Cytotoxic Effects and Micronuclei Frequency as a Biomarker of Genotoxicity in Farmers from the Municipality of Tehuacán, Puebla, Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Size Selection
2.3. Buccal Micronucleus Cytome Assay (BMCA)
2.4. Statistical Analysis
3. Results
3.1. Sociodemographic Parameters
3.2. Chromosomal Aberration Counts
4. Discussion
- Training programs for farmers on the safe handling, preparation, and application of pesticides, with emphasis on the risks of chronic exposure and DNA damage.
- Mandatory use of personal protective equipment (PPE), including gloves, boots, protective masks, coveralls, and safety goggles, to reduce dermal and inhalation exposure.
- Promotion of integrated pest management (IPM) practices, replacing highly hazardous pesticides with biological control agents, resistant crop varieties, and essential oils with fungicidal and insecticidal properties.
- Establishment of safe storage and disposal systems for pesticides and their residues to prevent contamination of soil, water, and household environments.
- Community monitoring and biomarker surveillance programs, including periodic cytotoxicity testing (e.g., BMCA), to detect early genetic damage and support evidence-based health policies.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- INEGI. Instituto Nacional de Estadística y Geografía. 2024. Available online: https://www.inegi.org.mx/ (accessed on 13 January 2025).
- SIAP. Servicio de Información Agroalimentaria y Pesquera. Avance de Siembras y Cosechas. 2024. Available online: https://www.gob.mx/agricultura%7Cdgsiap/es/articulos/avances-de-siembras-y-cosechas-y-de-la-produccion-pecuaria2 (accessed on 1 August 2024).
- Mardero, S.; Schmook, B.; López-Martínez, J.O.; Cicero, L.; Radel, C.; Christman, Z. The Uneven Influence of Climate Trends and Agricultural Policies on Maize Production in the Yucatan Peninsula, Mexico. Land 2018, 7, 80. [Google Scholar] [CrossRef]
- Toledo, V.M.; Barrera-Bassols, N. Political Agroecology in Mexico: A Path toward Sustainability. Sustainability 2017, 9, 268. [Google Scholar] [CrossRef]
- Moo-Muñoz, A.J.; Azorín-Vega, E.P.; Ramírez-Durán, N.; Moreno-Pérez, M.P. Estado de la producción y consumo de plaguicidas en México. Trop. Subtrop. Agroecosyst. 2020, 23, 43. [Google Scholar] [CrossRef]
- Mauricio-Gutiérrez, A.; Romero-Arenas, O.; Tamariz-Flores, J.V.; Ravelo, S.G.M.; Ramírez, L.C.; Santos, J.A.Y.; Simón, A.B. Infectious Diseases Associated with Exposure to Pollutants in a Local Population from Mexico. Appl. Sci. 2023, 13, 12754. [Google Scholar] [CrossRef]
- PAN. Pesticide Action Network. PAN International Consolidated List of Banned Pesticides 4th. Available online: https://pan-international.org/pan-international-consolidated-list-of-banned-pesticides/ (accessed on 29 April 2025).
- DOF. Diario Oficial de la Nación. Norma Oficial Mexicana NOM-232-ssa1-2009. Plaguicidas que Establece los Requisitos del Envase, Embalaje y Etiquetado de Productos Grado Técnico y Para uso Agrícola, Forestal, Pecuario, Urbano, Industrial y Doméstico. 2010. Available online: https://www.gob.mx/cofepris/documentos/nom-232-ssa1-2009-plaguicidas (accessed on 23 April 2025).
- Pérez, M.A.; Navarro, H.; Miranda, E. Residuos de plaguicidas en hortalizas: Problemática y riesgo en México. Rev. Int. De Contam. Ambient. 2013, 29, 45–64. Available online: https://www.redalyc.org/pdf/370/37028958003.pdf (accessed on 22 August 2025).
