Toxic Effects of BPAF on Marine Medaka (Oryzias melastigma) During Embryo–Larval Stages
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals, Fish Maintenance and Chemical Exposure
2.2. Embryonic Development Monitoring and Heart Rate Quantification
2.3. Measurement of Larval Survival, Body Length, and Heart Rate
2.4. Larval Swimming Behavior Analysis
2.5. Primer Design and Synthesis
2.6. RNA Extraction and qPCR Analysis
2.7. Statistical Analysis
2.8. Ethical Approval
3. Results
3.1. BPAF Exposure Impacts on Embryonic Development
3.2. BPAF-Induced Alterations in Larval Swimming Behavior
3.3. Effects of BPAF Exposure on Expression Levels of Cardiac Development-Related Genes in Marine Medaka Larvae
3.4. Effects of BPAF Exposure on Expression Levels of HPT Axis-Related Genes in Marine Medaka Larvae
3.5. Effects of BPAF Exposure on Expression Levels of Nervous System-Related Genes in Marine Medaka Larvae
4. Discussion
4.1. Effects of BPAF Exposure on Embryonic Development, Survival Rate, and Hatching Rate in Marine Medaka
4.2. Effects of BPAF Exposure on Growth, Survival, and HPT Axis-Related Gene Expression in Marine Medaka
4.3. Effects of BPAF Exposure on Behavior and Nervous System-Related Gene Expression in Marine Medaka Larvae
4.4. Effects of BPAF Exposure on Heart Rate and Cardiovascular System-Related Gene Expression in Marine Medaka
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Wu, X.; Li, S.; Dou, L.; Zhou, L.; Wang, F.; Ma, K.; Huang, D.; Pan, Y.; Gu, J.; et al. Perinatal low-dose bisphenol AF exposure impairs synaptic plasticity and cognitive function of adult offspring in a sex-dependent manner. Sci. Total Environ. 2021, 788, 147918. [Google Scholar] [CrossRef]
- Song, S.; Ruan, T.; Wang, T.; Liu, R.; Jiang, G. Distribution and preliminary exposure assessment of bisphenol af (bpaf) in various environmental matrices around a manufacturing plant in China. Environ. Sci. Technol. 2012, 46, 13136–13143. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yin, J.; Jiao, Z.; Shi, J.; Li, M.; Shao, B. Bisphenol AF may cause testosterone reduction by directlyaffecting testis function in adult male rats. Toxicol. Lett. 2012, 211, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Song, M.; Zeng, L.; Wang, T.; Liu, R.; Ruan, T.; Jiang, G. Occurrence and profiles of bisphenol analogues in municipal sewage sludge in China. Environ. Pollut. 2014, 186, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Fan, Y.; Qian, X.; Wu, Z.; Feng, S.; Xu, W.; Wang, G. Spatiotemporal distribution, source apportionment, and ecological risk of bisphenol analogues in a highly urbanized river basin. Sci. Total Environ. 2024, 920, 170964. [Google Scholar] [CrossRef]
- Yu, X.; Xue, J.; Yao, H.; Xue, J.C.; Yao, H.; Wu, Q.; Venkatesan, A.K.; Halden, R.U.; Kannan, K. Occurrence and estrogenic potency of eight bisphenol analogs insewage sludge from the U.S. EPA targeted national sewage sludge survey. J. Hazard. Mater. 2015, 299, 733–739. [Google Scholar] [CrossRef]
- Cunha, S.C.; Ferreira, R.; Marmelo, I.; Vieira, L.R.; Anacleto, P.; Maulvault, A.; Marques, A.; Guilhermino, L.; Fernandes, J.O. Occurrence and seasonal variation of several endocrine disruptor compounds (pesticides, bisphenols, musks and UV-filters) in water and sediments from the estuaries of tagus and douro rivers (NE atlantic ocean coast). Sci. Total Environ. 2022, 838, 155814. [Google Scholar] [CrossRef]
