Human Chemical Exposure from Background Emissions in the United States and the Implication for Quantifying Risks from Marginal Emission Increase
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Approach
2.2. Chemical Data
2.3. Exposure Prediction
2.4. Dose–response Relationships
2.5. Risk Quantification
3. Results
3.1. Predicted Human Exposures and Environmental Concentrations
3.2. Linear Approximations along the Nonlinear Dose–response Curve
3.3. Exposures and Risks from Background Emissions
3.4. Application of Linear Approximations for Estimating Risks from Incremental Emissions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Sangion, A.; Li, L. Evaluating consumer exposure to disinfecting chemicals against coronavirus disease 2019 (COVID-19) and associated health risks. Environ. Int. 2020, 145, 106108. [Google Scholar] [CrossRef] [PubMed]
- Aurisano, N.; Huang, L.; Milà i Canals, L.; Jolliet, O.; Fantke, P. Chemicals of concern in plastic toys. Environ. Int. 2021, 146, 106194. [Google Scholar] [CrossRef] [PubMed]
- Stanfield, Z.; Addington, C.K.; Dionisio, K.L.; Lyons, D.; Tornero-Velez, R.; Phillips, K.A.; Buckley, T.J.; Isaacs, K.K. Mining of consumer product ingredient and purchasing data to identify potential chemical coexposures. Environ. Health Perspect. 2021, 129, 67006. [Google Scholar] [CrossRef]
- Barnes, D.G.; Dourson, M.; Dourson, M.; Preuss, P.; Barnes, D.G.; Bellin, J.; Derosa, C.; Engler, R.; Erdreich, L.; Farber, T.; et al. Reference dose (RfD): Description and use in health risk assessments. Regul. Toxicol. Pharmacol. 1988, 8, 471–486. [Google Scholar] [CrossRef]
- Wetmore, B.A.; Wambaugh, J.F.; Ferguson, S.S.; Sochaski, M.A.; Rotroff, D.M.; Freeman, K.; Clewell, H.J.; Dix, D.J.; Andersen, M.E.; Houck, K.A.; et al. Integration of Dosimetry, Exposure, and High-Throughput Screening Data in Chemical Toxicity Assessment. Toxicol. Sci. 2012, 125, 157–174. [Google Scholar] [CrossRef] [Green Version]
- Sipes, N.S.; Wambaugh, J.F.; Pearce, R.; Auerbach, S.S.; Wetmore, B.A.; Hsieh, J.-H.; Shapiro, A.J.; Svoboda, D.; DeVito, M.J.; Ferguson, S.S. An intuitive approach for predicting potential human health risk with the Tox21 10k library. Environ. Sci. Technol. 2017, 51, 10786–10796. [Google Scholar] [CrossRef]
- US EPA. EPA’s Approach for Assessing the Risks Associated with Chronic Exposure to Carcinogens. Available online: https://www.epa.gov/iris/epas-approach-assessing-risks-associated-chronic-exposure-carcinogens (accessed on 27 July 2021).
- Rosenbaum, R.K.; Huijbregts, M.A.J.; Henderson, A.D.; Margni, M.; McKone, T.E.; van de Meent, D.; Hauschild, M.Z.; Shaked, S.; Li, D.S.; Gold, L.S.; et al. USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: Sensitivity to key chemical properties. Int. J. Life Cycle Assess. 2011, 16, 710. [Google Scholar] [CrossRef]
- Fantke, P.; Chiu, W.A.; Aylward, L.; Judson, R.; Huang, L.; Jang, S.; Gouin, T.; Rhomberg, L.; Aurisano, N.; McKone, T.; et al. Exposure and toxicity characterization of chemical emissions and chemicals in products: Global recommendations and implementation in USEtox. Int. J. Life Cycle Assess 2021, 26, 899–915. [Google Scholar] [CrossRef]
- Renner, R. Exposure on Tap: Drinking Water as an Overlooked Source of Lead. Environ. Health Perspect. 2010, 118, A68–A74. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Tao, M.; Vieira, J.; Suh, S. The effects of incorporating non-linearity in LCA: Characterizing the impact on human health. Front. Sustain. 2020, 1, 6. [Google Scholar] [CrossRef]
- Li, L.; Li, D. Inter-individual variability and non-linear dose-response relationship in assessing human health impact from chemicals in lca: Addressing uncertainties in exposure and toxicological susceptibility. Front. Sustain. 2021, 2, 17. [Google Scholar] [CrossRef]
- De Bruijin, J.; Hansen, B.; Johansson, S.; Luotamo, M.; Munn, S.; Musset, C.; Olsen, S.; Olsson, H.; Paya-Perez, A.; Pedersen, F.; et al. Technical Guidance Document on Risk Assessment; European Commission Joint Research Centre: Rome, Italy, 2002. [Google Scholar]
- US EPA. 2017 National Emissions Inventory (NEI) Data. Available online: https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data (accessed on 23 July 2021).