- Rivera, A.; Ramírez, L.C.; Lezama, C.P.; Simon, A.B.; Garcia, B.L.; Romero-Arenas, O. Evaluation of Cytotoxic and Genotoxic Risk Derived from Exposure to Pesticides in Corn Producers in Tlaxcala, Mexico. Appl. Sci. 2022, 12, 9050. [Google Scholar] [CrossRef]
- Costa, S.; Costa, C.; Madureira, J.; Valdiglesias, V.; Teixeira-Gomes, A.; de Pinho, P.G.; Laffon, B.; Teixeira, J.P. Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility. Environ. Res. 2019, 179, 108740. [Google Scholar] [CrossRef]
- Podrimaj-Bytyqi, A.; Borovečki, A.; Selimi, Q.; Manxhuka-Kerliu, S.; Gashi, G.; Elezaj, I.R. The frequencies of micronuclei, nucleoplasmic bridges and nuclear buds as biomarkers of genomic instability in patients with urothelial cell carcinoma. Sci. Rep. 2018, 8, 17873. [Google Scholar] [CrossRef]
- Yazici, I.; Caglar, O.; Guclu, O.; Cobanoglu, H.; Coskun, M.; Coskun, M.; Kilic, A.; Dereköy, F.S. Micronucleus, nucleoplasmic bridge and nuclear bud frequencies in patients with laryngeal carcinoma. Acta Otorhinolaryngol. Ital. 2020, 40, 410–414. [Google Scholar] [CrossRef]
- CONABIO. Comisión Nacional para el Conocimiento y uso de la Biodiversidad. 2019. Available online: https://www.gob.mx/conabio (accessed on 13 January 2025).
- Santoyo, H.; Ramírez, P.; Suvedi, M. Manual para la Evaluación de Programas de Desarrollo Rural. 2002. Available online: http://ciestaam.edu.mx/libro/manual-la-evaluacion-programas-desarrollo-rural-2/ (accessed on 21 January 2024).
- Chieco, P.; Derenzini, M. The Feulgen reaction 75 years on. Histochemistry 1999, 111, 345–358. [Google Scholar] [CrossRef]
- Nyandi, M.S.; Pepó, P. Aspergillus and Fusarium Mycotoxin Contamination in Maize (Zea mays L.): The Interplay of Nitrogen Fertilization and Hybrids Selection. Toxins 2024, 16, 318. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, X.; Wei, W.; Li, X.; Zhu, H.; Chen, L. Environmental carrying capacity and ecological risk assessment of pesticides under different soil use types in the Central Plains Urban Agglomeration (CPUA), China. Environ. Pollut. 2024, 341, 122852. [Google Scholar] [CrossRef] [PubMed]
- Molina-Zapata, J.E. La revolución verde como revolución tecnocientífica: Artificialización de las prácticas agrícolas y sus implicaciones. Rev. Colomb. De Filos. De La Cienc. 2021, 21, 175–204. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, S.; Lyu, W.; Ning, J.; She, D. Risk assessment of human exposure to airborne pesticides in rural greenhouses. Sci. Rep. 2023, 13, 5138. [Google Scholar] [CrossRef]
