The Research of Toxicity and Sensitization Potential of PEGylated Silver and Gold Nanomaterials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Nanomaterials
2.2. Preparation of NMs Suspensions
2.3. Cell Culture
2.4. NMs Suspension Treatments and KeratinoSens™ Assay Methods
2.5. Animals
2.6. NMs Treatments and LLNA: BrdU-FCM Assay Methods
2.7. Statistical Analysis
3. Results
3.1. Physicochemical Characteristic of NMs
3.2. Sensitization Evaluation of NMs in the KeratinoSens™ Assay
3.3. Evaluation of NMs in the LLNA: BrdU-FCM Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221. [Google Scholar] [CrossRef]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Pei, X.; Zhu, Z.; Gan, Z.; Chen, J.; Zhang, X.; Cheng, X.; Wan, Q.; Wang, J. PEGylated Nano-Graphene Oxide as a Nanocarrier for Delivering Mixed Anticancer Drugs to Improve Anticancer Activity. Sci. Rep. 2020, 10, 2717. [Google Scholar] [CrossRef]
- Almeida, A.P.B.; Damaceno, G.B.R.; Carneiro, A.F.; Bohr, A.; Goncalves, H.R.; Valadares, M.C.; Nascimento, T.L.; Lima, E.M. Mucopenetrating lipoplexes modified with PEG and hyaluronic acid for CD44-targeted local siRNA delivery to the lungs. J. Biomater. Appl. 2019, 34, 617–630. [Google Scholar] [CrossRef]
- Chen, D.; Parayath, N.; Ganesh, S.; Wang, W.; Amiji, M. The role of apolipoprotein-and vitronectin-enriched protein corona on lipid nanoparticles for in vivo targeted delivery and transfection of oligonucleotides in murine tumor models. Nanoscale 2019, 11, 18806–18824. [Google Scholar] [CrossRef]
- De Vrieze, J. Pfizer’s Vaccine Raises Allergy Concerns. Science 2021, 371, 10–11. [Google Scholar] [CrossRef]
- Sellaturay, P.; Islam, S.; Gurugama, P.; Ewan, P.W. Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine. Clin. Exp. Allergy 2021, 51, 861–863. [Google Scholar] [CrossRef]
- Steinritz, D.; Lang, S.; Popp, T.; Siegert, M.; Rothmiller, S.; Kranawetvogl, A.; Schmidt, A.; John, H.; Gudermann, T.; Thiermann, H. Skin sensitizing effects of sulfur mustard and other alkylating agents in accordance to OECD guidelines. Toxicol. Lett. 2019, 314, 172–180. [Google Scholar] [CrossRef]
- Urbisch, D.; Mehling, A.; Guth, K.; Ramirez, T.; Honarvar, N.; Kolle, S.; Landsiedel, R.; Jaworska, J.; Kern, P.S.; Gerberick, F. Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul. Toxicol. Pharmacol. 2015, 71, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Lalko, J.F.; Kimber, I.; Gerberick, G.F.; Foertsch, L.M.; Api, A.M.; Dearman, R.J. The Direct Peptide Reactivity Assay: Selectivity of Chemical Respiratory Allergens. Toxicol. Sci. 2012, 129, 421–431. [Google Scholar] [CrossRef]
- Emter, R.; Ellis, G.; Natsch, A. Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro. Toxicol. Appl. Pharmacol. 2010, 245, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Ashikaga, T.; Yoshida, Y.; Hirota, M.; Yoneyama, K.; Itagaki, H.; Sakaguchi, H.; Miyazawa, M.; Ito, Y.; Suzuki, H.; Toyoda, H. Development of an in vitro skin sensitization test using human cell lines: The human Cell Line Activation Test (h-CLAT): I. Optimization of the h-CLAT protocol. Toxicol. Vitr. 2006, 20, 767–773. [Google Scholar] [CrossRef]
- Basketter, D.; Evans, P.; Fielder, R.; Gerberick, G.; Dearman, R.; Kimber, I. Local lymph node assay—Validation, conduct and use in practice. Food Chem. Toxicol. 2002, 40, 593–598. [Google Scholar] [CrossRef]