- Mansouri, K.; Grulke, C.M.; Judson, R.S.; Williams, A.J. OPERA models for predicting physicochemical properties and environmental fate endpoints. J. Cheminform. 2018, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Estimation Programs Interface SuiteTM for Microsoft® Windows; United States Environmental Protection Agency: Washington, DC, USA, 2020.
- Arnot, J.; Gouin, T.; Mackay, D. Practical Methods for Estimating Environmental Biodegradation Rates; Canadian Environmental Modelling Network: Peterborough, ON, Canada, 2005. [Google Scholar]
- Brown, T.N.; Arnot, J.A.; Wania, F. Iterative Fragment Selection: A group contribution approach to predicting fish biotransformation half-lives. Environ. Sci. Technol. 2012, 46, 8253–8260. [Google Scholar] [CrossRef] [PubMed]
- Arnot, J.A.; Brown, T.N.; Wania, F. Estimating screening-level organic chemical half-lives in humans. Environ. Sci. Technol. 2014, 48, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Fenner, K.; Scheringer, M.; MacLeod, M.; Matthies, M.; McKone, T.; Stroebe, M.; Beyer, A.; Bonnell, M.; Le Gall, A.C.; Klasmeier, J.; et al. Comparing estimates of persistence and long-range transport potential among multimedia models. Environ. Sci. Technol. 2005, 39, 1932–1942. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Arnot, J.A.; Wania, F. Towards a systematic understanding of the dynamic fate of polychlorinated biphenyls in indoor, urban and rural environments. Environ. Int. 2018, 117, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Arnot, J.A.; Wania, F. Revisiting the contributions of far- and near-field routes to aggregate human exposure to polychlorinated biphenyls (PCBs). Environ. Sci. Technol. 2018, 52, 6974–6984. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hoang, C.; Arnot, J.A.; Wania, F. Clarifying temporal trend variability in human biomonitoring of polybrominated diphenyl ethers through mechanistic modeling. Environ. Sci. Technol. 2020, 54, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Arnot, J.A.; Wania, F. How are humans exposed to organic chemicals released to indoor air? Environ. Sci. Technol. 2019, 53, 11276–11284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huijbregts, M.A.J.; Rombouts, L.J.A.; Ragas, A.M.J.; van de Meent, D. Human-toxicological effect and damage factors of carcinogenic and noncarcinogenic chemicals for life cycle impact assessment. Integr. Environ. Assess. Manag. 2005, 1, 181–244. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Reference Dose (RfD): Description and Use in Health Risk Assessments. Available online: https://www.epa.gov/iris/reference-dose-rfd-description-and-use-health-risk-assessments (accessed on 5 November 2021).
- US EPA. 2014 NATA: Technical Support Document. Available online: https://www.epa.gov/national-air-toxics-assessment/2014-nata-technical-support-document (accessed on 24 July 2021).