- Rico, A.; de Oliveira, R.; Silva-de-Souza-Nunes, G.; Rizzi, C.; Villa, S.; De Caroli-Vizioli, B.; Montagner, C.C.; Waichman, A.V. Ecological risk assessment of pesticides in urban streams of the Brazilian Amazon. Chemosphere 2022, 291 Pt 1, 132821. [Google Scholar] [CrossRef]
- Reddy, M.V.; Storer, R.D.; Laws, G.M.; Armstrong, M.J.; Barnum, J.E.; Gara, J.P.; McKnight, C.G.; Skopek, T.R.; Sina, J.F.; DeLuca, J.G.; et al. Genotoxicity of naturally occurring indole compounds: Correlation between covalent DNA binding and other genotoxicity tests. Environ. Mol. Mutagen. 2002, 40, 1–17. [Google Scholar] [CrossRef]
- Laborde, M.R.; Larramendy, M.L.; Soloneski, S. Cytotoxic and genotoxic profiles of the pyrethroid insecticide lambda-cyhalothrin and its microformulation Karate® in CHO-K1 cells. Mutat. Res. Toxicol. Environ. Mutagen. 2023, 891, 503682. [Google Scholar] [CrossRef]
- Lu, M.; Liu, Y. Toxicity of methomyl insecticides to testicular cells and protective effect of folic acid. Toxicol. Ind. Health 2023, 39, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Petitjean, K.; Verres, Y.; Bristeau, S.; Ribault, C.; Aninat, C.; Olivier, C.; Leroyer, P.; Ropert, M.; Loréal, O.; Herault, O.; et al. Low concentrations of ethylene bisdithiocarbamate pesticides maneb and mancozeb impair manganese and zinc homeostasis to induce oxidative stress and caspase-dependent apoptosis in human hepatocytes. Chemosphere 2024, 346, 140535. [Google Scholar] [CrossRef]
- Sommer, S.; Buraczewska, I.; Kruszewski, M. Micronucleus Assay: The State of Art, and Future Directions. Int. J. Mol. Sci. 2020, 21, 1534. [Google Scholar] [CrossRef]
- Ferré, D.M.; Quero, M.; Hynes, V.; Saldeña, E.; Lentini, V.; Tornello, M.; Carracedo, R.; Gorla, N.B. Ensayo de mi-cronúcleos de citoma bucal en trabajadores de fincas frutícolas que han aplicado plaguicidas alrededor de quince años. Rev. Int. De Contam. Ambient. 2018, 34, 23–33. [Google Scholar] [CrossRef]
- Singh, M. Pesticide predicament: Exploring environmental and health impacts, and possible eco-friendly solutions. Int. J. Environ. Health Sci. 2024, 6, 38–47. [Google Scholar]
Variables | Category | Farmers Group | Non-Farmer Group | p Value | ||
---|---|---|---|---|---|---|
F = 18 | NF = 17 | |||||
Frequency | % | Frequency | % | |||
Age | 0–29 years | 5 | 27.8 | 6 | 35.3 | 0.632 |
30–59 years | 13 | 72.2 | 11 | 64.7 | ||
Sex | Women | 4 | 22.2 | 5 | 29.4 | 0.621 |
Men | 14 | 77.8 | 12 | 70.6 | ||
Birthplace | Tehuacán | 7 | 38.9 | 12 | 70.6 | 0.060 |
San Diego Chalma | 11 | 61.1 | 5 | 29.4 | ||
Time of residence in the town | 0–5 years | 2 | 11.1 | 3 | 17.6 | 0.092 |
6–10 years | 1 | 5.6 | 1 | 6.0 | ||
