Exposure to Kalach, a Glyphosate-Based Herbicide, During Pregnancy and Lactation Induces Hypothyroidism and Bone Disorders in Rat Offspring
Abstract
1. Introduction
2. Materials and Methods
2.1. KL Solution: Preparation Method
2.2. Animals
2.3. Experimental Procedure
- ❖
- Group A (n = 6): Composed of six rats, which served as a control, treated in the same way with deionized water (1 mL) for gestation and lactation periods and received a standard diet.
- ❖
- Group B (n = 6): Served as a treated group with dose 1. This dose was 1/10 of DL 50 of KL containing 126 mg. Each rat received 0.07 mL of KL dissolved in 1 mL of water by gavage for gestation and lactation periods.
2.4. Euthanasia
2.5. Determination of Morphological Parameters
2.6. Sample Preparation
2.7. Determination of Hormonal Status
2.8. Metabolic Balance
2.9. Histological Analysis of the Thyroid Gland
2.10. Immunohistochemical Evaluation of Thyroid Cell Function
2.11. Femur Histological Analysis
2.12. Histological Score Analysis
2.13. Infrared Spectroscopic (FTIR) Analysis of Bone Samples
2.14. X-Ray Diffraction (XRD) Analysis
2.15. Scanning Electron Microscopy (SEM)
2.16. Molecular Interactions and Computational Analyses
2.17. Statistical Analysis
3. Results
3.1. Growth and Feeding: Effects of KL on Body and Femur Length
3.2. Effects of KL on Biochemical Markers in the Bone of Offspring
3.3. Hormonal Thyroid Variation of Offspring
3.4. Histological Study of Thyroid Gland
3.5. Immunohistochemical Findings in Thyroid Sections of 14-Day-Old Rats
3.6. Histological Study of Femora
3.7. Histomorphometric Findings in Bone
3.8. SEM Results
3.9. FTIR Spectral Analysis of Femoral Bone Powder
3.10. X-Ray Diffraction (XRD) Results
3.11. In Silico Study Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Imfeld, G.; Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur. J. Soil. Biol. 2012, 49, 22–30. [Google Scholar] [CrossRef]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef] [PubMed]
- Ben Amor, M.; Hamdaoui, L.; Daoud, S.; Ammar, M.; Louati, N.; Elleuch, A.; Badraoui, R.; Ben Mahmoud, L.; Ben Amor, I.; Sellami, A.; et al. Impact of sub-chronic exposure to Kalach on male reproductive system and sperm function: In silico modelling and in vivo study in rats. Reprod. Toxicol. 2025, 132, 108853. [Google Scholar] [CrossRef]
- Leoci, R.; Ruberti, M. Glyphosate in Agriculture: Environmental Persistence and Effects on Animals. A Review. J. Agric. Environ. Int. Dev. JAEID 2020, 114, 99–122. [Google Scholar]
- Silva, V.; Montanarella, L.; Jones, A.; Fernández-Ugalde, O.; Mol, H.G.J.; Ritsema, C.J.; Geissen, V. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci. Total. Environ. 2018, 621, 1352–1359. [Google Scholar] [CrossRef]
- Dahmeni, G.; Grünberger, O.; Chaabane, H. Why and where should glyphosate water contamination be monitored in Tunisia? A review based on Mediterranean situations. Euro Mediterr. J. Environ. Integr. 2024, 9, 1441–1458. [Google Scholar] [CrossRef]
- Roberts, D.M.; Buckley, N.A.; Mohamed, F.; Eddleston, M.; Goldstein, D.A.; Mehrsheikh, A.; Bleeke, M.S.; Dawson, A.H. A prospective observational study of the clinical toxicology of glyphosate-containing herbicides in adults with acute self-poisoning. Clin. Toxicol. 2010, 48, 129–136. [Google Scholar] [CrossRef]
