Recent Advances in Heavy Metal Stabilization and Resource Recovery from Municipal Solid Waste Incineration Fly Ash
Abstract
1. Introduction
2. Occurrence and Migration Behavior of Heavy Metals in FA
2.1. Sources and Composition of Heavy Metals in FA
2.2. Distribution of Heavy Metal in FA
2.3. Environmental Risks of Heavy Metals in FA
3. Non-Recycling Pathways: Immobilization and Stabilization Technologies
3.1. Solidification Technology
3.2. Stabilization Technology
4. Thermal Treatment Technologies for Heavy Metal Recovery
4.1. Sintering
4.2. Vitrification Techniques
4.3. Thermal Separation Technologies
4.4. Molten Salt Thermal Treatment
5. Leaching and Separation-Based Recovery Technologies
5.1. Chemical Leaching and Bioleaching
5.2. Electrochemical Separation and Enrichment
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018; pp. 18–24. [Google Scholar]
- Li, X.; Sun, Y.; Li, W.; Nie, Y.; Wang, F.; Bian, R.; Wang, H.; Wang, Y.-N.; Gong, Z.; Lu, J. Solidification/stabilization pre-treatment coupled with landfill disposal of heavy metals in MSWI fly ash in China: A systematic review. J. Hazard. Mater. 2024, 478, 135479. [Google Scholar] [CrossRef]
- NBSC. National Bureau of Statistics of China; China Statistics Press: Beijing, China, 2015.
- NBSC. National Bureau of Statistics of China; China Statistics Press: Beijing, China, 2016.
- NBSC. National Bureau of Statistics of China; China Statistics Press: Beijing, China, 2017.
- NBSC. National Bureau of Statistics of China; China Statistics Press: Beijing, China, 2018.
- NBSC. National Bureau of Statistics of China; China Statistics Press: Beijing, China, 2019.
- NBSC. National Bureau of Statistics of China; China Statistics Press: Beijing, China, 2020.
- NBSC. National Bureau of Statistics of China; China Statistics Press: Beijing, China, 2021.
- NBSC. National Bureau of Statistics of China; China Statistics Press: Beijing, China, 2022.
- NBSC. National Bureau of Statistics of China; China Statistics Press: Beijing, China, 2023.
- NBSC. National Bureau of Statistics of China; China Statistics Press: Beijing, China, 2024.
- Teng, F.; Wang, Z.; Ren, K.; Liu, S.; Ding, H. Analysis of composition characteristics and treatment techniques of municipal solid waste incineration fly ash in China. J. Environ. Manag. 2024, 357, 120783. [Google Scholar] [CrossRef]
- Trinh, M.M.; Chang, M.B. Transformation of mono- to octa- chlorinated dibenzo-p-dioxins and dibenzofurans in MWI fly ash during catalytic pyrolysis process. Chem. Eng. J. 2022, 427, 130907. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, S.; Yao, R.; Chen, S.; Gao, J.; Shimaoka, T. Removal of harmful components from MSWI fly ash as a pretreatment approach to enhance waste recycling. Waste Manag. 2022, 150, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.L.; Chen, T.L.; Pan, S.Y.; Yang, Y.L.; Sun, Z.H.; Li, Y.J. Addressing environmental sustainability of plasma vitrification technology for stabilization of municipal solid waste incineration fly ash. J. Hazard. Mater. 2020, 398, 122959. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fu, C.; Mao, T.; Shen, Y.; Li, M.; Lin, X.; Li, X.; Yan, J. Study on the accelerated carbonation of MSWI fly ash under ultrasonic excitation: CO2 capture, heavy metals solidification, mechanism and geochemical modelling. Chem. Eng. J. 2022, 450, 138418. [Google Scholar] [CrossRef]
- Bernasconi, D.; Caviglia, C.; Destefanis, E.; Agostino, A.; Boero, R.; Marinoni, N.; Bonadiman, C.; Pavese, A. Influence of speciation distribution and particle size on heavy metal leaching from MSWI fly ash. Waste Manag. 2022, 138, 318–327. [Google Scholar] [CrossRef]