10–20 years | 4 | 22.2 | 3 | 17.6 | ||
21–30 years | 1 | 5.6 | 5 | 29.4 | ||
>30 years | 10 | 55.5 | 5 | 29.4 | ||
Education level | Elementary education | 13 | 72.2 | 6 | 35.3 | 0.179 |
Secondary education | 2 | 11.1 | 3 | 17.6 | ||
Higher Secondary education | 2 | 11.1 | 3 | 17.6 | ||
Technical education | 0 | 0 | 3 | 17.6 | ||
No education | 1 | 5.6 | 2 | 11.8 | ||
Occupation | Farmer | 18 | 100 | 0 | 0 | 0.001 ** |
Businessman | 0 | 0 | 10 | 58.8 | ||
Housewife | 0 | 0 | 2 | 11.8 | ||
Student | 0 | 0 | 3 | 17.6 | ||
Minors | 0 | 0 | 2 | 11.8 | ||
Smoker | 1–5 cigarettes/week | 7 | 38.9 | 2 | 11.8 | 0.067 |
No smoking | 11 | 61.1 | 15 | 88.2 | ||
Alcohol consumer | 2 to 3 times a week | 1 | 5.6 | 1 | 5.9 | 0.158 |
Once a week | 11 | 61.1 | 5 | 29.4 | ||
No alcohol | 6 | 33.3 | 11 | 64.7 | ||
Diseases Infections | Once a year | 5 | 27.8 | 4 | 23.5 | 0.774 |
None | 13 | 72.2 | 13 | 76.5 |
Ingredient Active | Chemical Family | Commercial Name | Type 1 | Mechanism of action | TC 2 | List HHP 3 | Pesticide Application |
---|---|---|---|---|---|---|---|
Lambda-Cyhalothrin | Pyrethroids | Lambda Cihalotrina 50 EC, Lambda KOOR 5.6%, LambdaTel 70CE, Lambdazo | I | Affects sodium channels in nerve cells | III | 1, 3 | 33.33% (6/18) |
Spinetoram | Spinosines | Palgus, Exalt 60SC, Spirotrid | I | Activates nicotinic acetylcholine receptors causing paralysis | IV | 1, 2, 3 | 16.66% (3/18) |
Ethoprophos | Organophosphate | Mocap CE, Ethopro 10%, Mocap 15 G | I, N | Inhibits acetylcholinesterase | Ib | 1, 2, 3 | 5.55% (1/18) |
Carbofuran | Carbamate | Furadan 350, Furadan 3F, Furadam 48SC | I, N | Inhibits acetylcholinesterase | Ib | 1, 3, 4 | 11.11% (2/18) |
Methomyl | Carbamate | Lannate, Lannate 90, Lannate 21,6 SL, Lannate 40 SP, Lannate Blue | I | Inhibits acetylcholinesterase | Ib | 1, 3 | 22.22% (4/18) |
Chlorpyrifos ethyl | Organophosphate | Foley 50 CE MAX, Foley MAX 1.5% | I | Inhibits acetylcholinesterase | II | 1, 3 | 27.77% (5/18) |
Variables | Category | N | % | F | NF | p Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
n | MN | % | n | MN | % | |||||
Total MN | MN | 35 | 100 | 18 | 34,545 | 89.2 | 17 | 4189 | 10.8 | 0.001 * |
Age | 0–29 years | 11 | 31.4 | 5 | 9718 | 28.1 | 6 | 223 | 5.3 | 0.001 * |
30–59 years | 24 | 68.6 | 13 | 24,827 | 71.9 | 11 | 3966 | 94.7 | ||
Sex | Women | 9 | 25.7 | 4 | 7095 | 20.5 | 5 | 383 | 9.1 | 0.001 * |
Men | 26 | 74.3 | 14 | 27,450 | 79.5 | 12 | 3806 | 90.9 | ||
Birthplace | Tehuacán | 19 | 54.3 | 7 | 13,491 | 39.1 | 12 | 3732 | 89.1 | 0.001 * |
San Diego Chalma | 16 | 45.7 | 11 | 21,054 | 60.9 | 5 | 457 | 10.9 | ||
