Aquatic Microcosms in Ecotoxicology: The Community-Level Ecological Risk Assessment of Pollutants
Abstract
1. Introduction
Main Types | Reference | ||
---|---|---|---|
Terrestrial microcosm | Terrestrial Microcosm System | [13] | |
Root Microcosm System | [26] | ||
Soil Core Microcosm | [27] | ||
Soil Jar | [28] | ||
Aquatic microcosm | Indoor | Aquaria | [29] |
Standardized Aquaria Microcosm | [30] | ||
Mixed Flask Culture Microcosm | [31] | ||
Outside | Steam Microcosm | [32,33,34] | |
Pond and pool Microcosm | [35,36,37] | ||
Enclosed Column Microcosm | [38,39] | ||
Land-Based Marine Microcosm | [40] | ||
Reef and Benthic Microcosm | [41,42] | ||
Terrestrial (wetland) microcosm | Simulate Farmland Ecosystem | [43,44,45] |
2. Data Analysis Methods
3. Standardized Aquatic Microcosm
4. Application of Aquatic Microcosm in Ecotoxicology Effects
4.1. Pesticides and Fungicides
4.2. Fluorine-Containing Compounds
4.3. Hydrocarbon
4.4. Microplastics
4.5. Metal Ion
5. Assessment of Ecological Risk Based on Aquatic Microcosm
6. Conclusions and Prospects
6.1. The Essence and Advantages of Microcosms
6.2. Establishment and Specification of Standardized Aquatic Microcosms
6.3. Application of Aquatic Microcosms in the Study of Ecotoxicological Effects
6.4. Ecological Risk Assessment Value Based on Aquatic Microcosms
6.5. Prospects
- (a)
- In aquatic microcosm technology-based studies on pollutants, only pollutant concentrations are monitored, while their metabolites remain unmonitored. This represents a gap in the current understanding of the fate and effects of pollutants in microcosms. To comprehensively assess the environmental impact of pollutants, future studies should not only focus on the parent compounds but also include tracking of the metabolites. This will provide a more comprehensive understanding of the overall environmental effects of pollutants and their transformation products.
- (b)
- The aquatic microcosms of most studies include algae, rotifers, Daphnia magna, and other zooplankton in neglecting benthos and microbial communities. As a result, the assessment of hazards caused by pollutant deposition in the sediment is inadequate. To enhance the population structure and function, it is necessary to construct an aquatic microcosm that encompasses a wider range of niche organisms.
- (c)
- Study the direct toxicity and indirect effects of pollutants on various ecological groups in the aquatic microcosm, analyze the community effects and their mechanistic impacts of pollutants, and identify key environmental factors and pollutant-sensitive populations that contribute to community changes.
- (d)
- Efficient, rapid, and accurate biological monitoring techniques, such as DNA macro barcode technology, will be employed to assess the composition of the zooplankton community in the aquatic microcosm. Additionally, the quantitative relationship between DNA macrobarcodes and species abundance in the aquatic microcosm are established.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
eDNA | Environmental DNA |
EPA | The U.S. Environmental Protection Agency |
OECD | The Organisation for Economic Co-operation and Development |
ASTM | The American Society for Testing and Materials |
SIMPER | Similarity percentage program |
NSAIDs | Nonsteroidal anti-inflammatory drug |
PFAS | Per- and polyfluoroalkyl substances |
HPLC–TMS | High-performance liquid chromatography-tandem mass spectrometry |
NMDS | Non-metric multidimensional scaling |
LEFSE | Linear discriminant analysis of effect size |
SSD | Species sensitivity distribution |
HC5 | The 95% harmless concentration |
PNEC | The predicted no-effect concentration |
NOEC | The no observed effect concentration |
SSRI | Selective serotonin reuptake inhibitor |
TWPs | Tire wear particles |
SAs | Sulfonamide antibiotics |
PLA | Polylactic acid |
PE | Polyethylene |
PS NPs | Polystyrene nanoplastics |
EC50 | 50% effective concentration |
EC10 | 10% effective concentration |
PFOA | Perfluorooctanoic acid |
ANOVA | Analysis of Variance |
LC-MS/MS | Liquid chromatography-tandem mass spectrometry |
UVFs | Ultraviolet filters |
SPE | Solid-phase extraction |