- Phan, D.N.C.; Jansson, S.; Boily, J.-F. Link between fly ash properties and polychlorinated organic pollutants formed during simulated municipal solid waste incineration. Energy Fuels 2014, 28, 2761–2769. [Google Scholar] [CrossRef]
- Van Caneghem, J.; Block, C.; Van Brecht, A.; Wauters, G.; Vandecasteele, C. Mass balance for POPs in hazardous and municipal solid waste incinerators. Chemosphere 2010, 78, 701–708. [Google Scholar] [CrossRef]
- Yu, S.; Du, B.; Baheiduola, A.; Geng, C.; Liu, J. HCB dechlorination combined with heavy metals immobilization in MSWI fly ash by using n-Al/CaO dispersion mixture. J. Hazard. Mater. 2020, 392, 122510. [Google Scholar] [CrossRef]
- Long, L.; Jiang, X.; Lv, G.; Chen, Q.; Liu, X.; Chi, Y.; Yan, J.; Zhao, X.; Kong, L.; Qiu, Q. Comparison of MSWI fly ash from grate-type and circulating fluidized bed incinerators under landfill leachate corrosion scenarios: The long-term leaching behavior and speciation of heavy metals. Environ. Sci. Pollut. Res. Int. 2022, 29, 15057–15067. [Google Scholar] [CrossRef]
- Huang, B.; Gan, M.; Ji, Z.; Fan, X.; Zhang, D.; Chen, X.; Sun, Z.; Huang, X.; Fan, Y. Recent progress on the thermal treatment and resource utilization technologies of municipal waste incineration fly ash: A review. Process Saf. Environ. Prot. 2022, 159, 547–565. [Google Scholar] [CrossRef]
- Zacco, A.; Borgese, L.; Gianoncelli, A.; Struis, R.P.W.J.; Depero, L.E.; Bontempi, E. Review of fly ash inertisation treatments and recycling. Environ. Chem. Lett. 2014, 12, 153–175. [Google Scholar] [CrossRef]
- Yang, G.; Ren, Q.; Zhou, L.; Li, P.; Lyu, Q. Effect of Si/Al additives on Cl fate during MSWI fly ash thermal treating process. Fuel Process Technol. 2022, 231, 107230. [Google Scholar] [CrossRef]
- Zha, F.; Wang, S.; Liu, Z.; Dai, J.; Yue, S.; Qi, W.; Xue, X.; Wang, X.; Zhang, S. Removal of heavy metals from fly ash using electrodialysis driven by a bioelectrochemical system: A case study of Pb, Mn, Cu and Cd. Environ. Technol. 2024, 45, 2709–2720. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Huang, Y.; Jin, X.; Sun, T. Synergistic treatment of heavy metals in municipal solid waste incineration fly ash with geopolymer and chemical stabilizers. Process Saf. Environ. Prot. 2022, 160, 763–774. [Google Scholar] [CrossRef]
- De Boom, A.; Degrez, M. Belgian MSWI fly ashes and APC residues: A characterisation study. Waste Manag. 2012, 32, 1163–1170. [Google Scholar] [CrossRef]
- Lederer, J.; Trinkel, V.; Fellner, J. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria. Waste Manag. 2017, 60, 247–258. [Google Scholar] [CrossRef]
- Fan, C.; Wang, B.; Ai, H.; Liu, Z. A comparative study on characteristics and leaching toxicity of fluidized bed and grate furnace MSWI fly ash. J. Environ. Manag. 2022, 305, 114345. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Y.; Wang, X.; Zhu, X.; Liu, X. Chlorine removal technologies for resource utilization of municipal solid waste incineration fly ash. Environ. Res. 2025, 268, 120784. [Google Scholar] [CrossRef]
- Liang, D.; Wang, F.; Lv, G. The Resource Utilization and Environmental Assessment of MSWI Fly Ash with Solidification and Stabilization: A Review. Waste Biomass Valorization 2023, 15, 37–56. [Google Scholar] [CrossRef]
- Bie, R.; Chen, P.; Song, X.; Ji, X. Characteristics of municipal solid waste incineration fly ash with cement solidification treatment. J. Energy Inst. 2016, 89, 704–712. [Google Scholar] [CrossRef]