- Hu, L.; Montzka, S.A.; Miller, B.R.; Andrews, A.E.; Miller, J.B.; Lehman, S.J.; Sweeney, C.; Miller, S.M.; Thoning, K.; Siso, C.; et al. Continued emissions of carbon tetrachloride from the United States nearly two decades after its phaseout for dispersive uses. Proc. Natl. Acad. Sci. USA 2016, 113, 2880–2885. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, S.; Li, L. The role of chemical properties in human exposure to environmental chemicals. Environmental Science: Processes & Impacts. Environ. Sci. Process. Impacts. 2021, in press. [Google Scholar] [CrossRef]
- Li, L.; Sangion, A.; Wania, F.; Armitage, J.; Toose, L.; Hughes, L.; Arnot, J. Development and evaluation of a holistic and mechanistic modeling framework for chemical emissions, fate, exposure, and risk. Environ. Health Perspect. 2021, in press. [Google Scholar] [CrossRef]
- Moore, R.J.H.; Hotchkiss, J.L. The importance of toxicity in determining the impact of hazardous air pollutants on the respiratory health of children in Tennessee. Environ. Pollut. 2016, 216, 616–623. [Google Scholar] [CrossRef]
- Delfino, R.J.; Gong, H.; Linn, W.S.; Pellizzari, E.D.; Hu, Y. Asthma symptoms in Hispanic children and daily ambient exposures to toxic and criteria air pollutants. Environ. Health Perspect. 2003, 111, 647–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coyle, Y.M.; Hynan, L.S.; Euhus, D.M.; Minhajuddin, A.T.M. An ecological study of the association of environmental chemicals on breast cancer incidence in Texas. Breast Cancer Res. Treat. 2005, 92, 107–114. [Google Scholar] [CrossRef]
- Wilson, S.; Burwell-Naney, K.; Jiang, C.; Zhang, H.; Samantapudi, A.; Murray, R.; Dalemarre, L.; Rice, L.; Williams, E. Assessment of sociodemographic and geographic disparities in cancer risk from air toxics in South Carolina. Environ. Res. 2015, 140, 562–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendryx, M.; Luo, J. Cancer hospitalizations in rural–urban areas in relation to carcinogenic discharges from Toxics Release Inventory facilities. Int. J. Environ. Health Res. 2013, 23, 155–169. [Google Scholar] [CrossRef]
- US EPA. 2014 NATA: Assessment Results. Available online: https://www.epa.gov/national-air-toxics-assessment/2014-nata-assessment-results (accessed on 25 July 2021).
- Chiu, W.A.; Slob, W. A Unified Probabilistic Framework for Dose–Response Assessment of Human Health Effects. Environ. Health Perspect. 2015, 123, 1241–1254. [Google Scholar] [CrossRef] [Green Version]
- Chiu, W.A.; Axelrad, D.A.; Dalaijamts, C.; Dockins, C.; Shao, K.; Shapiro, A.J.; Paoli, G. Beyond the RfD: Broad application of a probabilistic approach to improve chemical dose–response assessments for noncancer effects. Environ. Health Perspect. 2018, 126, 067009. [Google Scholar] [CrossRef] [Green Version]
- Teeguarden, J.G.; Hanson-Drury, S. A systematic review of Bisphenol A “low dose” studies in the context of human exposure: A case for establishing standards for reporting “low-dose” effects of chemicals. Food Chem. Toxicol. 2013, 62, 935–948. [Google Scholar] [CrossRef] [PubMed]
- Rhomberg, L.R.; Goodman, J.E.; Haber, L.T.; Dourson, M.; Andersen, M.E.; Klaunig, J.E.; Meek, B.; Price, P.S.; McClellan, R.O.; Cohen, S.M. Linear low-dose extrapolation for noncancer health effects is the exception, not the rule. Crit. Rev. Toxicol. 2011, 41, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, N.-H.; Chen, Z.; Rusyn, I.; Chiu, W.A. Risk characterization and probabilistic concentration–response modeling of complex environmental mixtures using new approach methodologies (NAMs) data from organotypic in vitro human stem cell assays. Environ. Health Perspect. 2021, 129, 017004. [Google Scholar] [CrossRef] [PubMed]