- Fréville, M.; Henri, J.; Estienne, A.; Serra, L.; Ramé, C.; Ganier, P.; Chahnamian, M.; Froment, P.; Dupont, J. Determination of the elimination half-life of Glyphosate and its main metabolite, AMPA, in chicken plasma. Toxicol. Lett. 2023, 389, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Schelar, E. Pesticide Exposure and Child Neurodevelopment: Summary and Implications. Workplace Health Saf. 2012, 60, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Daruich, J.; Zirulnik, F.; Sofía Gimenez, M. Effect of the Herbicide Glyphosate on Enzymatic Activity in Pregnant Rats and Their Fetuses. Environ. Res. 2001, 85, 226–231. [Google Scholar] [CrossRef]
- Mose, T.; Kjaerstad, M.B.; Mathiesen, L.; Nielsen, J.B.; Edelfors, S.; Knudsen, L.E. Placental Passage of Benzoic acid, Caffeine, and Glyphosate in an Ex Vivo Human Perfusion System. J. Toxicol. Environ. Health Part A 2008, 71, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, M.S.; Rytting, E.; Mose, T.; Knudsen, L.E. Modeling placental transport: Correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol. Vitr. 2009, 23, 1380–1386. [Google Scholar] [CrossRef]
- Bus, J.S. Analysis of Moms Across America report suggesting bioaccumulation of glyphosate in U.S. mother’s breast milk: Implausibility based on inconsistency with available body of glyphosate animal toxicokinetic, human biomonitoring, and physico-chemical data. Regul. Toxicol. Pharmacol. 2015, 73, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Gillezeau, C.; van Gerwen, M.; Shaffer, R.M.; Rana, I.; Zhang, L.; Sheppard, L.; Taioli, E. The evidence of human exposure to glyphosate: A review. Environ. Health. 2019, 18, 2. [Google Scholar] [CrossRef] [PubMed]
- Steinborn, A.; Alder, L.; Michalski, B.; Zomer, P.; Bendig, P.; Martinez, S.A.; Mol, H.G.J.; Class, T.J.; Pinheiro, N.C. Determination of Glyphosate Levels in Breast Milk Samples from Germany by LC-MS/MS and GC-MS/MS. J. Agric. Food Chem. 2016, 64, 1414–1421. [Google Scholar] [CrossRef]
- Camiccia, M.; Candiotto, L.Z.P.; Gaboardi, S.C.; Panis, C.; Kottiwitz, L.B.M. Determination of glyphosate in breast milk of lactating women in a rural area from Paraná state, Brazil. Braz. J. Med. Biol. Res. 2022, 55, e12194. [Google Scholar] [CrossRef]
- Hamdaoui, L.; Oudadesse, H.; Lefeuvre, B.; Mahmoud, A.; Naifer, M.; Badraoui, R.; Ayadi, F.; Rebai, T. Sub-chronic exposure to Kalach 360 SL, Glyphosate-based Herbicide, induced bone rarefaction in female Wistar rats. Toxicology 2020, 436, 152412. [Google Scholar] [CrossRef]
- Hamdaoui, L.; El Feki, H.; Ben Amor, M.; Oudadesse, H.; Badraoui, R.; Khalil, N.; Brahmi, F.; Jilani, S.; Aloufi, B.; Ben Amara, I.; et al. Physicochemical Exploration and Computational Analysis of Bone After Subchronic Exposure to Kalach 360 SL in Female Wistar Rats. Toxics 2025, 13, 456. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Partridge, N.C. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology 2016, 31, 233–245. [Google Scholar] [CrossRef]
- Florencio-Silva, R.; Sasso, G.R.D.S.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Res. Int. 2015, 2015, 421746. [Google Scholar] [CrossRef]