- Gil-Solsona, R.; Castano-Ortiz, J.M.; Munoz-Mas, R.; Insa, S.; Farre, M.; Ospina-Alvarez, N.; Santos, L.H.M.L.M.; Garcia-Pimentel, M.; Barcelo, D.; Rodriguez-Mozaz, S. A holistic assessment of the sources, prevalence, and distribution of bisphenol a and analogues in water, sediments, biota and plastic litter of the ebro delta (spain). Environ. Pollut. 2022, 314, 120310. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lee, L.S. Aerobic soil biodegradation of bisphenol (BPA) alternatives bisphenol S and bisphenol AF compared to BPA. Environ. Sci. Technol. 2017, 51, 13698–13704. [Google Scholar] [CrossRef]
- Wiraagni, I.A.; Mohd, M.A.; Rashid, R.A.; Haron, D.E.b.M. Trace level detection of bisphenol a analogues and parabens by LC-MS/MS in human plasma from malaysians. BioMed Res. Int. 2020, 2020, 2581287. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, Y.; Zeng, H.; Liang, Y.; Ma, J.; Lu, X. Ultrasound-enhanced zero-valent copper activation of persulfate for the degradation of bisphenol AF. Chem. Eng. J. 2019, 378, 122143. [Google Scholar] [CrossRef]
- Wallace, C.W.; Fordahl, S.C. Obesity and dietary fat influence dopamine neurotransmission: Exploring the convergence of metabolic state, physiological stress, and inflammation on dopaminergic control of food intake. Nutr. Res. Rev. 2022, 35, 236–251. [Google Scholar] [CrossRef]
- Tucker, D.K.; Bouknight, S.H.; Brar, S.S.; Kissling, G.E.; Fenton, S.E. Evaluation of prenatal exposure to bisphenol analogues on development and long-term health of the mammary gland in female mice. Environ. Health Perspect. 2018, 126, 87003. [Google Scholar] [CrossRef]
- Zhu, X. Neurotoxicity Effect of Bisphenol Exposure on Adult Zebrafish (Danio rerio). Master’s Thesis, Hainan University, Haikou, China, 2017. [Google Scholar]
- Tang, T. Disruption of the Thyroidal Axis Cognitive Ability in Zebrafish (Danio rerio) Exposed to BPAF. Ph.D. Thesis, Hainan University, Haikou, China, 2016. [Google Scholar]
- Yang, Y. Toxic Effects and Thyroid Disruption of Bisphenol AF on Zebrafish Embryos and Larvae. Master’s Thesis, Hainan University, Haikou, China, 2016. [Google Scholar]
- Zhao, X.; Zhang, Y.; Yu, T.; Cai, L.; Liang, J.; Chen, Z.; Pan, C.; Yang, M. Transcriptomics-based analysis of sex-differentiated mechanisms of hepatotoxicity in zebrafish after long-term exposure to bisphenol AF. Ecotoxicol. Environ. Saf. 2023, 262, 115324. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Jiao, Z.; Zheng, S.; Li, M.; Zhang, J.; Feng, Y.; Yin, J.; Shao, B. Long-term effects of bisphenol AF (BPAF) on hormonal balance and genes of hypothalamus-pituitary-gonad axis and liver of zebrafish (Danio rerio), and the impact on offspring. Chemosphere 2015, 128, 252–257. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Li, X.; Liu, Y.; Guo, Y.; Wang, Z.; Dong, Z. Effects of bisphenol AF on growth, behavior, histology and gene expression in marine medaka (Oryzias melastigma). Chemosphere 2022, 308, 136424. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Gao, J.; Chen, Y.; Huan, Z.; Liu, Y.; Zhou, T.; Dong, Z. Toxic effects of bisphenol AF on the embryonic development of marine medaka (Oryzias melastigma). Environ. Toxicol. 2023, 38, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Shen, R.; Liu, W.; Li, D.; Huang, L.; Shi, D. Developmental toxicity of three hexabromocyclododecane diastereoisomers in embryos of the marine medaka Oryzias melastigma. Mar. Pollut. Bull. 2015, 101, 110–118. [Google Scholar] [CrossRef]