THQ | Target hazard quotient |
PTEs | Potentially toxic elements |
Appendix A
Projects | Biological Species/Test Requirements/Monitoring Tools | Classification | Test Requirements |
---|---|---|---|
Experimental design | Size and type of container | 5 L glass jar, 16 cm in diameter, 25 cm in height, 10.6 cm in diameter | |
Volume of culture medium | 3 L | ||
Repetition number | 6 | ||
Concentration of experimental group | 4 | ||
Sampling frequency | Twice a week until the end | ||
Test cycle | 63 d | ||
Physical and chemical parameters | Temperature | 20–25 °C | |
Workbench specification | >2.6 m × 0.85 m | ||
Light quality | Cold/warm white light | ||
Light intensity | 79.2 µEM-2S-1PhAR | ||
Light cycle | 12 h light/12 h darkness | ||
Culture medium | T82MV Culture medium | ||
Sediments | 200 g quartz sand, 0.5 g chitin and 0.5 g cellulose | ||
pH | 7.0 at the beginning | ||
Test end point | DO | Dissolved oxygen meter | |
pH | pH meter | ||
Electric conductivity | Multi-parameter water quality analyzer | ||
Turbidity | Turbidimeter | ||
Algae density | Algae count box | ||
Various zooplankton densities | Zooplankton counting box |
References
- Gregušová, M.; Hybská, H.; Mordáčová, M. Microcosms as an implement for assessing ecological processes in aquatic and terrestrial environments. Review. Environ. Prot. Eng. 2025, 51, 5–19. [Google Scholar] [CrossRef]
- Linhart, I. Ecotoxicology. In Interactions of Harmful Substances with Living Organisms, Their Mechanisms, Manifestations, and Consequences; University of Chemistry and Technology in Prague (UCT Prague): Prague, Czech Republic, 2012. [Google Scholar]
- Barbieri, M.V.; González, M.P.; Araya Piqué, V.; Blasco, J.; Eljarrat, E. Contaminants in fish and seafood from the marine environment: A global overview of current status and future perspective. Mar. Pollut. Bull. 2025, 219, 118319. [Google Scholar] [CrossRef] [PubMed]
- Atofarati, E.O.; Enweremadu, C.C. A review of sustainable biofuel catalysts and additive technologies using nanoparticles. Fuel 2026, 403, 136100. [Google Scholar] [CrossRef]
- Guesdon, L.; Warembourg, C.; Chevrier, C.; de Lauzon-Guillain, B.; Caudeville, J.; Charles, M.-A.; Le Lous, M.; Blanc-Petitjean, P.; Béranger, R. Maternal exposure to pesticides and gestational diabetes mellitus in the Elfe cohort. Environ. Res. 2025, 284, 122275. [Google Scholar] [CrossRef] [PubMed]
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S.E.A.T.M.; Ritsema, C.J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- Coccia, M.; Bontempi, E. New trajectories of technologies for the removal of pollutants and emerging contaminants in the environment. Environ. Res. 2023, 229, 115938. [Google Scholar] [CrossRef] [PubMed]
- Zhen, W.; Deling, F.; Linjun, Z.; Wen, G.; Haihong, G.; Wei, Z. Ecological hazard assessment of tetrabromobisphenol A based on microcosm approach. Environ. Pollut. Control. 2021, 43, 533–538+545. [Google Scholar]
- Hanson, M.; Solomon, K.R. Mesocosms and microcosms (aquatic). Encycl. Toxicol. 2023, 6, 155–159. [Google Scholar]
- Haanes, H.; Hansen, E.L.; Hevrøy, T.H.; Jensen, L.K.; Gjelsvik, R.; Jaworska, A.; Bradshaw, C. Realism and usefulness of multispecies experiment designs with regard to application in radioecology: A review. Sci. Total Environ. 2020, 718, 134485. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Qv, M.; Zhang, Y.; Cui, M.; Zhang, H. Simulated sulfuric and nitric acid rain inhibits leaf breakdown in streams: A microcosm study with artificial reconstituted fresh water. Ecotoxicol. Environ. Saf. 2020, 196, 110535. [Google Scholar] [CrossRef]
- Carbonell, G.; Tarazona, J. Terrestrial microcosms and multispecies soil systems. Encycl. Toxicol. 2014, 486–489. [Google Scholar] [CrossRef]
- Luiselli, L.; Pacini, N. Microcosms and Mesocosms: Small-Scale Experiments, Big Impacts for Tropical Ecology. Afr. J. Ecol. 2025, 63, e70076. [Google Scholar] [CrossRef]
- Fekete-Kertész, I.; László, K.; Molnár, M. Towards Understanding the Factors behind the Limited Integration of Multispecies Ecotoxicity Assessment in Environmental Risk Characterisation of Graphene-Family Materials—A Bibliometric Review. J. Carbon Res. 2023, 9, 90. [Google Scholar] [CrossRef]