- Briffa, J.F.; O’Dowd, R.; Romano, T.; Muhlhausler, B.S.; Moritz, K.M.; Wlodek, M.E. Reducing Pup Litter Size Alters Early Postnatal Calcium Homeostasis and Programs Adverse Adult Cardiovascular and Bone Health in Male Rats. Nutrients 2019, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, C.S. Calcium, phosphorus, and bone metabolism in the fetus and newborn. Early Hum. Dev. 2015, 91, 623–628. [Google Scholar] [CrossRef]
- Ballock, R.T.; Reddi, A.H. Thyroxine is the serum factor that regulates morphogenesis of columnar cartilage from isolated chondrocytes in chemically defined medium. J. Cell Biol. 1994, 126, 1311–1318. [Google Scholar] [CrossRef]
- Harvey, C.B.; O’SHea, P.J.; Scott, A.J.; Robson, H.; Siebler, T.; Shalet, S.M.; Samarut, J.; Chassande, O.; Williams, G.R. Molecular Mechanisms of Thyroid Hormone Effects on Bone Growth and Function. Mol. Genet. Metab. 2002, 75, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.N. Endocrine Disruptors and Thyroid Health. Endocr. Pract. 2024, 30, 172–176. [Google Scholar] [CrossRef]
- De Souza, C.A.; Kayano, A.M.; Setúbal, S.S.; Pontes, A.S.; Furtado, J.L.; Kwasniewski, F.H.; Zaqueo, K.D.; Soares, A.M.; Stábeli, R.G.; Zuliani, J.P. Local and systemic biochemical alterations induced by Bothrops atrox snake venom in mice. J. Venom. Res. 2012, 3, 28–34. [Google Scholar]
- Oliveira, J.M.; Zenzeluk, J.; Bargi-Souza, P.; Szawka, R.E.; Romano, M.A.; Romano, R.M. The effects of glyphosate-based herbicide on the hypothalamic-pituitary thyroid axis are tissue-specific and dependent on age exposure. Environ. Pollut. 2023, 334, 122216. [Google Scholar] [CrossRef] [PubMed]
- Badraoui, R.; Sahnoun, Z.; Abdelmoula, N.B.; Hakim, A.; Fki, M.; Rebaï, T. May antioxidants status depletion by Tetradifon induce secondary genotoxicity in female Wistar rats via oxidative stress? Pestic. Biochem. Physiol. 2007, 88, 149–155. [Google Scholar] [CrossRef]
- Badraoui, R.; Abdelmoula, N.B.; Feki, N.; Nasr, H.B.; Rebai, T. Endocrine disruption and ovarian morphometric responses in rats following exposure to tetradifon. Gen. Comp. Endocrinol. 2010, 166, 268–272. [Google Scholar] [CrossRef]
- Selli, J.; Unal, D.; Mercantepe, F.; Akaras, N.; Kabayel, R.; Unal, B.; Atilay, H. Protective effects of beta glucan in brain tissues of post-menopausal rats: A histochemical and ultra-structural study. Gynecol. Endocrinol. 2016, 32, 234–239. [Google Scholar] [CrossRef]
- Badraoui, R.; Ben-Nasr, H.; Bardakçi, F.; Rebai, T. Pathophysiological impacts of exposure to an endocrine disruptor (tetradifon) on α–amylase and lipase activities associated metabolic disorders. Pestic. Biochem. Physiol. 2020, 167, 104606. [Google Scholar] [CrossRef]
- Cattani, D.; De Liz Oliveira Cavalli, V.L.; Heinz Rieg, C.E.; Domingues, J.T.; Dal-Cim, T.; Tasca, C.I.; Silva, F.R.M.B.; Zamoner, A. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity. Toxicology 2014, 320, 34–45. [Google Scholar] [CrossRef]
- de Souza, J.S.; Kizys, M.M.L.; da Conceição, R.R.; Glebocki, G.; Romano, R.M.; Ortiga-Carvalho, T.M.; Giannocco, G.; da Silva, I.D.C.G.; da Silva, M.R.D.; Romano, M.A.; et al. Perinatal exposure to glyphosate-based herbicide alters the thyrotrophic axis and causes thyroid hormone homeostasis imbalance in male rats. Toxicology 2017, 377, 25–37. [Google Scholar] [CrossRef]
