Ecological and Human Health Risks of Heavy Metals in Shooting Range Soils: A Meta Assessment from China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collecting
2.2. Assessment of Contamination Degree and Potential Ecological Risk
2.3. Health Risk Assessment
2.4. Data Analysis
3. Results and Discussion
3.1. Heavy Metal Concentrations in Shooting Range Soils of China
3.2. Assessment of Contamination Degree
3.3. Assessment of Potential Ecological Risk
3.4. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Papanikolaou, N.C.; Hatzidaki, E.G.; Belivanis, S.; Tzanakakis, G.N.; Tsatsakis, A.M. Lead toxicity update. A brief review. Med. Sci. Monit. 2005, 11, RA329–RA336. [Google Scholar] [PubMed]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 133–164. [Google Scholar]
- Sanderson, P.; Qi, F.; Seshadri, B.; Wijayawardena, A.; Naidu, R. Contamination, fate and management of metals in shooting range soils—A review. Curr. Pollut. Rep. 2018, 4, 175–187. [Google Scholar] [CrossRef]
- Fayiga, A.; Saha, U. Soil pollution at outdoor shooting ranges: Health effects, bioavailability and best management practices. Environ. Pollut. 2016, 216, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Hashimoto, Y.; Moon, D.H.; Lee, S.S.; Ok, Y.S. Immobilization of lead in a Korean military shooting range soil using eggshell waste: An integrated mechanistic approach. J. Hazard. Mater. 2012, 209, 392–401. [Google Scholar] [CrossRef]
- Lewis, J.; Sjöström, J.; Skyllberg, U.; Hägglund, L. Distribution, chemical speciation, and mobility of lead and antimony originating from small arms ammunition in a coarse-grained unsaturated surface sand. J. Environ. Qual. 2010, 39, 863–870. [Google Scholar] [CrossRef]
- Fayiga, A.O.; Saha, U. The effect of bullet removal and vegetation on mobility of Pb in shooting range soils. Chemosphere 2016, 160, 252–257. [Google Scholar] [CrossRef]
- Interstate Technology and Regulatory Council. Characterization and Remediation of Soils at Closed Small Arms Firing Ranges; Interstate Technology and Regulatory Council, Small Arms Firing Range Team: Washington, DC, USA, 2003; pp. 1–2. [Google Scholar]
- Mariussen, E.; Johnsen, I.V.; Strømseng, A.E. Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires. Environ. Sci. Pollut. Res. 2017, 24, 10182–10196. [Google Scholar] [CrossRef]
- Sorvari, J. Environmental risks at Finnish shooting ranges—A case study. Hum. Ecol. Risk Assess. 2007, 13, 1111–1146. [Google Scholar] [CrossRef]
- Peddicord, R.K.; LaKind, J.S. Ecological and human health risks at an outdoor firing range. Environ. Toxicol. Chem. 2000, 19, 2602–2613. [Google Scholar] [CrossRef]
- Islam, M.N.; Nguyen, X.P.; Jung, H.Y.; Park, J.H. Chemical speciation and quantitative evaluation of heavy metal pollution hazards in two army shooting range backstop soils. Bull. Environ. Contam. Toxicol. 2016, 96, 179–185. [Google Scholar] [CrossRef]
