 | 55 | 38.9 | 3.8 | - |
Pb | 5.28 | 15 | 27 | 1.9 | 50.05 |
Ni | 40.83 | 20 | 29 | 25.3 | 0.3 |
Zn | 54.08 | 70 | 70 | 8.2 | 173.0 |
Mn | 273.9 | 900 | 488 | - | 1158.5 |
CF | PLI | |||||||||
Mn | Zn | Cr | Ni | Cu | Pb | Cd | Co | As | ||
Mean | 0.30 | 0.77 | 0.59 | 2.04 | 0.26 | 0.35 | 5.79 | 0.02 | 0.01 | 0.29 |
Min | 0.24 | 0.61 | 0.43 | 1.64 | 0.19 | 0.19 | 4.61 | 0.00 | 0.00 | 0.19 |
Max | 0.35 | 0.96 | 0.72 | 2.61 | 0.39 | 0.59 | 6.92 | 0.04 | 0.01 | 0.39 |
SD | 0.03 | 0.11 | 0.08 | 0.30 | 0.05 | 0.12 | 0.65 | 0.01 | 0.00 | 0.04 |
Ei | PERI | |||||||||
Mean | 0.30 | 0.77 | 1.18 | 10.21 | 1.29 | 1.76 | 173.63 | 0.09 | 0.05 | 189.28 |
Min | 0.24 | 0.61 | 0.87 | 8.22 | 0.94 | 0.94 | 138.31 | 0.02 | 0.05 | 152.63 |
Max | 0.35 | 0.96 | 1.43 | 13.03 | 1.97 | 2.95 | 207.63 | 0.18 | 0.06 | 224.39 |
SD | 0.02 | 0.11 | 0.16 | 1.44 | 0.24 | 0.57 | 18.60 | 0.04 | 0.00 | 18.26 |
Igeo | ||||||||||
Mean | −2.31 | −0.97 | −1.36 | 0.43 | −2.57 | −2.17 | 1.94 | −6.59 | −8.14 | |
Min | −2.62 | −1.31 | −1.79 | 0.13 | −3.00 | −2.99 | 1.62 | −8.75 | −8.29 | |
Max | −2.12 | −0.65 | −1.07 | 0.80 | −1.93 | −1.35 | 2.21 | −5.34 | −7.88 | |
SD | 0.12 | 0.20 | 0.20 | 0.20 | 0.26 | 0.46 | 0.16 | 0.88 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Taani, A.A.; Nazzal, Y.; Howari, F.M.; Iqbal, J.; Bou Orm, N.; Xavier, C.M.; Bărbulescu, A.; Sharma, M.; Dumitriu, C.-S. Contamination Assessment of Heavy Metals in Agricultural Soil, in the Liwa Area (UAE). Toxics 2021, 9, 53. https://doi.org/10.3390/toxics9030053
Al-Taani AA, Nazzal Y, Howari FM, Iqbal J, Bou Orm N, Xavier CM, Bărbulescu A, Sharma M, Dumitriu C-S. Contamination Assessment of Heavy Metals in Agricultural Soil, in the Liwa Area (UAE). Toxics. 2021; 9(3):53. https://doi.org/10.3390/toxics9030053
Chicago/Turabian StyleAl-Taani, Ahmed A., Yousef Nazzal, Fares M. Howari, Jibran Iqbal, Nadine Bou Orm, Cijo Madathil Xavier, Alina Bărbulescu, Manish Sharma, and Cristian-Stefan Dumitriu. 2021. "Contamination Assessment of Heavy Metals in Agricultural Soil, in the Liwa Area (UAE)" Toxics 9, no. 3: 53. https://doi.org/10.3390/toxics9030053
APA StyleAl-Taani, A. A., Nazzal, Y., Howari, F. M., Iqbal, J., Bou Orm, N., Xavier, C. M., Bărbulescu, A., Sharma, M., & Dumitriu, C. -S. (2021). Contamination Assessment of Heavy Metals in Agricultural Soil, in the Liwa Area (UAE). Toxics, 9(3), 53. https://doi.org/10.3390/toxics9030053