- Gallegos, C.E.; Bartos, M.; Bras, C.; Gumilar, F.; Antonelli, M.C.; Minetti, A. Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring. NeuroToxicology 2016, 53, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Paganelli, A.; Gnazzo, V.; Acosta, H.; López, S.L.; Carrasco, A.E. Glyphosate-Based Herbicides Produce Teratogenic Effects on Vertebrates by Impairing Retinoic Acid Signaling. Chem. Res. Toxicol. 2010, 23, 1586–1595. [Google Scholar] [CrossRef]
- Fischbeck, K.L.; Rasmussen, K.M. Effect of Repeated Reproductive Cycles on Maternal Nutritional Status, Lactational Performance and Litter Growth in Ad Libitum-Fed and Chronically Food-Restricted Rats. J. Nutr. 1987, 117, 1967–1975. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Ghorbel, H.; Feki, I.; Bouallagui, Z.; Guermazi, F.; Ayadi, L.; Sayadi, S. Oleuropein and hydroxytyrosol protect rats’ pups against bisphenol A induced hypothyroidism. Biomed. Pharmacother. 2018, 103, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Ghorbel, H.; Fetoui, H.; Mahjoubi, A.; Guermazi, F.; Zeghal, N. Thiocyanate effects on thyroid function of weaned mice. Comptes. Rendus. Biol. 2008, 331, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Strissel, K.J.; Stancheva, Z.; Miyoshi, H.; Perfield, J.W.; DeFuria, J.; Jick, Z.; Greenberg, A.S.; Obin, M.S. Adipocyte Death, Adipose Tissue Remodeling, and Obesity Complications. Diabetes 2007, 56, 2910–2918. [Google Scholar] [CrossRef]
- Mabrouk, M.; Mostafa, A.A.; Oudadesse, H.; Mahmoud, A.A.; El-Gohary, M.I. Effect of ciprofloxacin incorporation in PVA and PVA bioactive glass composite scaffolds. Ceram. Int. 2014, 40, 4833–4845. [Google Scholar] [CrossRef]
- Atwa, A.; Mostafa, M.; Song, S.; Sarhan, M. The Femoral Head Epiphysis of Ovariectomized Rats as A Site for Studies on Osteoporosis: Microstructural Changes Evaluations. Egypt. Acad. J. Biol. Sci. Histol. Histochem. 2021, 13, 1–12. [Google Scholar] [CrossRef]
- Allouche, M.; Ishak, S.; Ben Ali, M.; Hedfi, A.; Almalki, M.; Karachle, P.K.; Harrath, A.H.; Abu-Zied, R.H.; Badraoui, R.; Boufahja, F. Molecular interactions of polyvinyl chloride microplastics and beta-blockers (Diltiazem and Bisoprolol) and their effects on marine meiofauna: Combined in vivo and modeling study. J. Hazard. Mater. 2022, 431, 128609. [Google Scholar] [CrossRef] [PubMed]
- Akacha, A.; Badraoui, R.; Rebai, T.; Zourgui, L. Effect of Opuntia ficus indica extract on methotrexate-induced testicular injury: A biochemical, docking and histological study. J. Biomol. Struct. Dyn. 2022, 40, 4341–4351. [Google Scholar] [CrossRef]
- Badraoui, R.; Adnan, M.; Bardakci, F.; Alreshidi, M.M. Chloroquine and Hydroxychloroquine Interact Differently with ACE2 Domains Reported to Bind with the Coronavirus Spike Protein: Mediation by ACE2 Polymorphism. Molecules 2021, 26, 673. [Google Scholar] [CrossRef] [PubMed]
- Badraoui, R.; Saeed, M.; Bouali, N.; Hamadou, W.S.; Elkahoui, S.; Alam, M.J.; Siddiqui, A.J.; Adnan, M.; Saoudi, M.; Rebai, T. Expression Profiling of Selected Immune Genes and Trabecular Microarchitecture in Breast Cancer Skeletal Metastases Model: Effect of α–Tocopherol Acetate Supplementation. Calcif. Tissue. Int. 2022, 110, 475–488. [Google Scholar] [CrossRef]