- Brisson, J.; Carvalho, P.; Stein, O.; Weber, K.; Brix, H.; Zhao, Y.; Zurita, F. Small-scale experiments: Using mesocosms and microcosms for testing hypotheses in treatment wetland research. Ecol. Eng. 2024, 208, 107378. [Google Scholar] [CrossRef]
- Sundaray, J.K.; Dixit, S.; Rather, A.; Rasal, K.D.; Sahoo, L. Aquaculture omics: An update on the current status of research and data analysis. Mar. Genom. 2022, 64, 100967. [Google Scholar] [CrossRef]
- Shubao, L.; Jianmei, S.; Lei, W.; Jining, L.; Lili, S.; Yingwen, C. A microcosm study compared to the species sensitivity distribution approach: A case study with the copperion. Asian J. Ecotoxicol. 2015, 10, 34–46. [Google Scholar] [CrossRef]
- Onjia, A.; Huang, X.; Trujillo González, J.M.; Egbueri, J.C. Editorial: Chemometric approach to distribution, source apportionment, ecological and health risk of trace pollutants. Front. Environ. Sci. 2022, 10, 1107465. [Google Scholar] [CrossRef]
- Sakan, S.; Mihajlidi-Zelić, A.; Škrivanj, S.; Frančišković-Bilinski, S.; Đorđević, D. An Integrated Approach in the Assessment of the Vlasina River System Pollution by Toxic Elements. Front. Environ. Sci. 2022, 10, 909858. [Google Scholar] [CrossRef]
- Zhang, C.; Zou, X.; Yang, H.; Liang, J.; Zhu, T. Bioaccumulation and Risk Assessment of Potentially Toxic Elements in Soil-Rice System in Karst Area, Southwest China. Front. Environ. Sci. 2022, 10, 866427. [Google Scholar] [CrossRef]
- Lukić, J.; Radulović, J.; Lučić, M.; Đurkić, T.; Onjia, A. Chemometric Optimization of Solid-Phase Extraction Followed by Liquid Chromatography-Tandem Mass Spectrometry and Probabilistic Risk Assessment of Ultraviolet Filters in an Urban Recreational Lake. Front. Environ. Sci. 2022, 10, 916916. [Google Scholar] [CrossRef]
- Engelhardt, I.C.; Welty, A.; Blazewicz, S.J.; Bru, D.; Rouard, N.; Breuil, M.-C.; Gessler, A.; Galiano, L.; Miranda, J.C.; Spor, A.; et al. Depth matters: Effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. ISME J. 2018, 12, 1061–1071. [Google Scholar] [CrossRef]
- Jabusch, L.K.; Kim, P.W.; Chiniquy, D.; Zhao, Z.; Wang, B.; Bowen, B.; Kang, A.J.; Yoshikuni, Y.; Deutschbauer, A.M.; Singh, A.K.; et al. Microfabrication of a Chamber for High-Resolution, In Situ Imaging of the Whole Root for Plant–Microbe Interactions. Int. J. Mol. Sci. 2021, 22, 7880. [Google Scholar] [CrossRef] [PubMed]
- Lind, K.R.; Siemianowski, O.; Yuan, B.; Sizmur, T.; VanEvery, H.; Banerjee, S.; Cademartiri, L. Evidence for root adaptation to a spatially discontinuous water availability in the absence of external water potential gradients. Proc. Natl. Acad. Sci. USA 2020, 118, e2012892118. [Google Scholar] [CrossRef] [PubMed]
- Mair, A.; Patko, D.; Liu, Y.; Engelhardt, I.; Dupuy, L.X. Synthetic soil microcosms as emerging model systems to study the rhizosphere. Plant Soil 2025. early access. [Google Scholar] [CrossRef]
- Parise, A.G.; De Oliveira, V.H.; Tibbett, M.; Pickles, B.J. The pitfalls of ectomycorrhizal microcosms: Lessons learnt for future success. Plant Signal. Behav. 2025, 20, 2527378. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.T.; Bu, D.; Zhang, Y.; Wang, F.C.; Li, J.J.; Zu, K.L.; Meng, M.H.; Liang, C.; Fang, X.M. Linking microbial nutrient limitation and community composition to nitrogen mineralization in bamboo forest soil with phosphorus addition. Soil Ecol. Lett. 2025, 7, 240270. [Google Scholar] [CrossRef]
- Chen, S.K.; Edwars, D.A. A microcosm approach to assess the effects of fungicides on soil ecological processes and plant growth comparisons of two soil types. Soil Biol. Biochem. 2001, 33, 1981–1991. [Google Scholar] [CrossRef]
- McKnight, M.M.; Neufeld, J.D. Comammox Nitrospira among dominant ammonia oxidizers within aquarium biofilter microbial communities. Appl. Environ. Microbiol. 2024, 90, e0010424. [Google Scholar] [CrossRef]
- dos Santos, A.F.G.N.; Carrera, P.R.d.O.; Aronovich, M.; dos Santos, L.N. Preferência alimentar de juvenis de lambari-cachorro, Oligosarcus hepsetus, em relação a duas espécies de presas de peixe em ambiente controlado. Cienc. Rural. 2014, 44, 307–313. [Google Scholar] [CrossRef]