Time of residence in the town | 0–5 years | 5 | 14.3 | 2 | 2266 | 6.6 | 3 | 992 | 23.7 | 0.001 * |
6–10 years | 2 | 5.7 | 1 | 1747 | 5.1 | 1 | 6 | 0.1 | ||
10–20 years | 7 | 20.0 | 4 | 5891 | 17.1 | 3 | 443 | 10.6 | ||
21–30 years | 6 | 17.1 | 1 | 2956 | 8.4 | 5 | 846 | 20.2 | ||
>30 years | 15 | 42.9 | 10 | 21,685 | 62.8 | 5 | 1902 | 45.4 | ||
Education level | Elementary education | 19 | 54.2 | 13 | 25,762 | 74.6 | 6 | 1403 | 33.5 | 0.001 * |
Secondary education | 5 | 14.3 | 2 | 2976 | 8.6 | 3 | 1403 | 33.5 | ||
Higher Secondary education | 5 | 14.3 | 2 | 4372 | 12.7 | 3 | 206 | 4.9 | ||
Technical education | 3 | 8.6 | 0 | 0 | 0 | 3 | 992 | 23.7 | ||
No education | 3 | 8.6 | 1 | 1435 | 4.1 | 2 | 185 | 4.4 | ||
Occupation | Farmer | 18 | 51.4 | 18 | 34,545 | 100 | 0 | 0 | 0 | 0.001 * |
Businessman | 10 | 28.6 | 0 | 0 | 0 | 10 | 2049 | 48.9 | ||
Housewife | 2 | 5.7 | 0 | 0 | 0 | 2 | 1377 | 32.9 | ||
Student | 3 | 8.6 | 0 | 0 | 0 | 3 | 727 | 17.4 | ||
Minors | 2 | 5.7 | 0 | 0 | 0 | 2 | 36 | 0.8 | ||
Smoker | 1–5 cigarettes/week | 9 | 25.7 | 7 | 14,694 | 42.5 | 2 | 793 | 18.9 | 0.001 * |
No smoking | 26 | 74.3 | 11 | 19,851 | 57.5 | 15 | 3396 | 81.1 | ||
Alcohol consumer | 2 to 3 times a week | 2 | 5.7 | 1 | 2702 | 7.9 | 1 | 625 | 14.9 | 0.001 * |
Once a week | 16 | 45.7 | 11 | 22,195 | 64.2 | 5 | 1080 | 25.8 | ||
No alcohol | 17 | 48.6 | 6 | 9648 | 27.9 | 11 | 2484 | 59.3 | ||
Diseases Infections | Once a year | 9 | 25.7 | 5 | 5824 | 16.9 | 4 | 734 | 17.5 | 0.280 |
None | 26 | 74.3 | 13 | 28,721 | 83.1 | 13 | 3455 | 82.5 |
Variables | Median | IQR | Mann–Whitney U Test | Z | 1–β | d | Significance p ≤ 0.05 | |
---|---|---|---|---|---|---|---|---|
MNi | (F)= | 714 | 164 | 2,600,576 | −102.24 | 0.89 | 6.17 | 0.001 |
(NF)= | 36 | 23 | ||||||
CC | (F)= | 502 | 245 | 0 | −106.07 | 0.68 | 4.27 | 0.001 |
(NF)= | 0 | 29 | ||||||
KR | (F)= | 206 | 270 | 8,692,340 | −93.37 | 0.96 | 1.76 | 0.001 |
(NF)= | 0 | 34 | ||||||
BN | (F)= | 223 | 165 | 2,405,619 | −102.53 | 0.91 | 2.66 | 0.001 |
(NF)= | 2 | 56 | ||||||
KL | (F)= | 2096 | 1351 | 0 | −106.07 | 0.94 | 2.88 | 0.001 |
(NF)= | 0 | 99 | ||||||
PY | (F)= | 1129 | 766 | 1,834,096 | −103.38 | 0.83 | 2.65 | 0.001 |
(NF)= | 0 | 78 | ||||||
MN | (F)= | 2581 | 671 | 0 | −106.05 | 0.68 | 3.39 | 0.001 |
(NF)= | 499 | 955 | ||||||
BC | (F)= | 2792 | 1904 | 757,872 | −104.94 | 0.99 | 13.86 | 0.001 |
(NF)= | 9501 | 339 |
Predictor Variable | 1 B | 2 Odds Ratio [Exp B] | 95% CI | p Interact | |
---|---|---|---|---|---|
Lower | Lower | ||||
Groups | |||||
NF | −5.570 | 0.001 | |||
F | 0 | 1 | |||
