Aldehydes in Exhaled Breath during E-Cigarette Vaping: Pilot Study Results
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Participants
2.3. Sampling and Measurements
3. Results
3.1. Mainstream Concentrations
3.2. Concentrations in Exhaled E-Cigarette Breath
3.3. Exposure and RT Retention
3.4. Mainstream Aldehydes vs. ∆Caldehyde
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bunnell, R.E.; Agaku, I.T.; Arrazola, R.A.; Apelberg, B.J.; Caraballo, R.S.; Corey, C.G.; Coleman, B.N.; Dube, S.R.; King, B.A. Intentions to smoke cigarettes among never-smoking us middle and high school electronic cigarette users: National youth tobacco survey, 2011–2013. Nicotine Tob. Res. 2015, 17, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Marynak, K.L.; Gammon, D.G.; King, B.A.; Loomis, B.R.; Fulmer, E.B.; Wang, T.W.; Rogers, T. National and state trends in sales of cigarettes and e-cigarettes, US, 2011–2015. Am. J. Prev. Med. 2017, 53, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Arrazola, R.A.; Corey, C.G.; Husten, C.G.; Neff, L.J.; Homa, D.M.; King, B.A. Tobacco use among middle and high school students—United States, 2011–2015. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Tierney, P.A.; Karpinski, C.D.; Brown, J.E.; Luo, W.; Pankow, J.F. Flavour chemicals in electronic cigarette fluids. Tob. Control 2015, 25. [Google Scholar] [CrossRef] [PubMed]
- Gillman, I.G.; Kistler, K.A.; Stewart, E.W.; Paolantonio, A.R. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols. Regul. Toxicol. Pharm. 2016, 75, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.P.; Luo, W.; Pankow, J.F.; Strongin, R.M.; Peyton, D.H. Hidden formaldehyde in e-cigarette aerosols. N. Engl. J. Med. 2015, 372, 392–394. [Google Scholar] [CrossRef] [PubMed]
- Kosmider, L.; Sobczak, A.; Prokopowicz, A.; Kurek, J.; Zaciera, M.; Knysak, J.; Smith, D.; Goniewicz, M.L. Cherry-flavoured electronic cigarettes expose users to the inhalation irritant, benzaldehyde. Thorax 2016, 71, 376–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sleiman, M.; Logue, J.M.; Montesinos, V.N.; Russell, M.L.; Litter, M.I.; Gundel, L.A.; Destaillats, H. Emissions from electronic cigarettes: Key parameters affecting the release of harmful chemicals. Environ. Sci. Technol. 2016, 50, 9644–9651. [Google Scholar] [CrossRef] [PubMed]
- Salamanca, J.C.; Meehan-Atrash, J.; Vreeke, S.; Escobedo, J.O.; Peyton, D.H.; Strongin, R.M. E-cigarettes can emit formaldehyde at high levels under conditions that have been reported to be non-averse to users. Sci. Rep. 2018, 8, 7559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J.G.; Flanigan, S.S.; LeBlanc, M.; Vallarino, J.; MacNaughton, P.; Stewart, J.H.; Christiani, D.C. Flavoring chemicals in e-cigarettes: Diacetyl, 2,3-pentanedione, and acetoin in a sample of 51 products, including fruit-, candy-, and cocktail-flavored e-cigarettes. Environ. Health Perspect. 2016, 124, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Khlystov, A.; Samburova, V. Flavoring compounds dominate toxic aldehyde production during e-cigarette vaping. Environ. Sci. Technol. 2016, 50, 13080–13085. [Google Scholar] [CrossRef] [PubMed]
- Kosmider, L.; Sobczak, A.; Fik, M.; Knysak, J.; Zaciera, M.; Kurek, J.; Goniewicz, M.L. Carbonyl compounds in electronic cigarette vapors: Effects of nicotine solvent and battery output voltage. Nicotine Tob. Res. 2014, 16, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Voudris, V.; Poulas, K. E-cigarettes generate high levels of aldehydes only in “dry puff” conditions. Addiction 2015, 110, 1352–1356. [Google Scholar] [CrossRef] [PubMed]
- Dalhamn, T.; Edfors, M.-L.; Rylander, R. Retention of cigarette smoke components in human lungs. Arch. Environ. Health 1968, 17, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Moldoveanu, S.; Coleman, W.; Wilkins, J. Determination of carbonyl compounds in exhaled cigarette smoke. Beiträge zur Tabakforschung/Contrib. Tob. Res. 2007, 22, 346–357. [Google Scholar] [CrossRef]