- Zhipeng, T.; Bingru, Z.; Chengjun, H.; Rongzhi, T.; Huangpu, Z.; Fengting, L. The physiochemical properties and heavy metal pollution of fly ash from municipal solid waste incineration. Process Saf. Environ. Prot. 2015, 98, 333–341. [Google Scholar] [CrossRef]
- Ma, W.; Chen, D.; Pan, M.; Gu, T.; Zhong, L.; Chen, G.; Yan, B.; Cheng, Z. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: A comparative study. J. Environ. Manag. 2019, 247, 169–177. [Google Scholar] [CrossRef]
- Li, B.; Guo, X.; Zhang, X.; Leng, S.; Ma, N.; Wu, X. A new strategy to stabilize the heavy metals in carbonized MSWI-fly ash using an acid-resistant oligomeric dithiocarbamate chelator. J. Hazard. Mater. 2024, 467, 133686. [Google Scholar] [CrossRef]
- Wong, G.; Gan, M.; Fan, X.; Ji, Z.; Chen, X.; Wang, Z. Co-disposal of municipal solid waste incineration fly ash and bottom slag: A novel method of low temperature melting treatment. J. Hazard. Mater. 2021, 408, 124438. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Qi, J. Utilization of municipal solid waste incineration (MSWI) fly ash in ceramic brick: Product characterization and environmental toxicity. Waste Manag. 2011, 31, 331–341. [Google Scholar] [CrossRef]
- Jiao, G.; Wei, Y.; Liao, Q.; Liu, S.; Tang, S.; Li, Z. A systematic comparison of salt removal efficiency in washing treatment by using fly ashes from 13 MSWI plants in China. J. Environ. Manag. 2024, 358, 120831. [Google Scholar] [CrossRef]
- Acosta, J.A.; Jansen, B.; Kalbitz, K.; Faz, A.; Martinez-Martinez, S. Salinity increases mobility of heavy metals in soils. Chemosphere 2011, 85, 1318–1324. [Google Scholar] [CrossRef]
- Liu, J.; Zha, F.; Xu, L.; Yang, C.; Chu, C.; Tan, X. Effect of chloride attack on strength and leaching properties of solidified/stabilized heavy metal contaminated soils. Eng. Geol. 2018, 246, 28–35. [Google Scholar] [CrossRef]
- Chen, W.S.; Chang, F.C.; Shen, Y.H.; Tsai, M.S.; Ko, C.H. Removal of chloride from MSWI fly ash. J. Hazard. Mater. 2012, 237–238, 116–120. [Google Scholar] [CrossRef]
- Li, W.; Sun, Y.; Huang, Y.; Shimaoka, T.; Wang, H.; Wang, Y.N.; Ma, L.; Zhang, D. Evaluation of chemical speciation and environmental risk levels of heavy metals during varied acid corrosion conditions for raw and solidified/stabilized MSWI fly ash. Waste Manag. 2019, 87, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Viet, D.B.; Chan, W.P.; Phua, Z.H.; Ebrahimi, A.; Abbas, A.; Lisak, G. The use of fly ashes from waste-to-energy processes as mineral CO2 sequesters and supplementary cementitious materials. J. Hazard. Mater. 2020, 398, 122906. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, Y.S.; Wang, L.; Zhang, Y.; Li, J.; Tong, L.; Hu, Q.; Dai, J.G.; Tsang, D.C.W. Stabilisation/solidification of municipal solid waste incineration fly ash by phosphate-enhanced calcium aluminate cement. J. Hazard. Mater. 2021, 408, 124404. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Hu, Y.; Cheng, H. Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China. Environ. Pollut. 2019, 252, 461–475. [Google Scholar] [CrossRef]
- Tian, H.; Liu, K.; Zhou, J.; Lu, L.; Hao, J.; Qiu, P.; Gao, J.; Zhu, C.; Wang, K.; Hua, S. Atmospheric emission inventory of hazardous trace elements from China’s coal-fired power plants-temporal trends and spatial variation characteristics. Environ. Sci. Technol. 2014, 48, 3575–3582. [Google Scholar] [CrossRef]
- Chen, W.; Kirkelund, G.M.; Jensen, P.E.; Ottosen, L.M. Comparison of different MSWI fly ash treatment processes on the thermal behavior of As, Cr, Pb and Zn in the ash. Waste Manag. 2017, 68, 240–251. [Google Scholar] [CrossRef]