- Srivastava, S.; Thakur, I.S. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biol. Biochem. 2006, 38, 1904–1911. [Google Scholar] [CrossRef]
- Grant, E.; Seymoure, B.; López-Sepulcre, A.; Yang, Y.; Gordon, S.P. Light modulates population differences in alternative mating tactics in Trinidadian guppies. Anim. Behav. 2025, 223, 123143. [Google Scholar] [CrossRef]
- Pruitt, A.N. Understanding Controls on Stream Ecosystem Function Using Experiments Across a Range of Spatial Scales from Mesocosms to Watersheds; University of Notre Dame: Notre Dame, IN, USA, 2025. [Google Scholar]
- Wild, R.; Nagel, C.; Geist, J. Multiple climate change stressors reduce the emergence success of gravel-spawning fish species and alter temporal emergence patterns. Sci. Total Environ. 2024, 949, 175054. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.M. Carryover Effects of Hydroperiod Length, Neonicotinoid Pesticide Exposure, and Predation Risk in a Pond-Breeding Amphibian; Ohio University: Athens, OH, USA, 2022. [Google Scholar]
- Celewicz, S.; Gołdyn, B. Phytoplankton communities in temporary ponds under different climate scenarios. Sci. Rep. 2021, 11, 17969. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.L.; Araújo, M.B.; Matias, M.G. Interplay between productivity and regional species pool determines community assembly in aquatic microcosms. Aquat. Sci. 2018, 80, 45. [Google Scholar] [CrossRef]
- Xiaoyu, S. Characterization and Modeling of Sediment Settling, Consolidation and Suspension to Optimize the Retention Rate of Sediment Diversions for Coastal Restoration; Louisiana State University and Agricultural & Mechanical College: Baton Rouge, LA, USA, 2016. [Google Scholar]
- Riebesell, U.; Czerny, J.; von Bröckel, K. Technical Note: A mobile sea-going mesocosm system—New opportunities for ocean change research. Biogeosciences 2013, 10, 1835–1847. [Google Scholar] [CrossRef]
- Knight, E.G.J. Marine Debris From River Margins Wet and Dry Weathering Effects on the Fragmentation and Degradation of Discarded Plastic; San Diego State University: San Diego, CA, USA, 2024. [Google Scholar]
- Salerno, J.L.; Little, B.; Lee, J.; Hamdan, L.J. Exposure to Crude Oil and Chemical Dispersant May Impact Marine Microbial Biofilm Composition and Steel Corrosion. Front. Mar. Sci. 2018, 5, 196. [Google Scholar] [CrossRef]
- Fredericq, S.; Arakaki, N.; Camacho, O. A Dynamic Approach to the Study of Rhodoliths: A Case Study for the Northwestern Gulf of Mexico. Cryptogam. Algol. 2014, 35, 77–98. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Xun, Y.; Sun, C.; Huang, G. Enhancing an agro-ecosystem model (AHC) for coupled simulation of water–vapor-heat-salt transport in freezing and thawing soils. J. Hydrol. 2025, 661, 133640. [Google Scholar] [CrossRef]
- Tang, L.; Li, J.; Xie, C.; Wang, M. Multi-Scenario Simulation of Ecosystem Service Value in Xiangjiang River Basin, China, Based on the PLUS Model. Land 2025, 14, 1482. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, C.; Zhou, T.; Feng, T.; Bie, Q. Dynamic Wetland Evolution in the Upper Yellow River Basin: A 30-Year Spatiotemporal Analysis and Future Projections Under Multiple Protection Scenarios. Land 2025, 14, 1219. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Z.; Wang, J.; Wang, X.; Zhang, C.; Ai, S.; Li, J.; Wang, X. Research on aquatic microcosm: Bibliometric analysis, toxicity comparison and model prediction. J. Hazard. Mater. 2024, 469, 134078. [Google Scholar] [CrossRef]
- Hou, S.J. Outdoor Aquatic Microcosm Experiment: A Study on the Toxicity of Fipronil; Zhejiang University: Hangzhou, China, 2014. [Google Scholar]
- Taub, F. Standardized aquatic microcosms. Environ. Sci. Technol. 1989, 23, 1064–1066. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. OPPTS 850.1900 Generic Freshwater Microcosm Test, Laboratory. In Ecological Effects Test Guidelines; U.S. Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- E1366-11; Standard Practice for Standardized Aquatic Microcosms Fresh Water. American Society of Testing and Materials (ASTM): Philadelphia, PA, USA, 2016.