- McGee Hargrove, M.; Parr-Dobrzanski, B.; Li, L.; Constant, S.; Wallace, J.; Hinderliter, P.; Wolf, D.C.; Charlton, A. Use of the mucilair airway assay, a new approach methodology, for evaluating the safety and inhalation risk of agrochemicals. Appl. In Vitro Toxicol. 2021, 7, 50–60. [Google Scholar] [CrossRef]
- Turley, A.E.; Isaacs, K.K.; Wetmore, B.A.; Karmaus, A.L.; Embry, M.R.; Krishan, M. Incorporating new approach methodologies in toxicity testing and exposure assessment for tiered risk assessment using the RISK21 approach: Case studies on food contact chemicals. Food Chem. Toxicol. 2019, 134, 110819. [Google Scholar] [CrossRef] [PubMed]
- Friedman, K.P.; Gagne, M.; Loo, L.-H.; Karamertzanis, P.; Netzeva, T.; Sobanski, T.; Franzosa, J.A.; Richard, A.M.; Lougee, R.R.; Gissi, A.; et al. Utility of in vitro bioactivity as a lower bound estimate of in vivo adverse effect levels and in risk-based prioritization. Toxicol. Sci. 2020, 173, 202–225. [Google Scholar] [CrossRef]
- Harrill, A.H.; McAllister, K.A. New rodent population models may inform human health risk assessment and identification of genetic susceptibility to environmental exposures. Environ. Health Perspect. 2017, 125, 086002. [Google Scholar] [CrossRef]
- Dornbos, P.; LaPres, J.J. Incorporating population-level genetic variability within laboratory models in toxicology: From the individual to the population. Toxicology 2018, 395, 1–8. [Google Scholar] [CrossRef]
- Mortensen, H.M.; Chamberlin, J.; Joubert, B.; Angrish, M.; Sipes, N.; Lee, J.S.; Euling, S.Y. Leveraging human genetic and adverse outcome pathway (AOP) data to inform susceptibility in human health risk assessment. Mamm. Genome 2018, 29, 190–204. [Google Scholar] [CrossRef]
- Zimmermann, M.; Zimmermann-Kogadeeva, M.; Wegmann, R.; Goodman, A.L. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 2019, 363, eaat9931. [Google Scholar] [CrossRef]
Property | Experimentally Determined Value (EDV) | Model Predicted Value (MPV) |
---|---|---|
Equilibrium octanol–water partition coefficient (KOW) | 91 chemicals with EDVs from the PHYSPROP database | 4 chemicals with MPVs as consensus values (geometric means) of predictions made with OPERA (all within the applicability domain or AD) [15] and the KOWWIN module in EPI Suite [16] (all within the AD (a)). |
Equilibrium octanol–air partition coefficient (KOA) | N.A. | 95 chemicals with MPVs as consensus values (geometric means) of predictions made with OPERA (89 chemicals within the AD) and the KOAWIN module in EPI Suite (92 chemicals within the AD). |
Dissociation rate constant (pKa and pKb) | 46 chemicals do not dissociate in the environment (neither acids nor bases) | 49 ionogenic organic chemicals with MPVs predicted by OPERA (all within the AD). |
Atmospheric hydroxylation rate constant (k(OH)) | 65 chemicals with EDVs from the PHYSPROP database | 30 chemicals with MPVs as consensus values (geometric means) of predictions made with OPERA (22 chemicals within the applicability domain or AD) and the AOPWIN module in EPI Suite (25 chemicals within the AD). |