- Sørum, L.; Frandsen, F.J.; Hustad, J.E. On the fate of heavy metals in municipal solid waste combustion Part I: Devolatilisation of heavy metals on the grate. Fuel 2003, 82, 2273–2283. [Google Scholar] [CrossRef]
- Wu, L.; Zhong, D.; Du, Y.; Lu, S.; Fu, D.; Li, Z.; Li, X.; Chi, Y.; Luo, Y.; Yan, J. Emission and control characteristics for incineration of Sedum plumbizincicola biomass in a laboratory-scale entrained flow tube furnace. Int. J. Phytoremediation 2013, 15, 219–231. [Google Scholar] [CrossRef]
- Ji, Z.; Huang, B.; Gan, M.; Fan, X.; Wang, Y.; Chen, X.; Sun, Z.; Huang, X.; Zhang, D.; Fan, Y. Recent progress on the clean and sustainable technologies for removing mercury from typical industrial flue gases: A review. Process Saf. Environ. Prot. 2021, 150, 578–593. [Google Scholar] [CrossRef]
- Tytla, M.; Widziewicz-Rzonca, K.; Bernas, Z. A comparison of conventional and ultrasound-assisted BCR sequential extraction methods for the fractionation of heavy metals in sewage sludge of different characteristics. Molecules 2022, 27, 4947. [Google Scholar] [CrossRef] [PubMed]
- Colangelo, F.; Cioffi, R.; Montagnaro, F.; Santoro, L. Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material. Waste Manag. 2012, 32, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Z.; Li, Z.; Xie, G.; Zhang, W.; Jin, H.; Xing, F. Investigation of the cyclic separation of dioxins from municipal solid waste incineration fly ash by using fat. J. Clean. Prod. 2024, 450, 141840. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, C.; Rao, Y.; Yu, C.; Luo, Z.; Zhao, H.; Wang, X.; Wu, C.; Wang, Q. Solidification/stabilization and risk assessment of heavy metals in municipal solid waste incineration fly ash: A review. Sci. Total Environ. 2023, 892, 164451. [Google Scholar] [CrossRef]
- Liu, Z.; Yue, Y.; Lu, M.; Zhang, J.; Sun, F.; Huang, X.; Zhou, J.; Qian, G. Comprehension of heavy metal stability in municipal solid waste incineration fly ash with its compositional variety: A quick prediction case of leaching potential. Waste Manag. 2019, 84, 329–339. [Google Scholar] [CrossRef]
- Kicinska, A. Chemical and mineral composition of fly ashes from home furnaces, and health and environmental risk related to their presence in the environment. Chemosphere 2019, 215, 574–585. [Google Scholar] [CrossRef]
- Li, M.; Tang, B.; Zheng, J.; Ma, S.; Zhuang, X.; Wang, M.; Zhang, L.; Yu, Y.; Mai, B. PCDD/Fs in paired hair and serum of workers from a municipal solid waste incinerator plant in South China: Concentrations, correlations, and source identification. Environ. Int. 2020, 144, 106064. [Google Scholar] [CrossRef]
- Fan, C.; Wang, B.; Zhang, T.; Kong, L.B. Review on Cement Stabilization/Solidification of Municipal Solid Waste Incineration Fly Ash. Adv. Mater. Sci. Eng. 2018, 2018, 5120649. [Google Scholar] [CrossRef]
- Galiano, Y.L.; Pereira, C.F.; Vale, J. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. J. Hazard. Mater. 2011, 185, 373–381. [Google Scholar] [CrossRef]
- Fan, C.; Wang, B.; Ai, H.; Qi, Y.; Liu, Z. A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash. J. Clean. Prod. 2021, 319, 128790. [Google Scholar] [CrossRef]
- Billen, P.; Verbinnen, B.; De Smet, M.; Dockx, G.; Ronsse, S.; Villani, K.; De Greef, J.; Van Caneghem, J.; Vandecasteele, C. Comparison of solidification/stabilization of fly ash and air pollution control residues from municipal solid waste incinerators with and without cement addition. J. Mater. Cycles Waste Manag. 2014, 17, 229–236. [Google Scholar] [CrossRef]
- Luo, H.; Cheng, Y.; He, D.; Yang, E.H. Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci. Total Environ. 2019, 668, 90–103. [Google Scholar] [CrossRef]