- Villamarín, C.; Cañedo-Argüelles, M.; Carvajal-Rebolledo, C.; Ríos-Touma, B. Effects of Pesticides on the Survival of Shredder Nectopsyche sp. (Trichoptera) and Leaf Decomposition Rates in Tropical Andes: A Microcosm Approach. Toxics 2022, 10, 720. [Google Scholar] [CrossRef]
- Damalas, C. Pesticide Drift: Seeking Reliable Environmental Indicators of Exposure Assessment. In Environmental Indicators; Springer: Dordrecht, The Netherlands, 2015; pp. 251–261. [Google Scholar]
- Liao, J.-Y.; Fan, C.; Huang, Y.-Z.; Pei, K.J.-C. Distribution of residual agricultural pesticides and their impact assessment on the survival of an endangered species. J. Hazard. Mater. 2020, 389, 121871. [Google Scholar] [CrossRef] [PubMed]
- Jablonowski, N.D.; Linden, A.; Köppchen, S.; Thiele, B.; Hofmann, D.; Mittelstaedt, W.; Pütz, T.; Burauel, P. Long-term persistence of various 14C-labeled pesticides in soils. Environ. Pollut. 2012, 168, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Battaglin, W.A.; Smalling, K.L.; Anderson, C.; Calhoun, D.; Chestnut, T.; Muths, E. Potential interactions among disease, pesticides, water quality and adjacent land cover in amphibian habitats in the United States. Sci. Total Environ. 2016, 566–567, 320–332. [Google Scholar] [CrossRef] [PubMed]
- Brink, P.J.V.D.; Hattink, J. Impact of the fungicide carbendazim in freshwater microcosms. II. Zooplankton, primary producers and final conclusions. Aquat. Toxicol. 2000, 48, 251–264. [Google Scholar] [CrossRef] [PubMed]
- McMahon, T.A.; Halstead, N.T.; Johnson, S.; Raffel, T.R.; Romansic, J.M.; Crumrine, P.W.; Rohr, J.R.; Grover, J. Fungicide-induced declines of freshwater biodiversity modify ecosystem functions and services. Ecol. Lett. 2012, 15, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Sumudumali, I.; Jayawardana, C.K.; Malavipathirana, S.; Gunatilake, S.K.; Udayakumara, N. Effects of fungicide chlorothalonil on freshwater plankton communities: A microcosm study. Environ. Sci. Pollut. Res. 2023, 30, 52062–52072. [Google Scholar] [CrossRef]
- Zaky, S.K.; Gutierrez, M.F.; Frau, D. The role of predation and pesticides in shaping phytoplankton dynamics in a short microcosms experiment. Ecotoxicology 2024, 33, 1161–1170. [Google Scholar] [CrossRef]
- Cornejo, A.; Pérez, J.; López-Rojo, N.; García, G.; Pérez, E.; Guerra, A.; Nieto, C.; Boyero, L. Litter decomposition can be reduced by pesticide effects on detritivores and decomposers: Implications for tropical stream functioning. Environ. Pollut. 2021, 285, 117243. [Google Scholar] [CrossRef] [PubMed]
- Wijewardene, L.; Schwenker, J.A.; Friedrichsen, M.; Jensen, A.; Löbel, F.; Austen, T.; Ulrich, U.; Fohrer, N.; Bang, C.; Waschina, S.; et al. Selection of aquatic microbiota exposed to the herbicides flufenacet and metazachlor. Environ. Microbiol. 2023, 25, 2972–2987. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Martínez, D.; Selvin, M.A.; Nilsson, A.K.; Carmona, E.; Ngou, J.S.; Kristiansson, E.; Nilsson, R.H.; Corcoll, N. Environmental concentrations of the fungicide tebuconazole alter microbial biodiversity and trigger biofilm-released transformation products. Chemosphere 2024, 369, 143854. [Google Scholar] [CrossRef] [PubMed]
- Varghese, P.; Kumar, K.; Sarkar, P.; Karmakar, S.; Shukla, S.P.; Kumar, S.; Bharti, V.S.; Paul, T.; Kantal, D. Impact of Triclosan on Bacterial Biodiversity and Sediment Enzymes—A Microcosm Study. Bull. Environ. Contam. Toxicol. 2024, 113, 59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ding, Y.; Peng, J.; Dai, Y.; Luo, S.; Liu, W.; Ma, Y. Effects of Broad-Spectrum Antibiotic (Florfenicol) on Resistance Genes and Bacterial Community Structure of Water and Sediments in an Aquatic Microcosm Model. Antibiotics 2022, 11, 1299. [Google Scholar] [CrossRef]
- Giguère, S.; Prescott, J.F.; Dowling, P.M. Antimicrobial Therapy in Veterinary Medicine; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Zhang, T.; Sun, J.; Peng, J.; Ding, Y.; Li, Y.; Ma, H.; Yu, M.; Ma, Y. Effects of Florfenicol on nirS-Type Denitrification Community Structure of Sediments in an Aquatic Microcosm Model. Antibiotics 2023, 12, 1254. [Google Scholar] [CrossRef]