Age | 0.001 | ||||
30–59 years | 2.801 | 16.464 | 14.315 | 18.935 | 0.001 |
0–29 years | 0 | 1 | |||
Birth place | 0.001 | ||||
Tehuacán | −1.476 | 0.229 | 0.217 | 0.240 | 0.001 |
San Diego Chalma | 0 | 1 | |||
Sex | 0.001 | ||||
Men | 0.870 | 2.386 | 2.123 | 2.681 | 0.001 |
Women | 0 | 1 |
Variables | N (TMN = 38,734) | PFMN | ||||
---|---|---|---|---|---|---|
Birthplace | Age | Sex | People | n | % | |
Tehuacán | 0–29 years | Men | NF | 96 | 217.4 | 3.3 |
F | 6475 | 6353.6 | 96.7 | |||
Women | NF | 91 | 1.3 | 1.4 | ||
F | 0 | 89.7 | 98.6 | |||
30–59 years | Men | NF | 3253 | 3183.4 | 36.0 | |
F | 5581 | 5650.6 | 64.0 | |||
Women | NF | 292 | 329.8 | 19.1 | ||
F | 1435 | 1397.1 | 80.9 | |||
San Diego Chalma | 0–29 years | Men | NF | 36 | 3.2 | 0.2 |
F | 1747 | 1779.8 | 99.8 | |||
Women | NF | 0 | 1.1 | 0.1 | ||
F | 1496 | 1494.9 | 99.9 | |||
30–59 years | Men | NF | 421 | 402.1 | 2.9 | |
F | 13,647 | 13,666.1 | 97.1 | |||
Women | NF | 0 | 50.7 | 1.2 | ||
F | 4164 | 4113.3 | 98.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauricio-Gutiérrez, A.; Ramírez-Gutiérrez, D.D.; Romero-Arenas, O.; Contreras-Paredes, C.A.; Mora-Ravelo, S.; Cedillo-Ramírez, L.; Yáñez-Santos, J.A.; Valencia de Ita, M.A. Cytotoxic Effects and Micronuclei Frequency as a Biomarker of Genotoxicity in Farmers from the Municipality of Tehuacán, Puebla, Mexico. Toxics 2025, 13, 735. https://doi.org/10.3390/toxics13090735
Mauricio-Gutiérrez A, Ramírez-Gutiérrez DD, Romero-Arenas O, Contreras-Paredes CA, Mora-Ravelo S, Cedillo-Ramírez L, Yáñez-Santos JA, Valencia de Ita MA. Cytotoxic Effects and Micronuclei Frequency as a Biomarker of Genotoxicity in Farmers from the Municipality of Tehuacán, Puebla, Mexico. Toxics. 2025; 13(9):735. https://doi.org/10.3390/toxics13090735
Chicago/Turabian StyleMauricio-Gutiérrez, Amparo, Didier D. Ramírez-Gutiérrez, Omar Romero-Arenas, Carlos A. Contreras-Paredes, Sandra Mora-Ravelo, Lilia Cedillo-Ramírez, José A. Yáñez-Santos, and María A. Valencia de Ita. 2025. "Cytotoxic Effects and Micronuclei Frequency as a Biomarker of Genotoxicity in Farmers from the Municipality of Tehuacán, Puebla, Mexico" Toxics 13, no. 9: 735. https://doi.org/10.3390/toxics13090735
APA StyleMauricio-Gutiérrez, A., Ramírez-Gutiérrez, D. D., Romero-Arenas, O., Contreras-Paredes, C. A., Mora-Ravelo, S., Cedillo-Ramírez, L., Yáñez-Santos, J. A., & Valencia de Ita, M. A. (2025). Cytotoxic Effects and Micronuclei Frequency as a Biomarker of Genotoxicity in Farmers from the Municipality of Tehuacán, Puebla, Mexico. Toxics, 13(9), 735. https://doi.org/10.3390/toxics13090735