- Dinake, P.; Kelebemang, R.; Sehube, N.; Kamwi, O.; Laetsang, M. Quantitative assessment of environmental risk from lead pollution of shooting range soils. Chem. Speciat. Bioavailab. 2018, 30, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Centre. Soil Element Background Values in China; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- ur Rehman, I.; Ishaq, M.; Ali, L.; Khan, S.; Ahmad, I.; Din, I.U.; Ullah, H. Enrichment, spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines, district Chitral, Northern Pakistan. Ecotoxicol. Environ. Saf. 2018, 154, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Feng, C.; Yang, Y.; Niu, J.; Shen, Z. Risk assessment of sedimentary metals in the Yangtze Estuary: New evidence of the relationships between two typical index methods. J. Hazard. Mater. 2012, 241, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.L. Exposure Factors Handbook of Chinese Population (Adults); China Environmental Science Press: Beijing, China, 2013. [Google Scholar]
- Lu, X.; Zhang, X.; Li, L.Y.; Chen, H. Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ. Res. 2014, 128, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Z.; Zhang, L.J.; Hu, G.C. The exposure and health risk assessment of the heavy metals in house dust from mineral areas, southwest of China. Asian J. Ecotoxicol. 2017, 12, 235–242. [Google Scholar]
- De Miguel, E.; Izquierdo, M.; Gómez, A.; Mingot, J.; Barrio-Parra, F. Risk assessment from exposure to arsenic, antimony, and selenium in urban gardens (Madrid, Spain). Environ. Toxicol. Chem. 2017, 36, 544–550. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, S.; Li, R.; Meng, Q.; Zhang, Y.; Yan, L. Heavy metal contamination and bioavailability in shooting range soil. Acta Sci. Circum. 2011, 31, 148–156. [Google Scholar]
- Zhu, Y.B.; Zhao, S.P.; Liu, X.D. Characteristics of heavy metals contamination and distribution in shooting range: A case study. Adv. Mater. Res. 2012, 414, 132–138. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, Z.; Yang, Q.; Xie, C.; Wang, D.; Mao, H. Evaluation of heavy metal pollution in soils from a training ground based on GIS. Environ. Sci. 2012, 33, 319–324. [Google Scholar]
- Liu, Y.; Fang, Z.; Yang, Q.; Xie, C.; Li, J. Analysis of the total concentration and the existing speciation of heavy metals in small arms shooting range soils. J. Saf. Environ. 2013, 13, 107–111. [Google Scholar]
- Liu, Y.; Fang, Z.; Xie, C.; Li, J. Analysis of existing speciation and evaluation of heavy metals pollution of soil in a shooting range. Nat. Environ. Pollut. Technol. 2014, 13, 449–456. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. Soil Environmental Quality–Risk Control Standard for Soil Contamination of Agricultural Land (GB15618-2018); Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018.
- Cao, X.; Ma, L.Q.; Chen, M.; Hardison, D.W., Jr.; Harris, W.G. Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Sci. Total Environ. 2003, 307, 179–189. [Google Scholar] [CrossRef]
- Stauffer, M.; Pignolet, A.; Alvarado, J.C. Persistent mercury contamination in shooting range soils: The legacy from former primers. Bull. Environ. Contam. Toxicol. 2017, 98, 14–21. [Google Scholar] [CrossRef]
- Sehube, N.; Kelebemang, R.; Totolo, O.; Laetsang, M.; Kamwi, O.; Dinake, P. Lead pollution of shooting range soils. S. Afr. J. Chem. 2017, 70, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Perroy, R.L.; Belby, C.S.; Mertens, C.J. Mapping and modeling three dimensional lead contamination in the wetland sediments of a former trap-shooting range. Sci. Total Environ. 2014, 487, 72–81. [Google Scholar] [CrossRef]