- Zhang, T.; Peng, J.; Dai, Y.; Xie, X.; Luo, S.; Ding, Y.; Ma, Y. Effect of florfenicol on nirS-type denitrifying communities structure of water in an aquatic microcosm model. Front. Vet. Sci. 2023, 10, 1205394. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Hua, Z.-L.; Gu, L. Planktonic microbial responses to perfluorinated compound (PFC) pollution: Integrating PFC distributions with community coalescence and metabolism. Sci. Total Environ. 2021, 788, 147743. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, W.; Liang, Y. Distribution of eight perfluoroalkyl acids in plant-soil-water systems and their effect on the soil microbial community. Sci. Total Environ. 2019, 697, 134146. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, H.; Yuan, R.; Wang, F.; Chen, Z.; Zhou, B. Metagenomic analysis of soil microbial community under PFOA and PFOS stress. Environ. Res. 2020, 188, 109838. [Google Scholar] [CrossRef]
- Cerro-Gálvez, E.; Roscales, J.L.; Jiménez, B.; Sala, M.M.; Dachs, J.; Vila-Costa, M. Microbial responses to perfluoroalkyl substances and perfluorooctanesulfonate (PFOS) desulfurization in the Antarctic marine environment. Water Res. 2020, 171, 115434. [Google Scholar] [CrossRef]
- Song, X.; Vestergren, R.; Shi, Y.; Huang, J.; Cai, Y. Emissions, Transport, and Fate of Emerging Per-and Polyfluoroalkyl Substances from One of the Major Fluoropolymer Manufacturing Facilities in China. Environ. Sci. Technol. 2018, 52, 9694–9703. [Google Scholar] [CrossRef]
- Gang, D.; Jia, H.; Ji, H.; Li, J.; Yu, H.; Hu, C.; Qu, J. Ecological risk of per-and polyfluorinated alkyl substances in the phytoremediation process: A case study for ecologically keystone species across two generations. Sci. Total Environ. 2024, 949, 174961. [Google Scholar] [CrossRef]
- Hanson, M.L.; Small, J.; Sibley, P.K.; Boudreau, T.M.; Brain, R.A.; Mabury, S.A.; Solomon, K.R. Microcosm Evaluation of the Fate, Toxicity, and Risk to Aquatic Macrophytes from Perfluorooctanoic Acid (PFOA). Arch. Environ. Contam. Toxicol. 2005, 49, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Ahrens, L.; Bertilsson, S.; Coolen, M.J.L.; Tang, J. Microcosm experiment to test bacterial responses to perfluorooctanoate exposure. Sci. Total Environ. 2023, 857, 159685. [Google Scholar] [CrossRef] [PubMed]
- Howland, K.E.; Mouradian, J.J.; Uzarski, D.R. Nutrient amendments enrich microbial hydrocarbon degradation metagenomic potential in freshwater coastal wetland microcosm experi-ments. Appl. Environ. Microbiol. 2024, 91, e0197224. [Google Scholar] [CrossRef]
- Adebayo, O.; Bhatnagar, S.; Webb, J.; Campbell, C.; Fowler, M.; MacAdam, N.M.; Macdonald, A.; Li, C.; Hubert, C.R.J. Hydrocarbon-degrading microbial populations in permanently cold deep-sea sediments in the NW Atlantic. Mar. Pollut. Bull. 2024, 208, 117052. [Google Scholar] [CrossRef]
- Nava, V.; Chandra, S.; Aherne, J.; Alfonso, M.B.; Antão-Geraldes, A.M.; Attermeyer, K.; Bao, R.; Bartrons, M.; Berger, S.A.; Biernaczyk, M.; et al. Plastic debris in lakes and reservoirs. Nature 2023, 619, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, G.; Pei, T.; Wu, Y.; Huang, T.; Guo, H.; Liu, T.; Zhang, H. Microplastic diversity stimulates N2O emission during NO3-N transformation by altering microbial interaction and electron consumption in eutrophic water. J. Hazard. Mater. 2025, 489, 137594. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhou, Q.; Hu, X.; Tao, Z. Polyethylene microplastic-induced microbial shifts affected greenhouse gas emissions during litter decomposition in coastal wetland sediments. Water Res. 2024, 251, 121167. [Google Scholar] [CrossRef]
- Tu, C.; Yang, Y.; Wang, D. Polystyrene nanoplastics enhance macrophyte litter decomposition via bacterial-fungal interactions in urban lake. J. Environ. Chem. Eng. 2025, 13, 117561. [Google Scholar] [CrossRef]
- Shen, Y.-T.; Hou, S.-N.; Miao, Y.-Q.; Wang, X.-Y.; Cui, H.; Zhu, H. Synergistic effects of microplastics and sulfonamide on greenhouse gas emissions in agricultural ditch sediments: Insights into microbial interactions. J. Hazard. Mater. 2024, 480, 136378. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Abdolahpur Monikh, F.; Jaffer, Y.D.; Mugani, R.; Ionescu, D.; Chen, G.; Yang, J.; Grossart, H.-P. Effects of tire wear particles on freshwater bacterial-fungal community dynamics and subsequent elemental cycles using microcosms. J. Hazard. Mater. 2025, 487, 137062. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.H.; Liu, T.; Burdon, F.J.; Truchy, A.; Futter, M.; Bundschuh, M.; Hurley, R.; Bertilsson, S.; McKie, B.G. Microplastics in freshwaters: Comparing effects of particle properties and an invertebrate consumer on microbial communities and ecosystem functions. Ecotoxicol. Environ. Saf. 2025, 289, 117697. [Google Scholar] [CrossRef]