- Du, M.; Zhang, D.; Yan, C.; Zhang, X. Developmental toxicity evaluation of three hexabromocyclododecane diastereoisomers on zebrafish embryos. Aquat. Toxicol. 2012, 112, 1–10. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Ran, H. Developmental stages of a marine model fish–medaka Oryzias melastigma. Oceanol. Limnol. Sin. 2016, 47, 71–82. [Google Scholar]
- Wang, Y.; Liu, H.; Yu, D. Observation of embryonic development of marine medaka (Oryzias melastigma). Mar. Sci. 2017, 41, 18–25. [Google Scholar]
- Herzig, A.; Winkler, H. The influence of temperature on the embryonic development of three cyprinid fishes, abramis brama, chalcalburnus chalcoides mento and vimba vimba. J. Fish Biol. 2006, 28, 171–181. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y. Toxic Effects of Cu2+ on the Embryonic Development of Gobiocypris rarus. J. Neijiang Norm. Univ. 2014, 29, 47–51. [Google Scholar] [CrossRef]
- Mu, J.; Wang, Y.; Wang, X.; Wang, J. Toxic Effects of Cadmium, Mercury, Chromium and Lead on the Early Life Stage of Marine Medaka (Oryzias melastigma). Asian J. Ecotoxicol. 2011, 6, 352–360. [Google Scholar]
- Liu, L.; Lyn, P.; Yan, Y. Acute toxicities of sulfamethazine to zebrafish embryos. Chin. Fish. Qual. Stand. 2018, 8, 34–39. [Google Scholar] [CrossRef]
- Han, J. Study of the Effects of Bisphenol A (BPA) on the Development of Zebrafish Embryos. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2023. [Google Scholar]
- Yang, Y.; Tang, T.-L.; Chen, Y.-W.; Tang, W.-H.; Yang, F. The role of chorion around embryos in toxic effects of bisphenol AF exposure on embryonic zebrafish (Danio rerio) development. Estuar. Coast. Shelf Sci. 2020, 233, 106540. [Google Scholar] [CrossRef]
- Rao, C.; Cao, X.; Li, L.; Zhou, J.; Sun, D.; Li, B.; Guo, S.; Yuan, R.; Cui, H.; Chen, J. Bisphenol AF induces multiple behavioral and biochemical changes in zebrafish (Danio rerio) at different life stages. Aquat. Toxicol. 2022, 253, 106345. [Google Scholar] [CrossRef]
- Kloas, W.; Lutz, I. Amphibians as model to study endocrine disrupters. J. Chromatogr. A 2006, 1130, 16–27. [Google Scholar] [CrossRef]
- Jugan, M.-L.; Levi, Y.; Blondeau, J.-P. Endocrine disruptors and thyroid hormone physiology. Biochem. Pharmacol. 2010, 79, 939–947. [Google Scholar] [CrossRef]
- Liu, Y.W.; Chan, W.K. Thyroid hormones are important for embryonic to larval transitory phase in zebrafish. Differentiation 2002, 70, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Power, D.M.; Llewellyn, L.; Faustino, M.; Nowell, M.A.; Björnsson, B.T.; Einarsdottir, I.E.; Canario, A.V.M.; Sweeney, G.E. Thyroid hormones in growth and development of fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2001, 130, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Iwamuro, S.; Yamada, M.; Kato, M.; Kikuyama, S. Effects of bisphenol A on thyroid hormone-dependent up-regulation of thyroid hormone receptor α and β down-regulation of retinoid X receptor γ in xenopus tail culture. Life Sci. 2006, 79, 2165–2171. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, H.; Han, Z.; Hua, X. Effects of BDE-28 and BDE-99 on Functional Gene Expression along HPT, HPG and HPA Axes during Early Life Stages of Zebrafish. Asian J. Ecotoxicol. 2018, 13, 106–118. [Google Scholar] [CrossRef]