- Bennett, J.R.; Kaufman, C.A.; Koch, I.; Sova, J.; Reimer, K.J. Ecological risk assessment of lead contamination at rifle and pistol ranges using techniques to account for site characteristics. Sci. Total Environ. 2007, 374, 91–101. [Google Scholar] [CrossRef]
- Hoch, J.M.; Bruce, M. Metal contamination hotspots at unregulated firearm target shooting sites in the Everglades. J. Environ. Qual. 2019, 48, 755–761. [Google Scholar] [CrossRef] [Green Version]
- Rantalainen, M.L.; Torkkeli, M.; Strömmer, R.; Setälä, H. Lead contamination of an old shooting range affecting the local ecosystem—A case study with a holistic approach. Sci. Total Environ. 2006, 369, 99–108. [Google Scholar] [CrossRef]
Number of Ranges | Shooting Range | Value (mg/kg) | Pb | Cu | Hg | As | Sb | Zn | Ni | Cr | Co | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Range 1 | Small arms shooting range: bullet berms and target zones (0–5 cm); pH 7.70–8.65 | Mean | 936.4 | 88.4 | 36.9 | 9.54 | 1.97 | 40.2 | [22] | |||
Max | 7031 | 448 | 149 | 13.4 | 14.0 | 91.5 | ||||||
Min | 12.5 | 11.6 | 13.7 | 4.67 | 0.17 | 20.3 | ||||||
Range 2 | Small arms shooting range (15 years): bullet berms and target zones (0–5 cm); pH 8.2–9.0 | Mean | 4175 | [23] | ||||||||
Max | 7674 | |||||||||||
Min | 132 | |||||||||||
Range 3 | Tank shooting range (20 years): shot fall and non-shot fall zones (0–15 cm); mean pH 5.96; | Mean | 30.33 | 46.29 | 56.71 | 32.73 | 9.82 | [24] | ||||
Max | 52.49 | 101.90 | 91.27 | 56.50 | 19.77 | |||||||
Min | 20.52 | 27.25 | 32.17 | 19.05 | 5.03 | |||||||
Range 4 | Small arms shooting range (15 years): shooting and target zones (0–20 cm); mean pH 7.31 | Mean | 2044.5 | 183.4 | 68.1 | 34.2 | 88.9 | [25] | ||||
Max | 5010.0 | 396.5 | 91.1 | 38.8 | 98.2 | |||||||
Min | 151.9 | 44.1 | 47.9 | 28.1 | 80.6 | |||||||
Range 5-1 | Small arms shooting range (20 years): Bomb-beaten area (0–20 cm); mean pH 6.64 | Mean | 1375.35 | 214.62 | [26] | |||||||
Max | 2763 | 306.90 | ||||||||||
Min | 414 | 104 | ||||||||||
Range 5-2 | Small arms shooting range (20 years): Non-bomb dropping area (0–20 cm); mean pH 6.64 | Mean | 55.21 | 41.95 | ||||||||
Max | 153.70 | 226.20 | ||||||||||
Min | 22.58 | 17.04 | ||||||||||
China’s soil environmental quality | Risk screening value | 800 | 18,000 | 38 | 60 | 900 | [27] | |||||
Risk intervention value | 2500 | 36,000 | 82 | 140 | 2000 | [27] |
Metal | Value | Range 1 | Range 2 | Range 3 | Range 4 | Range 5-1 | Range 5-2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | ||
Pb | CF | 36.0 | 270.4 | 0.5 | 160.6 | 295.2 | 5.1 | 1.2 | 2.0 | 0.8 | 78.6 | 192.7 | 5.8 | 52.9 | 106.3 | 15.9 | 2.1 | 5.9 | 0.9 |
Eri | 180.1 | 1352 | 2.4 | 802.9 | 1476 | 25.4 | 5.8 | 10.1 | 3.9 | 393.2 | 963.5 | 29.2 | 264.5 | 531.3 | 79.6 | 10.6 | 29.6 | 4.3 | |
Cu | CF | 3.9 | 19.8 | 0.5 | 2.0 | 4.5 | 1.2 | 8.1 | 17.5 | 2.0 | 9.5 | 13.6 | 4.6 | 1.9 | 10.0 | 0.8 | |||
Eri | 19.6 | 99.1 | 2.6 | 10.2 | 22.5 | 6.0 | 40.6 | 87.7 | 9.8 | 47.5 | 67.9 | 23.0 | 9.3 | 50.0 | 3.8 | ||||
Hg | CF | 567.7 | 2292 | 210.8 | |||||||||||||||
Eri | 22,700 | 91,690 | 8430 | ||||||||||||||||
As | CF | 0.9 | 1.2 | 0.4 | |||||||||||||||
Eri | 8.5 | 12.0 | 4.2 | ||||||||||||||||