- Lapresta-Fernández, A.; Fernández, A.; Blasco, J. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. TrAC Trends Anal. Chem. 2012, 32, 40–59. [Google Scholar] [CrossRef]
- Jiang, Z.; Wan, X.; Bai, X.; Chen, Z.; Zhu, L.; Feng, J. Cd indirectly affects the structure and function of plankton ecosystems by affecting trophic interactions at environmental concentrations. J. Hazard. Mater. 2024, 480, 136242. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Q.; Sheng, Y. Nutrients in overlying water affect the environmental behavior of heavy metals in coastal sediments. Environ. Res. 2023, 238, 117135. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Tang, W.; Cheng, Y.; Zhang, M.; Zhang, H. Heavy Metal Fate from Water into Sediment and Its Risk Assessment: A Lesson from Cadmium. ACS EST Water 2024, 4, 1433–1442. [Google Scholar] [CrossRef]
- Pietz, S.; Kainz, M.J.; Schröder, H.; Manfrin, A.; Schäfer, R.B.; Zubrod, J.P.; Bundschuh, M. Metal Exposure and Sex Shape the Fatty Acid Profile of Midges and Reduce the Aquatic Subsidy to Terrestrial Food Webs. Environ. Sci. Technol. 2023, 57, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Herruzo-Ruiz, A.M.; Trombini, C.; Sendra, M.; Michán, C.; Moreno-Garrido, I.; Alhama, J.; Blasco, J. Accumulation, biochemical responses and changes in the redox proteome promoted by Ag and Cd in the burrowing bivalve Scrobicularia plana. Aquat. Toxicol. 2024, 276, 107123. [Google Scholar] [CrossRef]
- De Freitas, F.; Vendruscolo, S.J.; Soares, M.A.; Battirola, L.D.; de Andrade, R.L.T. Biomass of the macrophyte remedies and detoxifies Cd (II) and Pb (II) in aqueous solution. Environ. Monit. Assess. 2021, 193, 537. [Google Scholar] [CrossRef] [PubMed]
- Van Wijngaarden, R.P.A.; Arts, G.H.P.; Belgers, J.D.M.; Boonstra, H.; Roessink, I.; Schroer, A.F.W.; Brock, T.C.M. The species sensitivity distribution approach compared to a microcosm study: A case study with the fungicide fluazinam. Ecotoxicol. Environ. Saf. 2010, 73, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xiao, P.; Liu, Y. The impact of triazolone on freshwater planktonic communities studied using an indoor microcosm system. J. Ecotoxicol. 2020, 15, 139–148. [Google Scholar]
- Chen, L.; Song, Y.; Tang, B.; Song, X.; Yang, H.; Li, B.; Zhao, Y.; Huang, C.; Han, X.; Wang, S.; et al. Aquatic risk assessment of a novel strobilurin fungicide: A microcosm study compared with the species sensitivity distribution approach. Ecotoxicol. Environ. Saf. 2015, 120, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Jin, X.; Liu, N.; Luo, Y.; Yan, Z.; Chen, M.; Liu, Y.; Xie, H.; Giesy, J.P.; Wu, F.; et al. Triadimefon in aquatic environments: Occurrence, fate, toxicity, and ecological risk. Environ. Sci. Eur. 2022, 34, 12. [Google Scholar] [CrossRef]
- Rodrigues, E.T.; Pardal, M.Â.; Gante, C.; Loureiro, J.; Lopes, I. Determination and validation of an aquatic Maximum Acceptable Concentration-Environmental Quality Standard (MAC-EQS) value for the agricultural fungicide azoxystrobin. Environ. Pollut. 2017, 221, 150–158. [Google Scholar] [CrossRef]
- Rodrigues, E.T.; Lopes, I.; Pardal, M.Â. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: A review. Environ. Int. 2013, 53, 18–28. [Google Scholar] [CrossRef]
- Lei, W.; Jianmei, L.; Jining, L. Application of microcosm and species sensitivity distribution approaches in the ecological hazard assessment of 4-tert-butylphenol. Chem. Ecol. 2018, 34, 108–125. [Google Scholar] [CrossRef]
- Miao, B.; Yakubu, S.; Zhu, Q.; Issaka, E.; Zhang, Y.; Adams, M. A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment. Molecules 2023, 28, 2505. [Google Scholar] [CrossRef]
- Hommen, U.; Knopf, B.; Rüdel, H.; Schäfers, C.; De Schamphelaere, K.; Schlekat, C.; Garman, E.R. A microcosm study to support aquatic risk assessment of nickel: Community-level effects and comparison with bioavailability-normalized species sensitivity distributions. Environ. Toxicol. Chem. 2016, 35, 1172–1182. [Google Scholar] [CrossRef]
- European Commission. Directive 97/68/EC of the European Parliament and of the Council of 16 December 1997 on the approximation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile machinery. Off. J. 1997, L59, 1–86. Available online: http://data.europa.eu/eli/dir/1997/68/oj (accessed on 17 August 2025).