- Long, G.A. Comparison of select analytes in exhaled aerosol from e-cigarettes with exhaled smoke from a conventional cigarette and exhaled breaths. Int. J. Environ. Res. Public Health 2014, 11, 11177–11191. [Google Scholar] [CrossRef] [PubMed]
- Franks, S. A mathematical model for the absorption and metabolism of formaldehyde vapour by humans. Toxicol. Appl. Pharm. 2005, 206, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Overton, J.H.; Kimbell, J.S.; Miller, F.J. Dosimetry modeling of inhaled formaldehyde: The human respiratory tract. Toxicol. Sci. 2001, 64, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Dautzenberg, B.; Bricard, D. Real-time characterization of e-cigarettes use: The 1 million puffs study. J. Addict. Res. Ther. 2015, 6, 229. [Google Scholar] [CrossRef]
- Talih, S.; Balhas, Z.; Eissenberg, T.; Salman, R.; Karaoghlanian, N.; El Hellani, A.; Baalbaki, R.; Saliba, N.; Shihadeh, A. Effects of user puff topography, device voltage, and liquid nicotine concentration on electronic cigarette nicotine yield: Measurements and model predictions. Nicotine Tob. Res. 2014, 17, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.S.H.; Ho, K.; Liu, W.; Lee, S.; Dai, W.; Cao, J.; Ip, H. Unsuitability of using the DNPH-coated solid sorbent cartridge for determination of airborne unsaturated carbonyls. Atmos. Environ. 2011, 45, 261–265. [Google Scholar] [CrossRef]
- Tayyarah, R.; Long, G.A. Comparison of select analytes in aerosol from e-cigarettes with smoke from conventional cigarettes and with ambient air. Regul. Toxicol. Pharm. 2014, 70, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Bekki, K.; Uchiyama, S.; Ohta, K.; Inaba, Y.; Nakagome, H.; Kunugita, N. Carbonyl compounds generated from electronic cigarettes. Int. J. Environ. Res. Public Health 2014, 11, 11192–11200. [Google Scholar] [CrossRef] [PubMed]
- Saheb, V.; Hosseini, S.M.A. Theoretical studies on the kinetics and mechanism of multi-channel gas-phase unimolecular reaction of ethyl acetate. Comput. Theor. Chem. 2013, 1009, 43–49. [Google Scholar] [CrossRef]
- Kielhorn, J.; Pohlenz-Michel, C.; Schmidt, S.; Mangelsdorf, I. Glyoxal. In Concise International Chemical Assessment Document 57; Word Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Tang, M.S.; Wang, H.T.; Hu, Y.; Chen, W.S.; Akao, M.; Feng, Z.H.; Hu, W.W. Acrolein induced DNA damage, mutagenicity and effect on DNA repair. Mol. Nutr. Food. Res. 2011, 55, 1291–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bein, K.; Leikauf, G.D. Acrolein—A pulmonary hazard. Mol. Nutr. Food. Res. 2011, 55, 1342–1360. [Google Scholar] [CrossRef] [PubMed]
- Egle, J.L. Retention of inhaled formaldehyde, propionaldehyde, and acrolein in the dog. Arch. Environ. Health 1972, 25, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, S.; Senoo, Y.; Hayashida, H.; Inaba, Y.; Nakagome, H.; Kunugita, N. Determination of chemical compounds generated from second-generation e-cigarettes using a sorbent cartridge followed by a two-step elution method. Anal. Sci. 2016, 32, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.E.; Hoffman, A.C. Electronic cigarettes: Abuse liability, topography and subjective effects. Tob. Control 2014, 23, ii23–ii29. [Google Scholar] [CrossRef] [PubMed]
- Trtchounian, A.; Williams, M.; Talbot, P. Conventional and electronic cigarettes (e-cigarettes) have different smoking characteristics. Nicotine Tob. Res. 2010, 12, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, L.; Turner, J.; Hasna, S.; Soar, K. The electronic-cigarette: Effects on desire to smoke, withdrawal symptoms and cognition. Addict. Behav. 2012, 37, 970–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behar, R.Z.; Talbot, P. Puffing topography and nicotine intake of electronic cigarette users. PLoS ONE 2015, 10, e0117222. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Air Quality Guidelines for Europe, 2nd ed.; WHO Regional Office: Copenhagen, Denmark, 2001. [Google Scholar]
- National Research Council. Committee on acute exposure guideline levels. In Acute Exposure Guideline Levels for Selected Airborne Chemicals; National Academies Press: Washington, DC, USA, 2008; Volume 8. [Google Scholar]