- Ma, X.; He, T.; Chen, G.; Su, F.; Ke, Y.; Da, Y.; Yang, R. How Leaching of Heavy Metals Changes. Long-Term Environmental Safety of Incineration Fly Ash Solidified by Cement. Langmuir 2025, 41, 7259–7271. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Y.; Yang, J.Y.; Ning, N.; Yang, Z.S. Chemical stabilization of heavy metals in municipal solid waste incineration fly ash: A review. Environ. Sci. Pollut. Res. Int. 2022, 29, 40384–40402. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fan, X.; Wang, Y.N.; Li, W.; Sun, Y.; Zhan, M.; Wu, G. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid. J. Environ. Manag. 2018, 208, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Guo, Y.; Zhao, Y.; Zhou, T. A novel waste-recycled chelating agent for the stabilization of lead in municipal solid waste incineration fly ash: Preparation, feasibility, and mechanism analysis. J. Hazard. Mater. 2022, 427, 127914. [Google Scholar] [CrossRef]
- Yuan, X.-Y.; Zhao, X.-Y.; Chen, Y.-Z.; Yang, Z.-S.; Yang, J.-Y. Stabilization effect of chelating agents on heavy metals in two types of municipal solid waste incineration fly ash. Process Saf. Environ. Prot. 2023, 180, 169–180. [Google Scholar]
- Chen, L.; Wang, L.; Cho, D.-W.; Tsang, D.C.W.; Tong, L.; Zhou, Y.; Yang, J.; Hu, Q.; Poon, C.S. Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials. J. Clean. Prod. 2019, 222, 335–343. [Google Scholar] [CrossRef]
- He, D.; Hu, H.; Jiao, F.; Zuo, W.; Liu, C.; Xie, H.; Dong, L.; Wang, X. Thermal separation of heavy metals from municipal solid waste incineration fly ash: A review. Chem. Eng. J. 2023, 467, 143344. [Google Scholar] [CrossRef]
- Lindberg, D.; Molin, C.; Hupa, M. Thermal treatment of solid residues from WtE units: A review. Waste Manag. 2015, 37, 82–94. [Google Scholar] [CrossRef]
- Fujii, T.; Kashimura, K.; Tanaka, H. Microwave sintering of fly ash containing unburnt carbon and sodium chloride. J. Hazard. Mater. 2019, 369, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Wang, Y.; Li, W.; Zhang, Q.; Yue, Y.; Qian, G. Double high-value utilization of valuable resources in the process of co-sintering detoxification of high chlorine incineration fly ash and blast furnace dust. Resour. Conserv. Recycl. 2024, 204, 107506. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Zhu, K.; Li, C.; Zhang, Y.; Li, A. Distribution and chemical species transition behavior of chlorides in municipal solid waste incineration fly ash during the pressure-assisted sintering treatment. Chem. Eng. J. 2021, 415, 128873. [Google Scholar] [CrossRef]
- Yan, M.; Zhou, Z.; Zheng, R.; Jiang, J.; Feng, H.; Yu, C.; Zhu, G.; Hantoko, D. Low-temperature sintering behavior of fly ash from hazardous waste incinerator: Effect of temperature and oxygen on ash properties. J. Environ. Chem. Eng. 2021, 9, 105261. [Google Scholar] [CrossRef]
- Manikandan, R.; Ramamurthy, K. Physical characteristics of sintered fly ash aggregate containing clay binders. J. Mater. Cycles Waste Manag. 2012, 14, 120–131. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, N.; Li, X.; Xi, Y.; Shen, W.; Wu, P. Triggered heavy metals and chlorine simultaneous removal from hazardous waste incineration fly ash. Process Saf. Environ. Prot. 2023, 175, 796–805. [Google Scholar] [CrossRef]
- Han, S.; Chen, K.; Meng, F.; Gao, Y.; Li, J.; Lin, L.; Qin, W.; Jiang, J. Mitigating heavy metal volatilization during thermal treatment of MSWI fly ash by using iron(III) sulfate as a chlorine depleting agent. J. Hazard. Mater. 2024, 465, 133185. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Zhu, K.; Li, C.; Zhang, Y.; Li, A. Efficiently sintering of MSWI fly ash at a low temperature enhanced by in-situ pressure assistant: Process performance and product characterization. Waste Manag. 2021, 134, 21–31. [Google Scholar] [CrossRef]