- Zammel, N.; Saeed, M.; Bouali, N.; Elkahoui, S.; Alam, J.M.; Rebai, T.; Kausar, M.A.; Adnan, M.; Siddiqui, A.J.; Badraoui, R. Antioxidant and Anti-Inflammatory Effects of Zingiber officinale roscoe and Allium subhirsutum: In Silico, Biochemical and Histological Study. Foods 2021, 10, 1383. [Google Scholar] [CrossRef]
- Amri, N.; Rahmouni, F.; Chokri, M.A.; Rebai, T.; Badraoui, R. Histological and biochemical biomarkers analysis reveal strong toxicological impacts of pollution in hybrid sparrow (Passer domesticus × Passer hispaniolensis) in southern Tunisia. Environ. Sci. Pollut. Res. 2017, 24, 17845–17852. [Google Scholar] [CrossRef] [PubMed]
- Badraoui, R.; Abdelmoula, N.B.; Sahnoun, Z.; Fakhfakh, Z.; Rebai, T. Effect of subchronic exposure to tetradifon on bone remodelling and metabolism in female rat. Comptes. Rendus. Biol. 2007, 330, 897–904. [Google Scholar] [CrossRef]
- Hchicha, K.; Korb, M.; Badraoui, R.; Naïli, H. A novel sulfate-bridged binuclear copper(II) complex: Structure, optical, ADMET and in vivo approach in a murine model of bone metastasis. New J. Chem. 2021, 45, 13775–13784. [Google Scholar] [CrossRef]
- Rieg, C.E.H.; Cattani, D.; Naspolini, N.F.; Cenci, V.H.; De Liz Oliveira Cavalli, V.L.; Jacques, A.V.; Nascimento, M.V.P.D.S.; Dalmarco, E.M.; De Moraes, A.C.R.; Santos-Silva, M.C.; et al. Perinatal exposure to a glyphosate pesticide formulation induces offspring liver damage. Toxicol. Appl. Pharmacol. 2022, 454, 116245. [Google Scholar] [CrossRef]
- Bartholomew, S.K.; Winslow, W.; Sharma, R.; Pathak, K.V.; Tallino, S.; Judd, J.M.; Leon, H.; Turk, J.; Pirrotte, P.; Velazquez, R. Glyphosate exposure exacerbates neuroinflammation and Alzheimer’s disease-like pathology despite a 6-month recovery period in mice. J. Neuroinflamm. 2024, 21, 316. [Google Scholar] [CrossRef]
- Howe, J.C.; Beecher, G.R. Dietary Protein and Phosphorus: Effect on Calcium and Phosphorus Metabolism in Bone, Blood and Muscle of the Rat. J. Nutr. 1983, 113, 2085–2095. [Google Scholar] [CrossRef] [PubMed]
- Gasnier, C.; Dumont, C.; Benachour, N.; Clair, E.; Chagnon, M.C.; Séralini, G.E. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 2009, 262, 184–191. [Google Scholar] [CrossRef]
- Benachour, N.; Séralini, G.E. Glyphosate Formulations Induce Apoptosis and Necrosis in Human Umbilical, Embryonic, and Placental Cells. Chem. Res. Toxicol. 2009, 22, 97–105. [Google Scholar] [CrossRef]
- Hamdaoui, L.; Naifar, M.; Rahmouni, F.; Ayadi, F.; Rebai, T. Sub-chronic exposure to Kalach 360 SL–induced damage in rats’ liver and hematological system. Environ. Sci. Pollut. Res. 2019, 26, 36634–36646. [Google Scholar] [CrossRef]
- Delitala, A.P.; Scuteri, A.; Doria, C. Thyroid Hormone Diseases and Osteoporosis. J. Clin. Med. 2020, 9, 1034. [Google Scholar] [CrossRef]
- Hamdaoui, L.; Naifar, M.; Mzid, M.; Ben Salem, M.; Chtourou, A.; Makni-Ayadi, F.; Sahnoun, Z.; Rebai, T. Nephrotoxicity of Kalach 360 SL: Biochemical and histopathological findings. Toxicol. Mech. Methods. 2016, 26, 685–691. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, H.; Choi, J. In Silico Molecular Docking and In Vivo Validation with Caenorhabditis elegans to Discover Molecular Initiating Events in Adverse Outcome Pathway Framework: Case Study on Endocrine-Disrupting Chemicals with Estrogen and Androgen Receptors. Int. J. Mol. Sci. 2019, 20, 1209. [Google Scholar] [CrossRef]