Sb | CF | 1.6 | 11.6 | 0.1 | |||||||||||||||
Eri | 16.3 | 115.7 | 1.4 | ||||||||||||||||
Zn | CF | 0.5 | 1.2 | 0.3 | 0.8 | 1.2 | 0.4 | 0.9 | 1.2 | 0.6 | |||||||||
Eri | 0.5 | 1.2 | 0.3 | 0.8 | 1.2 | 0.4 | 0.9 | 1.2 | 0.6 | ||||||||||
Ni | CF | 1.2 | 2.1 | 0.7 | 1.3 | 1.4 | 1.0 | ||||||||||||
Eri | 6.1 | 10.5 | 3.5 | 6.4 | 7.2 | 5.2 | |||||||||||||
Cr | CF | 1.5 | 1.6 | 1.3 | |||||||||||||||
Eri | 2.9 | 3.2 | 2.6 | ||||||||||||||||
Co | CF | 0.8 | 1.6 | 0.4 | |||||||||||||||
Eri | 3.9 | 7.8 | 2.0 | ||||||||||||||||
CD | 610.6 | 2597 | 212.6 | 160.6 | 295.2 | 5.1 | 6.0 | 11.4 | 3.5 | 90.4 | 214.5 | 10.8 | 62.4 | 119.8 | 20.5 | 4.0 | 15.9 | 1.6 | |
IR | 22,930 | 93,270 | 8442 | 802.9 | 1476 | 25.4 | 26.8 | 52.2 | 15.9 | 443.9 | 1063 | 47.5 | 312.0 | 599.2 | 102.6 | 19.9 | 79.6 | 8.1 |
Metal | Range 1 | Range 2 | Range 3 | Range 4 | Range 5-1 | Range 5-2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | |
Pb | 3.26 × 10−1 | 2.45 | 4.35 × 10−3 | 1.45 | 2.67 | 4.60 × 10−2 | 1.06 × 10−2 | 1.83 × 10−2 | 7.14 × 10−3 | 7.12 × 10−1 | 1.74 | 5.29 × 10−2 | 4.79 × 10−1 | 9.62 × 10−1 | 1.44 × 10−1 | 1.92 × 10−2 | 5.35 × 10−2 | 7.86 × 10−3 |
Cu | 2.66 × 10−3 | 1.35 × 10−2 | 3.49 × 10−4 | 1.39 × 10−3 | 3.06 × 10−3 | 8.19 × 10−4 | 5.51 × 10−3 | 1.19 × 10−2 | 1.33 × 10−3 | 6.45 × 10−3 | 9.23 × 10−3 | 3.13 × 10−3 | 1.26 × 10−3 | 6.80 × 10−3 | 5.12 × 10−4 | |||
Hg | 1.54 × 10−1 | 6.23 × 10−1 | 5.73 × 10−2 | |||||||||||||||
As | 3.81 × 10−2 | 5.35 × 10−2 | 1.87 × 10−2 | |||||||||||||||
Sb | 6.00 × 10−3 | 4.26 × 10−2 | 5.18 × 10−4 | |||||||||||||||
Zn | 1.62 × 10−4 | 3.69 × 10−4 | 8.19 × 10−5 | 2.29 × 10−4 | 3.68 × 10−4 | 1.30 × 10−4 | 2.75 × 10−4 | 3.68 × 10−4 | 1.93 × 10−4 | |||||||||
Ni | 1.97 × 10−3 | 3.40 × 10−3 | 1.15 × 10−3 | 2.06 × 10−3 | 2.34 × 10−3 | 1.69 × 10−3 | ||||||||||||
Cr | 4.26 × 10−2 | 4.71 × 10−2 | 3.86 × 10−2 | |||||||||||||||
Co | 8.21 × 10−4 | 1.65 × 10−3 | 4.21 × 10−4 | |||||||||||||||
Sum | 5.27 × 10−1 | 3.18 | 8.13 × 10−2 | 1.45 | 2.67 | 4.60 × 10−2 | 1.50 × 10−2 | 2.68 × 10−2 | 9.66 × 10−3 | 7.62 × 10−1 | 1.81 | 9.47 × 10−2 | 4.85 × 10−1 | 9.71 × 10−1 | 1.47 × 10−1 | 2.05 × 10−2 | 6.03 × 10−2 | 8.37 × 10−3 |
Metal | Range 1 | Range 3 | Range 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | |
As | 5.89 × 10−6 | 8.27 × 10−6 | 2.88 × 10−6 | ||||||
Ni | 1.29 × 10−9 | 2.23 × 10−9 | 7.52 × 10−10 | 1.35 × 10−9 | 1.53 × 10−9 | 1.11 × 10−9 | |||
Cr | 1.75 × 10−7 | 1.94 × 10−7 | 1.59 × 10−7 | ||||||
Co | 4.52 × 10−9 | 9.10 × 10−9 | 2.32 × 10−9 | ||||||
Sum | 5.89 × 10−6 | 8.27 × 10−6 | 2.88 × 10−6 | 5.81 × 10−9 | 1.13 × 10−8 | 3.07 × 10−9 | 1.77 × 10−7 | 1.95 × 10−7 | 1.60 × 10−7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Zhao, X. Ecological and Human Health Risks of Heavy Metals in Shooting Range Soils: A Meta Assessment from China. Toxics 2020, 8, 32. https://doi.org/10.3390/toxics8020032
Bai J, Zhao X. Ecological and Human Health Risks of Heavy Metals in Shooting Range Soils: A Meta Assessment from China. Toxics. 2020; 8(2):32. https://doi.org/10.3390/toxics8020032
Chicago/Turabian StyleBai, Juan, and Xiaofen Zhao. 2020. "Ecological and Human Health Risks of Heavy Metals in Shooting Range Soils: A Meta Assessment from China" Toxics 8, no. 2: 32. https://doi.org/10.3390/toxics8020032