- Geng, C.; Chen, C.; Shi, X.; Wu, S.; Jia, Y.; Du, B.; Liu, J. Recovery of metals from municipal solid waste incineration fly ash and red mud via a co-reduction process. Resour. Conserv. Recycl. 2020, 154, 104600. [Google Scholar] [CrossRef]
- Xie, K.; Hu, H.; Xu, S.; Chen, T.; Huang, Y.; Yang, Y.; Yang, F.; Yao, H. Fate of heavy metals during molten salts thermal treatment of municipal solid waste incineration fly ashes. Waste Manag. 2020, 103, 334–341. [Google Scholar] [CrossRef]
- Ma, W.; Shi, W.; Shi, Y.; Chen, D.; Liu, B.; Chu, C.; Li, D.; Li, Y.; Chen, G. Plasma vitrification and heavy metals solidification of MSW and sewage sludge incineration fly ash. J. Hazard. Mater. 2021, 408, 124809. [Google Scholar] [CrossRef]
- Sanito, R.C.; Bernuy-Zumaeta, M.; You, S.J.; Wang, Y.F. A review on vitrification technologies of hazardous waste. J. Environ. Manag. 2022, 316, 115243. [Google Scholar] [CrossRef]
- Čarnogurská, M.; Lázár, M.; Puškár, M.; Lengyelová, M.; Václav, J.; Širillová, Ľ. Measurement and evaluation of properties of MSW fly ash treated by plasma. Measurement 2015, 62, 155–161. [Google Scholar] [CrossRef]
- Sharifikolouei, E.; Baino, F.; Salvo, M.; Tommasi, T.; Pirone, R.; Fino, D.; Ferraris, M. Vitrification of municipal solid waste incineration fly ash: An approach to find the successful batch compositions. Ceram. Int. 2021, 47, 7738–7744. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, B.; Zhang, X.; Shen, H.; Liu, J.; Zhang, S. Co-vitrification of municipal solid waste incinerator fly ash and bottom slag: Glass detoxifying characteristics and porous reformation. Ecotoxicol. Environ. Saf. 2022, 243, 113995. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Dong, C.; Zhao, Y.; Hu, X.; Qin, W.; Wang, X.; Zhang, J.; Xue, J.; Zhang, X. Vitrification of municipal solid waste incineration fly ash with B2O3 as a fluxing agent. Waste Manag. 2020, 102, 932–938. [Google Scholar] [CrossRef]
- Karamanov, A.; Aloisi, M.; Pelino, M. Sintering behaviour of a glass obtained from MSWI ash. J. Eur. Ceram. Soc. 2005, 25, 1531–1540. [Google Scholar] [CrossRef]
- Okada, T.; Suzuki, M. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash. J. Environ. Manag. 2013, 130, 347–353. [Google Scholar] [CrossRef]
- Lin, X.; Shen, Y.; Chen, Z.; Chen, J.; Yi, P.; Wang, Q.; Li, X.; Yan, J. Insights into the environmental risk variation of heavy metals from MSWI fly ash after thermal plasma vitrification. Process Saf. Environ. Prot. 2024, 191, 2533–2542. [Google Scholar] [CrossRef]
- Long, Y.; Qiu, J.; Bao, Q.; Gu, F.; Wu, Z.; Wu, M.; Guo, W.; Shen, D. Effect of Fe2O3 on the leaching behavior of Cr in hazardous waste incineration fly ash after thermal treatment. Environ. Technol. Innov. 2021, 24, 102072. [Google Scholar] [CrossRef]
- Long, Y.; Qiu, J.; Shen, D.; Gu, F. Transformation and leaching behavior of Pb in hazardous waste incineration fly ash after thermal treatment with addition of Fe3O4. Waste Manag. 2022, 153, 304–311. [Google Scholar] [CrossRef]
- Kubonova, L.; Langova, S.; Nowak, B.; Winter, F. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash. Waste Manag. 2013, 33, 2322–2327. [Google Scholar] [CrossRef]