- Wunnapuk, K.; Gobe, G.; Endre, Z.; Peake, P.; Grice, J.E.; Roberts, M.S.; Buckley, N.A.; Liu, X. Use of a glyphosate-based herbicide-induced nephrotoxicity model to investigate a panel of kidney injury biomarkers. Toxicol. Lett. 2014, 225, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Matikainen, N.; Pekkarinen, T.; Ryhänen, E.M.; Schalin-Jäntti, C. Physiology of Calcium Homeostasis. Endocrinol. Metab. Clin. N. Am. 2021, 50, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Wu, N. Primary hypothyroidism with pituitary hyperplasia characterized by hypogonadotropic hypogonadism: A case report and review of the literature. Ann. Palliat. Med. 2020, 9, 4359–4370. [Google Scholar] [CrossRef] [PubMed]
- Duncan Bassett, J.H.; Williams, G.R. The molecular actions of thyroid hormone in bone. Trends. Endocrinol. Metab. 2003, 14, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Manolagas, S.C. From Estrogen-Centric to Aging and Oxidative Stress: A Revised Perspective of the Pathogenesis of Osteoporosis. Endocr. Rev. 2010, 31, 266–300. [Google Scholar] [CrossRef] [PubMed]
- Phusate, V.T. Changes in Male Rat Thyroid Gland Exposed to Roundup® and Gramoxone®. Indian J. Sci. Technol. 2021, 14, 2034–2038. [Google Scholar] [CrossRef]
- El-Shenawy, N.S. Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate. Environ. Toxicol. Pharmacol. 2009, 28, 379–385. [Google Scholar] [CrossRef]
- Feitosa, V.P.; Sauro, S.; Ogliari, F.A.; Stansbury, J.W.; Carpenter, G.H.; Watson, T.F.; Sinhoreti, M.A.; Correr, A.B. The role of spacer carbon chain in acidic functional monomers on the physicochemical properties of self-etch dental adhesives. J. Dent. 2014, 42, 565–574. [Google Scholar] [CrossRef]
- Mzid, M.; Badraoui, R.; Khedir, S.B.; Sahnoun, Z.; Rebai, T. Protective effect of ethanolic extract of Urtica urens L. against the toxicity of imidacloprid on bone remodeling in rats and antioxidant activities. Biomed. Pharmacother. 2017, 91, 1022–1041. [Google Scholar] [CrossRef]
- Cannarella, R.; Barbagallo, F.; Condorelli, R.A.; Aversa, A.; La Vignera, S.; Calogero, A.E. Osteoporosis from an Endocrine Perspective: The Role of Hormonal Changes in the Elderly. J. Clin. Med. 2019, 8, 1564. [Google Scholar] [CrossRef] [PubMed]
Parameters and Treatments | Body Weight (g) | Food Consumption (g)/day | Femur Length (mm) | Weight of Femora (mg) |
---|---|---|---|---|
Group A | 181.75 ± 5.51 | 90.33 ± 3.55 | ---- | ---- |
Group B | 171.91 ± 5.2 * | 72.43 ± 2.43 * | ---- | ---- |
Pups in group A (n = 8) | 21.27 ± 1.22 | --- | 11.60 ± 0.33 | 40.36 ± 3.24 |
Pups in group B (n = 8) | 17.98 ± 2.03 ** | --- | 10.64 ± 0.51 * | 38.58 ± 2.73 ** |
Parameters and Treatments | Plasma Levels (mg/L) | Plasma Levels (pmol/L) | Bone Levels (mg/L) | |||
---|---|---|---|---|---|---|
Calcium (n = 8) | Phosphorus (n = 8) | FT3 (n = 8) | FT4 (n = 8) | Calcium (n = 8) | Phosphorus (n = 8) | |
Pups in group A | 2.59 ± 0.39 | 1.77 ± 0.12 | 4.18 ± 0.27 | 26.23 ± 3.35 | 2.74 ± 0.92 | 1.91 ± 0.31 |