- Tang, T.; Yang, Y.; Chen, Y.; Tang, W.; Wang, F.; Diao, X. Thyroid disruption in zebrafish larvae by short-term exposure to bisphenol AF. Int. J. Environ. Res. Public Health 2015, 12, 13069–13084. [Google Scholar] [CrossRef]
- Bianco, A.C.; Salvatore, D.; Gereben, B.; Berry, M.J.; Larsen, P.R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 2002, 23, 38–89. [Google Scholar] [CrossRef]
- Chen, P.; Wang, R.; Chen, G.; An, B.; Liu, M.; Wang, Q.; Tao, Y. Thyroid endocrine disruption and hepatotoxicity induced by bisphenol AF: Integrated zebrafish embryotoxicity test and deep learning. Sci. Total Environ. 2022, 822, 153639. [Google Scholar] [CrossRef]
- Kim, H.; Ji, K. Effects of tetramethyl bisphenol F on thyroid and growth hormone-related endocrine systems in zebrafish larvae. Ecotoxicol. Environ. Saf. 2022, 237, 113516. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liu, J.; Ding, J.; Chen, L. Endocrine Disrupting Effects of Bisphenol F on Early Life Stages of Zebrafish. Asian J. Ecotoxicol. 2021, 16, 166–178. [Google Scholar] [CrossRef]
- Kitamura, S.; Suzuki, T.; Sanoh, S.; Kohta, R.; Jinno, N.; Sugihara, K.; Yoshihara, S.; Fujimoto, N.; Watanabe, H.; Ohta, S. Comparative study of the endocrine-disrupting activity of bisphenol a and 19 related compounds. Toxicol. Sci. 2005, 84, 249–259. [Google Scholar] [CrossRef]
- Iwamoto, M.; Masuya, T.; Hosose, M.; Tagawa, K.; Ishibashi, T.; Suyama, K.; Nose, T.; Yoshihara, E.; Downes, M.; Evans, R.M.; et al. Bisphenol a derivatives act as novel coactivator-binding inhibitors for estrogen receptor β. J. Biol. Chem. 2021, 297, 101173. [Google Scholar] [CrossRef]
- Peng, Y.; Wei, Y.; Ding, Y.; Duan, J. Development of drug toxicity and novel strategy for toxicity of Chinese materiamedica based on zebrafish model. Chin. Tradit. Herb. Drugs 2017, 48, 17–30. [Google Scholar] [CrossRef]
- Wu, M. Endocrine Disrupting Effects of Bisphenol F on Early Life Stages of Zebrafish. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2021. [Google Scholar]
- Dell, A.I.; Bender, J.A.; Branson, K.; Couzin, I.D.; de Polavieja, G.G.; Noldus, L.P.J.J.; Pérez-Escudero, A.; Perona, P.; Straw, A.D.; Wikelski, M.; et al. Automated image-based tracking and its application in ecology. Trends Ecol. Evol. 2014, 29, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Kou, G. Estrogen-like Compounds Developmental Toxicity and Influence Onendocrine Axis in Early Life of Zebrafish. Master’s Thesis, Shantou University, Shantou, China, 2021. [Google Scholar]
- Gu, J.; Wang, H.; Liao, Z.; Shi, L.; Ji, G. Neurodevelopmental toxicities of bisphenol AP and bisphenol AF in early life of zebrafish. J. Environ. Occup. Med. 2019, 36, 11–16. [Google Scholar] [CrossRef]
- Yang, L.; Shi, Q.; Zhou, B. The Effects of BPA on Neurobehavior and Neurotransmitters of Larval Zebrafish (Danio rerio). Asian J. Ecotoxicol. 2017, 12, 162–169. [Google Scholar] [CrossRef]
- Li, X. Toxic Effects of Bisphenols in Marine Medaka and the Effect of Salinity on the Toxic Effects of Bisphenol A. Master’s Thesis, Guangdong Ocean University, Zhanjiang, China, 2022. [Google Scholar]
- Fitzgerald, J.A.; Kirla, K.T.; Zinner, C.P.; vom Berg, C.M. Emergence of consistent intra-individual locomotor patterns during zebrafish development. Sci. Rep. 2019, 9, 13647. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Jiang, M.; Wu, H.; Liu, L.; Ruan, H. Effects of ivermectin on the physiological andbiochemical characteristic features of Daniorerio. J. Saf. Environ. 2014, 14, 300–305. [Google Scholar] [CrossRef]