- Jiao, F.; Ma, X.; Liu, T.; Wu, C.; Li, H.; Dong, Z. Effect of atmospheres on transformation of heavy metals during thermal treatment of MSWI fly ash: By thermodynamic equilibrium calculation. Molecules 2009, 27, 131. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Hoffmann, G.; Schirmer, M.; Chen, G.; Rotter, V.S. Chlorine characterization and thermal behavior in MSW and RDF. J. Hazard. Mater. 2010, 178, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Nowak, B.; Rocha, S.F.; Aschenbrenner, P.; Rechberger, H.; Winter, F. Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: Influence of the chloride type. Chem. Eng. J. 2012, 179, 178–185. [Google Scholar] [CrossRef]
- Li, S.; Zhang, M.; Hu, H.; Guo, G.; Gong, L.; Dong, L.; Xu, S.; Yao, H. Fate of sulfur and chlorine during co-incineration of municipal solid waste and industrial organic solid waste. Sci. Total Environ. 2024, 920, 171040. [Google Scholar] [CrossRef]
- Kurashima, K.; Matsuda, K.; Kumagai, S.; Kameda, T.; Saito, Y.; Yoshioka, T. A combined kinetic and thermodynamic approach for interpreting the complex interactions during chloride volatilization of heavy metals in municipal solid waste fly ash. Waste Manag. 2019, 87, 204–217. [Google Scholar] [CrossRef]
- Geng, C.; Liu, J.; Wu, S.; Jia, Y.; Du, B.; Yu, S. Novel method for comprehensive utilization of MSWI fly ash through co-reduction with red mud to prepare crude alloy and cleaned slag. J. Hazard. Mater. 2020, 384, 121315. [Google Scholar] [CrossRef]
- Lane, D.J.; Hartikainen, A.; Sippula, O.; Lähde, A.; Mesceriakovas, A.; Peräniemi, S.; Jokiniemi, J. Thermal separation of zinc and other valuable elements from municipal solid waste incineration fly ash. J. Clean. Prod. 2020, 253, 120014. [Google Scholar] [CrossRef]
- Lane, D.J.; Sippula, O.; Koponen, H.; Heimonen, M.; Peraniemi, S.; Lahde, A.; Kinnunen, N.M.; Nivajarvi, T.; Shurpali, N.; Jokiniemi, J. Volatilisation of major; minor, and trace elements during thermal processing of fly ashes from waste- and wood-fired power plants in oxidising and reducing gas atmospheres. Waste Manag. 2020, 102, 698–709. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, L.; Hu, H.; Yan, D.; Xu, S.; Zou, C.; Huang, Y.; Guo, G.; Yao, H. The migration and transformation mechanisms of heavy metals during molten salt cyclic thermal treatment of MSWI fly ash. Chem. Eng. J. 2023, 471, 144731. [Google Scholar] [CrossRef]
- Xu, S.; Li, H.; Huang, C.; Huang, Z.; Hu, H.; Leng, C.; Wang, Y.; Dong, L.; Yao, H. Improved molten salt thermal treatment process for municipal waste incineration fly ash by liquid-liquid phase separation: Chloride form transition and release behavior. J. Environ. Manag. 2025, 380, 125164. [Google Scholar] [CrossRef] [PubMed]
- Zucha, W.; Weibel, G.; Wolffers, M.; Eggenberger, U. Inventory of MSWI fly ash in Switzerland: Heavy metal recovery potential and their properties for acid leaching. Processes 2020, 8, 1668. [Google Scholar] [CrossRef]
- Tang, J.; Steenari, B.M. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd. Waste Manag. 2016, 48, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Weibel, G.; Eggenberger, U.; Kulik, D.A.; Hummel, W.; Schlumberger, S.; Klink, W.; Fisch, M.; Mader, U.K. Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution. Waste Manag. 2018, 76, 457–471. [Google Scholar] [CrossRef]
- Zhang, F.S.; Itoh, H. Extraction of metals from municipal solid waste incinerator fly ash by hydrothermal process. J. Hazard. Mater. 2006, 136, 663–670. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Ting, Y.-P. Metal extraction from municipal solid waste (MSW) incinerator fly ash—Chemical leaching and fungal bioleaching. Enzym. Microb. Technol. 2006, 38, 839–847. [Google Scholar] [CrossRef]