- Ahirwar, H.; Zhou, Y.; Mahapatra, C.; Ramakrishna, S.; Kumar, P.; Nanda, H.S. Materials for orthopedic bioimplants: Modulating degradation and surface modification using integrated nanomaterials. Coatings 2020, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Lee, J.H.; Jung, K.; Yang, J.; Shin, H.; Lee, J.P.; Jeong, J.; Oh, J.; Lee, J.K. Copper and Cobalt Ions Released from Metal Oxide Nanoparticles Trigger Skin Sensitization. Front. Pharmacol. 2021, 12, 126. [Google Scholar] [CrossRef]
- Bihari, P.; Vippola, M.; Schultes, S.; Praetner, M.; Khandoga, A.G.; A Reichel, C.; Coester, C.; Tuomi, T.; Rehberg, M.; Krombach, F. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol. 2008, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- OECD. Test No. 442B: Skin Sensitization: Local Lymph Node Assay: BrdU-ELISA or –FCM, OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publications: Paris, France, 2018. [Google Scholar]
- Han, B.I.; Yi, J.S.; Seo, S.J.; Kim, T.S.; Ahn, I.; Ko, K.; Kim, J.H.; Bae, S.; Lee, J.K. Evaluation of skin sensitization potential of chemicals by local lymph node assay using 5-bromo-2-deoxyuridine with flow cytometry. Regul. Toxicol. Pharmacol. 2019, 107, 104401. [Google Scholar] [CrossRef]
- Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today 2005, 10, 1451–1458. [Google Scholar] [CrossRef]
- Wylon, K.; Dölle, S.; Worm, M. Polyethylene glycol as a cause of anaphylaxis. Allergy Asthma Clin. Immunol. 2016, 12, 67. [Google Scholar] [CrossRef] [Green Version]
- Cerdá, V.J.; Pacheco, R.R.; Witek, J.D.; de la Calle, F.M.M.; de la Sen Fernández, M.L. Immediate hypersensitivity to polyethylene glycols in unrelated products: When standardization in the nomenclature of the components of drugs, cosmetics, and food becomes necessary. Allergy Asthma Clin. Immunol. 2019, 15, 9. [Google Scholar] [CrossRef]
- Larese Filon, F.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol. 2015, 72, 310–322. [Google Scholar] [CrossRef]
- Try, C.; Moulari, B.; Béduneau, A.; Fantini, O.; Pin, D.; Pellequer, Y.; Lamprecht, A. Size dependent skin penetration of nanoparticles in murine and porcine dermatitis models. Eur. J. Pharm. Biopharm. 2016, 100, 101–108. [Google Scholar] [CrossRef]
- Chakraborty, A.; Das, A.; Raha, S.; Barui, A. Size-Dependent Apoptotic Activity of Gold Nanoparticles on Osteosarcoma Cells Correlated with SERS Signal. J. Photochem. Photobiol. B Biol. 2020, 203, 111778. [Google Scholar] [CrossRef]
- Murphy-Marion, M.; Girard, D. Titanium Dioxide Nanoparticles Induce Human Eosinophil Adhesion onto Endothelial Ea. hy926 Cells via Activation of Phosphoinositide 3-Kinase/Akt Cell Signalling Pathway. Immunobiology 2018, 223, 162–170. [Google Scholar] [CrossRef]
- Kumar, D.; Mutreja, I.; Chitcholtan, K.; Sykes, P. Cytotoxicity and Cellular Uptake of Different Sized Gold Nanoparticles IN Ovarian Cancer Cells. Nanotechnology 2017, 28, 475101. [Google Scholar] [CrossRef]