Pups in group B | 3.49 ± 0.44 ** | 1.64 ± 0.14 * | 3.31 ± 0.24 * | 20.63 ± 0.24 ** | 1.84 ± 0.23 NS | 1.54 ± 0.21 ** |
Parameters and Treatments | Pups in Group A | Pups in Group B |
---|---|---|
BV/TV (%) | 25.28 ± 0.50 | 21.11 ± 0.61 * |
OS/BS (%) | 1.73 ± 0.22 | 1.41 ± 0.10 ** |
Tb.Sp (µm) | 150.11 ± 1.89 | 170.8 ± 2.85 ** |
Tb.Th (µm) | 69.10 ± 0.77 | 51.87 ± 1.32 * |
Tb.N | 4.01 ± 0.07 | 3.18 ± 0.10 NS |
Groups | FTIR (cm−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compound | CO32− | PO43− | Displaced OH | |||||||
Pups in group A | 1320 | 1455 | 1539 | 558 | 603 | 1032 | ---- | --- | 1242 | --- |
Pups in group B | --- | 1458 | 1545 | 561 | 608 | 1035 | 1113 | 1167 | 1239 | 723 |
KL solution | 1399 | 1466 | 1523 | 589 533 518 512 | 1083 | 1163 | 1247 | 720 |
Groups/Peaks | XRD | ||
---|---|---|---|
(002) | (211) | (310) | |
HPA | 27 | 33 | 41 |
Pups in group A | 27 | 33 | 41 |
Pups in group B | 26 | - | 43 49 |
Target Protein | Binding Energy (kcal/mol) | Interactions with Amino Acid Residues | |
---|---|---|---|
Conventional H-Bonds | Distance to Closest Interacting Residues | ||
Estrogen Receptor α | −4.4 | 4 | Thr347, 2.726 Å; His524, 2.230 Å; Leu346, 2.104 Å; Unk0, 2.494 Å; Thr347, 3.400 Å |
Androgen Receptor α | −4.8 | 3 | Glu681, 4.477 Å; Gln711, 2.992 Å; Arg752, 2.028 Å; Pro682, 2.266 Å; Glu681, 3.671 Å |
Growth Hormone Receptor | −5.4 | 7 | Ser102, 2.423 Å; Ile103, 2.147 Å; Tyr107, 2.187 Å; Ser98, 2.216 Å; Ser99, 2.544 Å; Ser99, 2.732 Å; Ser99, 2.545 Å |
Thyroglobulin | −4.7 | 7 | Lys961, 2.779 Å; Lys961, 2.894 Å; Gly654, 2.051 Å; Gly654, 2.658 Å; Phe632, 2.368 Å; Gly989, 1.944 Å; Ser990, 2.756 Å; Gly634, 3.393 Å; Ser990, 3.213 Å; Val959, 3.738 Å; Phe986, 3.153 Å |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamdaoui, L.; El Feki, H.; Ben Amor, M.; Oudadesse, H.; Atwan, M.; Mohajja Alshammari, A.; Brahmi, F.; Ben-Nasr, H.; Badraoui, R.; Rebai, T. Exposure to Kalach, a Glyphosate-Based Herbicide, During Pregnancy and Lactation Induces Hypothyroidism and Bone Disorders in Rat Offspring. Toxics 2025, 13, 752. https://doi.org/10.3390/toxics13090752
Hamdaoui L, El Feki H, Ben Amor M, Oudadesse H, Atwan M, Mohajja Alshammari A, Brahmi F, Ben-Nasr H, Badraoui R, Rebai T. Exposure to Kalach, a Glyphosate-Based Herbicide, During Pregnancy and Lactation Induces Hypothyroidism and Bone Disorders in Rat Offspring. Toxics. 2025; 13(9):752. https://doi.org/10.3390/toxics13090752
Chicago/Turabian StyleHamdaoui, Latifa, Hafedh El Feki, Marwa Ben Amor, Hassane Oudadesse, Mohamed Atwan, Ahmed Mohajja Alshammari, Faten Brahmi, Hmed Ben-Nasr, Riadh Badraoui, and Tarek Rebai. 2025. "Exposure to Kalach, a Glyphosate-Based Herbicide, During Pregnancy and Lactation Induces Hypothyroidism and Bone Disorders in Rat Offspring" Toxics 13, no. 9: 752. https://doi.org/10.3390/toxics13090752
APA StyleHamdaoui, L., El Feki, H., Ben Amor, M., Oudadesse, H., Atwan, M., Mohajja Alshammari, A., Brahmi, F., Ben-Nasr, H., Badraoui, R., & Rebai, T. (2025). Exposure to Kalach, a Glyphosate-Based Herbicide, During Pregnancy and Lactation Induces Hypothyroidism and Bone Disorders in Rat Offspring. Toxics, 13(9), 752. https://doi.org/10.3390/toxics13090752