Biodegradation rate constant (b) | 11 chemicals with EDVs collected by Arnot et al. [17] | 84 chemicals with MPVs as consensus values (geometric means) of predictions made with OPERA (39 chemicals within the AD), the BioHCWIN module in EPI Suite (for the 15 hydrocarbons only), and estimates converted using the empirical relationships in Arnot et al. [17] based on the probabilities of primary degradation predicted by the BIOWIN module in EPI Suite. |
Biotransformation rate constant in fish (normalized to 10 g) (c) | N.A. | All chemicals with MPVs as consensus values (geometric means) of predictions made with OPERA (89 chemicals within the AD) and IFS-QSAR [18] (81 chemicals within the AD). |
Biotransformation rate constant in mammals (including humans) (normalized to 70 kg) (d) | 11 chemicals with EDVs collected by Arnot et al. (2014) | 84 chemicals with MPVs predicted by IFS-QSAR [19] (67 chemicals within the AD). |
CASRN | Chemical Name | Average Daily Dose to ED50 Ratio | PrHE | ||||
---|---|---|---|---|---|---|---|
3-Year-Old | 14-Year-Old | 25-Year-Old | 3-Year-Old | 14-Year-Old | 25-Year-Old | ||
107-02-8 | Acrolein | 5.47 × 10−3 | 1.86 × 10−3 | 1.55 × 10−3 | 1.64 × 10−18 | 4.08 × 10−26 | 1.56 × 10−27 |
127-18-4 | Tetrachloroethylene | 5.96 × 10−4 | 2.07 × 10−4 | 1.90 × 10−4 | 1.25 × 10−35 | 7.08 × 10−46 | 9.20 × 10−47 |
108-88-3 | Toluene | 5.45 × 10−4 | 1.89 × 10−4 | 1.74 × 10−4 | 1.91 × 10−36 | 8.34 × 10−47 | 1.05 × 10−47 |
542-75-6 | 1,3-Dichloropropene | 3.89 × 10−4 | 1.35 × 10−4 | 1.24 × 10−4 | 1.33 × 10−39 | 2.16 × 10−50 | 2.43 × 10−51 |
71-43-2 | Benzene | 3.67 × 10−4 | 1.27 × 10−4 | 1.17 × 10−4 | 3.61 × 10−40 | 4.93 × 10−51 | 5.52 × 10−52 |
50-00-0 | Formaldehyde | 1.72 × 10−4 | 5.89 × 10−5 | 5.11 × 10−5 | 7.75 × 10−48 | 8.03 × 10−60 | 1.66 × 10−61 |
77-47-4 | Hexachlorocyclopentadien | 1.38 × 10−4 | 4.79 × 10−5 | 4.39 × 10−5 | 3.47 × 10−50 | 2.69 × 10−62 | 2.47 × 10−63 |
91-20-3 | Naphthalene | 9.45 × 10−5 | 3.28 × 10−5 | 3.01 × 10−5 | 2.40 × 10−54 | 6.07 × 10−67 | 5.10 × 10−68 |
56-23-5 | Carbon Tetrachloride | 8.69 × 10−5 | 3.02 × 10−5 | 2.77 × 10−5 | 2.74 × 10−55 | 5.49 × 10−68 | 4.48 × 10−69 |
75-07-0 | Acetaldehyde | 8.40 × 10−5 | 2.84 × 10−5 | 2.33 × 10−5 | 1.12 × 10−55 | 8.97 × 10−69 | 2.65 ×10−71 |
Interval | Dose as a Fraction of ED50 (X/ED50) | Base Dose (X0) | Slope (S) | Base PrHE (R0) |
---|---|---|---|---|
I | (0, 0.090) | 0 | 0.00031 | 0 |
II | (0.090, 0.153) | 0.090 | 0.013 | 0.000028 |
III | (0.153, 0.334) | 0.153 | 0.18 | 0.00085 |
IV | (0.334, 0.464) | 0.334 | 0.51 | 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Li, L. Human Chemical Exposure from Background Emissions in the United States and the Implication for Quantifying Risks from Marginal Emission Increase. Toxics 2021, 9, 308. https://doi.org/10.3390/toxics9110308
Li D, Li L. Human Chemical Exposure from Background Emissions in the United States and the Implication for Quantifying Risks from Marginal Emission Increase. Toxics. 2021; 9(11):308. https://doi.org/10.3390/toxics9110308
Chicago/Turabian StyleLi, Dingsheng, and Li Li. 2021. "Human Chemical Exposure from Background Emissions in the United States and the Implication for Quantifying Risks from Marginal Emission Increase" Toxics 9, no. 11: 308. https://doi.org/10.3390/toxics9110308
APA StyleLi, D., & Li, L. (2021). Human Chemical Exposure from Background Emissions in the United States and the Implication for Quantifying Risks from Marginal Emission Increase. Toxics, 9(11), 308. https://doi.org/10.3390/toxics9110308