- Funari, V.; Makinen, J.; Salminen, J.; Braga, R.; Dinelli, E.; Revitzer, H. Metal removal from Municipal Solid Waste Incineration fly ash: A comparison between chemical leaching and bioleaching. Waste Manag. 2017, 60, 397–406. [Google Scholar] [CrossRef]
- Kirkelund, G.M.; Skevi, L.; Ottosen, L.M. Electrodialytically treated MSWI fly ash use in clay bricks. Constr. Build. Mater. 2020, 254, 119286. [Google Scholar] [CrossRef]
- Viader, R.P.; Jensen, P.E.; Ottosen, L.M. Electrodialytic remediation of municipal solid waste incineration residues using different membranes. Chemosphere 2017, 169, 62–68. [Google Scholar] [CrossRef]
- Kirkelund, G.M.; Magro, C.; Guedes, P.; Jensen, P.E.; Ribeiro, A.B.; Ottosen, L.M. Electrodialytic removal of heavy metals and chloride from municipal solid waste incineration fly ash and air pollution control residue in suspension—Test of a new two compartment experimental cell. Electrochim. Acta 2015, 181, 73–81. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, T.; Huang, X.; Faheem, M.; Yu, L.; Jiao, B.; Yin, G.; Shiau, Y.; Li, D. Study on electro-kinetic remediation of heavy metals in municipal solid waste incineration fly ash with a three-dimensional electrode. RSC Adv. 2017, 7, 27846–27852. [Google Scholar] [CrossRef]
- Chen, W.; Kirkelund, G.M.; Jensen, P.E.; Ottosen, L.M. Electrodialytic extraction of Cr from water-washed MSWI fly ash by changing pH and redox conditions. Waste Manag. 2018, 71, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Atanes, E.; Cuesta-Garcia, B.; Nieto-Marquez, A.; Fernandez-Martinez, F. A mixed separation-immobilization method for soluble salts removal and stabilization of heavy metals in municipal solid waste incineration fly ash. J. Environ. Manag. 2019, 240, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Kirkelund, G.M.; Jensen, P.E. Electrodialytic treatment of Greenlandic municipal solid waste incineration fly ash. Waste Manag. 2018, 80, 241–251. [Google Scholar] [CrossRef]
- Ferraro, A.; Farina, I.; Race, M.; Colangelo, F.; Cioffi, R.; Fabbricino, M. Pre-treatments of MSWI fly-ashes: A comprehensive review to determine optimal conditions for their reuse and/or environmentally sustainable disposal. Rev. Environ. Sci. Bio/Technol. 2019, 18, 453–471. [Google Scholar] [CrossRef]
- Siwal, S.S.; Kaur, H.; Deng, R.; Zhang, Q. A review on electrochemical techniques for metal recovery from waste resources. Curr. Opin. Green. Sustain. Chem. 2023, 39, 100722. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Jiang, Y.; Ren, L.; Qian, C.; Zhang, H.; Zhong, Y.; Qu, X.; Dou, J.; Zhang, S.; Ding, J.; et al. Recent Advances in Heavy Metal Stabilization and Resource Recovery from Municipal Solid Waste Incineration Fly Ash. Toxics 2025, 13, 695. https://doi.org/10.3390/toxics13080695
He Y, Jiang Y, Ren L, Qian C, Zhang H, Zhong Y, Qu X, Dou J, Zhang S, Ding J, et al. Recent Advances in Heavy Metal Stabilization and Resource Recovery from Municipal Solid Waste Incineration Fly Ash. Toxics. 2025; 13(8):695. https://doi.org/10.3390/toxics13080695
Chicago/Turabian StyleHe, Yunfei, Yue Jiang, Lingwei Ren, Chenyiyi Qian, Han Zhang, Yuchi Zhong, Xuetong Qu, Jibo Dou, Shuai Zhang, Jiafeng Ding, and et al. 2025. "Recent Advances in Heavy Metal Stabilization and Resource Recovery from Municipal Solid Waste Incineration Fly Ash" Toxics 13, no. 8: 695. https://doi.org/10.3390/toxics13080695
APA StyleHe, Y., Jiang, Y., Ren, L., Qian, C., Zhang, H., Zhong, Y., Qu, X., Dou, J., Zhang, S., Ding, J., & Zhang, H. (2025). Recent Advances in Heavy Metal Stabilization and Resource Recovery from Municipal Solid Waste Incineration Fly Ash. Toxics, 13(8), 695. https://doi.org/10.3390/toxics13080695