- Shi, R. Polyethylene Glycol Repairs Membrane Damage and Enhances Functional Recovery: A Tissue Engineering Approach to Spinal Cord Injury. Neurosci. Bull. 2013, 29, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Borgens, R.; Shi, R. Polyethylene Glycol Immediately Repairs Neuronal Membranes and Inhibits Free Radical Production after Acute Spinal Cord Injury. J. Neurochem. 2002, 83, 471–480. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Kuroda, E.; Hirai, T.; Tsutsumi, Y.; Ishii, K.J. Allergic Responses Induced by the Immunomodulatory Effects of Nanomaterials upon Skin Exposure. Front. Immunol. 2017, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Lim, D.H.; Lim, H.J.; Kwon, T.; Choi, J.S.; Jeong, S.; Choi, I.H.; Cheon, J. Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chem. Commun. 2011, 21, 4382–4384. [Google Scholar] [CrossRef]
- Filon, F.L.; Crosera, M.; Adami, G.; Bovenzi, M.; Rossi, F.; Maina, G. Human skin penetration of gold nanoparticles through intact and damaged skin. Nanotoxicology 2011, 5, 493–501. [Google Scholar] [CrossRef]
- Zanoni, I.; Crosera, M.; Ortelli, S.; Blosi, M.; Adami, G.; Filon, F.L.; Costa, A.L. CuO nanoparticle penetration through intact and damaged human skin. New J. Chem. 2019, 43, 17033. [Google Scholar] [CrossRef]
- Ninan, N.; Goswami, N.; Vasilev, K. The Impact of Engineered Silver Nanomaterials on the Immune System. Nanomaterials 2020, 10, 967. [Google Scholar] [CrossRef]
- Khan, H.A.; Abdelhalim, M.A.; Alhomida, A.S.; Al-Ayed, M.S. Effects of naked gold nanoparticles on proinflammatory cytokines mRNA expression in rat liver and kidney. Biomed. Res. Int. 2013, 2013, 590730. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Song, K.S.; Sung, J.H.; Ryu, H.R.; Choi, B.G.; Cho, H.S.; Lee, J.K.; Yu, I.J. Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles. Nanotoxicology 2013, 7, 953–960. [Google Scholar] [CrossRef]
Characteristic | AgNMs | PEG-AgNMs | AuNMs | PEG-AuNMs |
---|---|---|---|---|
Product NO. info | 730785 (Sigma) | 796301 (Sigma) | 753610 (Sigma) | NCXAUXU30 (Sigma) |
Primary size (nm) | 10 | 40 | 20 | 30 |
Hydrodynamic size (nm) † | ||||
PBS | 51.4 ± 20.1 | 60.1 ± 3.1 | 31.0 ± 2.0 | 35.9 ± 1.0 |
Working solution * | 17.6 ± 1.5 | 65.7 ± 1.7 | 183.9 ± 16.8 | 41.2 ± 0.7 |
Working solution ** | 145.0 ± 5.9 | 124.4 ± 2.5 | 117.9 ± 2.3 | 99.8 ± 2.3 |
Polydispersity (PDI) †† | ||||
PBS | 0.22 ± 0.05 | 0.09 ± 0.01 | 0.38 ± 0.02 | 0.09 ± 0.01 |
Working solution * | 0.40 ± 0.06 | 0.25 ± 0.00 | 0.21 ± 0.05 | 0.30 ± 0.03 |
Working solution ** | 0.44 ± 0.06 | 0.18 ± 0.03 | 0.35 ± 0.04 | 0.20 ± 0.03 |
Zeta potential (mV) ††† | ||||
PBS | −47.2 ± 1.4 | −13.5 ± 0.6 | −39.3 ± 1.1 | −40.8 ± 1.5 |
Working solution * | −36.3 ± 3.8 | −9.9 ± 1.2 | −21.9 ± 6.2 | −15.6 ± 1.5 |
Working solution ** | −11.5 ± 0.6 | −9.4 ± 0.9 | −10.6 ± 0.7 | −12.2 ± 0.7 |
Endotoxin (EU/mL) | <0.1 | <0.1 | <0.1 | <0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-H.; Choi, S.-Y.; Jung, K.-K.; Yang, J.-Y.; Jeong, J.-y.; Oh, J.-H.; Kim, S.-H.; Lee, J.-H. The Research of Toxicity and Sensitization Potential of PEGylated Silver and Gold Nanomaterials. Toxics 2021, 9, 355. https://doi.org/10.3390/toxics9120355
Lee D-H, Choi S-Y, Jung K-K, Yang J-Y, Jeong J-y, Oh J-H, Kim S-H, Lee J-H. The Research of Toxicity and Sensitization Potential of PEGylated Silver and Gold Nanomaterials. Toxics. 2021; 9(12):355. https://doi.org/10.3390/toxics9120355
Chicago/Turabian StyleLee, Dong-Han, Seo-Yoon Choi, Ki-Kyung Jung, Jun-Young Yang, Ja-young Jeong, Jae-Ho Oh, Sung-Hyun Kim, and Jin-Hee Lee. 2021. "The Research of Toxicity and Sensitization Potential of PEGylated Silver and Gold Nanomaterials" Toxics 9, no. 12: 355. https://doi.org/10.3390/toxics9120355