- Yue, X.; Yang, A.; Xu, P.; Hu, X.; Zhu, H.; Bao, X. Effect of Antimony on the Enzyme Activity of Danio rerio. Biotechnol. Bull. 2019, 35, 107–113. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, T.; Peng, X.; Tang, W. Bisphenol AF Exposure Reduces Learning and Memory Ability and Influences Expression of Nervous System Genes in Zebrafish. Asian J. Ecotoxicol. 2017, 12, 119–126. [Google Scholar] [CrossRef]
- Kalwy, S.A.; Smith, R. Mechanisms of myelin basic protein and proteolipid protein targeting in oligodendrocytes (review). Mol. Membr. Biol. 1994, 11, 67–78. [Google Scholar] [CrossRef]
- Nielsen, A.L.; Jorgensen, A.L. Structural and functional characterization of the zebrafish gene for glial fibrillary acidic protein, GFAP. Gene 2003, 310, 123–132. [Google Scholar] [CrossRef]
- Kim, S.S.; Hwang, K.-S.; Yang, J.Y.; Chae, J.S.; Kim, G.R.; Kan, H.; Jung, M.H.; Lee, H.-Y.; Song, J.S.; Ahn, S.; et al. Neurochemical and behavioral analysis by acute exposure to bisphenol a in zebrafish larvae model. Chemosphere 2020, 239, 124751. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, J.; Chen, Y.; Wang, H.; Guo, M.; Wang, L.; Wang, Z.; Wu, S.; Shi, L.; Gu, A.; et al. Neurobehavioral effects of bisphenol S exposure in early life stages of zebrafish larvae (Danio rerio). Chemosphere 2019, 217, 629–635. [Google Scholar] [CrossRef]
- Bi, S.; Wu, S.; Pang, Q.; Zhao, T.; Xue, M.; Zhang, X. Effects of BPA Exposure on Acute Toxicity and Neurological Enzymes in Dugesia japonica. Genom. Appl. Biol. 2019, 38, 596–601. [Google Scholar] [CrossRef]
- Christoffels, V.M.; Hoogaars, W.M.H.; Tessari, A.; Clout, D.E.W.; Moorman, A.F.M.; Campione, M. T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev. Dyn. 2004, 229, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Antkiewicz, D.S.; Peterson, R.E.; Heideman, W. Blocking expression of AHR2 and ARNT1 in zebrafish larvae protects against cardiac toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Sci. 2006, 94, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Antkiewicz, D.S.; Yan, L.; Eliceiri, K.W.; Heideman, W.; Peterson, R.E.; Lee, Y. Lrrc10 is required for early heart development and function in zebrafish. Dev. Biol. 2007, 308, 494–506. [Google Scholar] [CrossRef] [PubMed][Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Zhou, T.; Chen, Z.; Zhang, N.; Guo, Y.; Wang, Z.; Shi, W.; Dong, Z. Toxic Effects of BPAF on Marine Medaka (Oryzias melastigma) During Embryo–Larval Stages. Toxics 2025, 13, 773. https://doi.org/10.3390/toxics13090773
Gao J, Zhou T, Chen Z, Zhang N, Guo Y, Wang Z, Shi W, Dong Z. Toxic Effects of BPAF on Marine Medaka (Oryzias melastigma) During Embryo–Larval Stages. Toxics. 2025; 13(9):773. https://doi.org/10.3390/toxics13090773
Chicago/Turabian StyleGao, Jiahao, Tianyang Zhou, Zuchun Chen, Ning Zhang, Yusong Guo, Zhongduo Wang, Wenjun Shi, and Zhongdian Dong. 2025. "Toxic Effects of BPAF on Marine Medaka (Oryzias melastigma) During Embryo–Larval Stages" Toxics 13, no. 9: 773. https://doi.org/10.3390/toxics13090773
APA StyleGao, J., Zhou, T., Chen, Z., Zhang, N., Guo, Y., Wang, Z., Shi, W., & Dong, Z. (2025). Toxic Effects of BPAF on Marine Medaka (Oryzias melastigma) During Embryo–Larval Stages. Toxics, 13(9), 773. https://doi.org/10.3390/toxics13090773