- Goniewicz, M.L.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jablonska-Czapla, M.; Rosik-Dulewska, C.; Havel, C.; et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 2014, 23, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Schober, W.; Szendrei, K.; Matzen, W.; Osiander-Fuchs, H.; Heitmann, D.; Schettgen, T.; Jorres, R.A.; Fromme, H. Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases feno levels of e-cigarette consumers. Int. J. Hyg. Environ. Health 2014, 217, 628–637. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency (US EPA). Compendium method TO-11A: Determination of formaldehyde in ambient air using adsorbent cartridges followed by high performance liquid chromatography (HPLC). In Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air; US Environmental Protection Agency: Cincinnati, OH, USA, 1997. [Google Scholar]
Session # | Participant #/Gender | E-Cigarette | Flavor | Formaldehyde | Acetaldehyde | Acrolein | Glyoxal | Propionaldehyde | Benzaldehyde |
---|---|---|---|---|---|---|---|---|---|
Single coil BLU and V2 | |||||||||
1 * | 1/M | BLU | Menthol | 0.21 ± 0.05 | 0.21 ± 0.05 | 0.012 ± 0.003 | 0.03 ± 0.01 | 0.032 ± 0.002 | BDL |
2 * | 2/F | BLU | Menthol | 0.21 ± 0.05 | 0.21 ± 0.05 | 0.012 ± 0.003 | 0.03 ± 0.01 | 0.032 ± 0.002 | BDL |
3 * | 3/F | BLU | Classic | 10.6 ± 3.8 | 1.95 ± 0.35 | 0.22 ± 0.03 | 1.32 ± 0.37 | 0.072 ± 0.007 | BDL |
4 * | 4/F | BLU | Classic | 0.36 ± 0.04 | 0.33 ± 0.07 | 0.015 ± 0.003 | 0.038 ± 0.007 | 0.04 ± 0.01 | BDL |
5 * | 5/M | BLU | Classic | 0.36 ± 0.04 | 0.33 ± 0.07 | 0.015 ± 0.003 | 0.038 ± 0.007 | 0.04 ± 0.01 | BDL |
6 | 6/F | V2 | Red Tobacco | 1.55 ± 0.07 | 1.40 ± 0.13 | 0.034 ± 0.007 | 0.30 ± 0.24 | 0.31 ± 0.06 | BDL |
Top single coil CE4 | |||||||||
7 | 7/M | CE4 | Bubble gum | 24.4 ± 2.3 | 22.5 ± 6.2 | 1.37 ± 0.35 | 0.85 ± 0.16 | 4.2 ± 1.2 | BDL |
8 | 8/M | CE4 | Watermelon | 0.49 ± 0.16 | 0.12 ± 0.10 | BDL | 0.18 ± 0.07 | 0.019 ± 0.008 | 0.16 ± 0.02 |
9 | 9/F | CE4 | Watermelon | 1.95 ± 0.39 | 0.39 ± 0.08 | 0.028 ± 0.006 | 0.84 ± 0.17 | 0.033 ± 0.002 | 0.19 ± 0.04 |
10 | 10/F | CE4 | Watermelon | 4.18 ± 1.34 | 1.21 ± 0.80 | 0.13 ± 0.09 | 1.62 ± 0.39 | 0.10 ± 0.07 | 0.11 ± 0.03 |
Three-battery vaporizers: Aspire Cleito and Sigelei | |||||||||
11 * | 6/F | Aspire Cleito | Watermelon | 0.41 ± 0.06 | 0.16 ± 0.03 | 0.058 ± 0.006 | BDL | 0.020 ± 0.004 | 0.36 ± 0.05 |
12 * | 7/M | Sigelei | Fruit mix | 4.59 ± 0.99 | 0.43 ± 0.09 | BDL | 0.69 ± 0.19 | 0.19 ± 0.04 | BDL |
13 * | 7/M | Aspire Cleito | PG/VG | 0.21 ± 0.03 | 0.025 ± 0.001 | BDL | BDL | BDL | BDL |
14 * | 7/M | Aspire Cleito | PG/VG/nicotine | 0.13 ± 0.03 | 0.022 ± 0.008 | BDL | 0.019 ± 0.004 | BDL | BDL |
15 * | 7/M | Sigelei | Vanilla | 0.31 ± 0.06 | 0.15 ± 0.03 | 0.09 ± 0.02 | BDL | 0.038 ± 0.008 | BDL |
16 * | 11/F | Aspire Cleito | Butterspot | 0.17 ± 0.03 | 0.21 ± 0.06 | BDL | 0.77 ± 0.23 | 12.1 ± 2.7 | 0.62 ± 0.09 |
17 * | 12/M | Aspire Cleito | Snozberry | 0.059 ± 0.006 | 0.19 ± 0.03 | 0.034 ± 0.007 | BDL | 0.18 ± 0.04 | 3.9 ± 1.2 |
18 * | 7/M | Sigelei | Vanilla+fruit | 0.23 ± 0.05 | 0.12 ± 0.02 | BDL | BDL | 0.047 ± 0.009 | 0.48 ± 0.09 |
19 * | 7/M | Sigelei | Vanilla+fruit | - | - | - | - | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samburova, V.; Bhattarai, C.; Strickland, M.; Darrow, L.; Angermann, J.; Son, Y.; Khlystov, A. Aldehydes in Exhaled Breath during E-Cigarette Vaping: Pilot Study Results. Toxics 2018, 6, 46. https://doi.org/10.3390/toxics6030046
Samburova V, Bhattarai C, Strickland M, Darrow L, Angermann J, Son Y, Khlystov A. Aldehydes in Exhaled Breath during E-Cigarette Vaping: Pilot Study Results. Toxics. 2018; 6(3):46. https://doi.org/10.3390/toxics6030046
Chicago/Turabian StyleSamburova, Vera, Chiranjivi Bhattarai, Matthew Strickland, Lyndsey Darrow, Jeff Angermann, Yeongkwon Son, and Andrey Khlystov. 2018. "Aldehydes in Exhaled Breath during E-Cigarette Vaping: Pilot Study Results" Toxics 6, no. 3: 46. https://doi.org/10.3390/toxics6030046