- Ahmed, N.; Amel, H.; Mohamed, A.; Badreddine, B.; Ibtihel, S.; Mohamed, D.; Abdel, H.; Lamjed, M.; Ezzeddine, M.; Hamouda, B.; et al. Chronic ecotoxicity ofciprofloxacin exposure on taxonomic diversity of a meiobenthic nematode community in microcosm experiments. J. King Saud Univ. Sci. 2020, 32, 1470–1475. [Google Scholar]
- Cheer, S.M.; Goa, K.L. Fluoxetine. Drugs 2001, 61, 81–110. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol 2006, 76, 122–159. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Peng, L.; Redina, M.M.; Gao, T.; Khan, A.; Liu, P.; Li, X. Perfluorooctane sulfonate decreases the performance of a sequencing batch reactor system and changes the sludge microbial community. Chemosphere 2021, 279, 130596. [Google Scholar] [PubMed]
- Ye, S.; Wen, L.; Gao, L.; Zhang, J.; Zhang, H.; Yang, S.; Hu, E.; Deng, J.; Xiao, M.; Zamyadi, A.; et al. Exploring intrinsic distribution of phytoplankton relative abundance and biomass in combination with continental-scale field investigation and microcosm experiment. Water Res. 2024, 248, 120853. [Google Scholar] [CrossRef]
Classification | Biological Species | All Kinds of Creatures Join the Microcosm Time/Day |
---|---|---|
Algae (initial concentration of 103 cells/mL) | Anabaena cylindrica | 0 |
Ankistrodesmus sp. | 0 | |
Chlorella vulgaris | 0 | |
Chlamydomonas reinhardi | 0 | |
Lyngbya sp. | 0 | |
Nitzschia kutzigiana | 0 | |
Scenedesmus obliquus | 0 | |
Selenastrum capricornutum | 0 | |
Stigeoclontum sp. | 0 | |
Ulothrix sp. | 0 | |
Animals (depending on specific organisms) | Daphnia magna (16/microcosm) | 4 |
Cypridopsis (6/microcosm) | 4 | |
Philodina sp. (0.03/mL) | 4 | |
Hyalella azteca (16/microcosm) | 4 | |
Hypotrich (0.1/mL) | 4 |
Effect Level | Description | |
---|---|---|
I | No effect | The treatment group did not show any statistically significant effect, and there was no evident causal relationship between the treatment group and the control group. |
II | Slight or temporary effect | The treatment group was observed individually to assess short-term effects. |
III | Recoverable effect | An effect is observed; however, its duration does not exceed 8 weeks, as the system recovers within this timeframe following the final treatment. |
IV | Definite effect | Although the immediate effect is evident, accurately estimating its long-term impact remains challenging. |
V | Definite effect | The observed effect was evident, with a duration exceeding 8 weeks, and the system did not exhibit recovery within 8 weeks following the final treatment. |
Substance | Exposure Mechanism | NOEC (μg·L−1) | Safety Threshold (μg·L−1) | Ratio (NOEC/Safety Threshold) |
---|---|---|---|---|
Azinphos-methyl | Single time | 0.2 | UP: 0.02 | 10 |
Repeated | 0.22 | UP: 0.02 | 11 | |
Chlorpyrifos | Single time | 0.1 | UP: 0.013 | 7.7 |
Parathion | Continuous | 0.2 | UP: 0.011 | 18 |
Chlordecone | Single time | 5 | UP: 0.33 | 15 |
Parathion | Single time | 1.1 | UP: 0.11 | 10 |
Chlorpyrifos | Single time | 10 | HC5: 27.9 | 0.36 |
Butachlor | Single time | 1 | HC5: 9.3 | 0.11 |
Fluazinam | Single time | 2 | HC5: 3.9 | 0.51 |
Triadimefon | Single time | >2.08 × 103 | Maximum residual concentration: 12.00 | 173 |
Azoxystrobin | Single time | 0.33 | HC5: 1.1 | 0.3 |
Cu2+ | Single time | 111 | HC5: 3.278 | 33.8 |
Ni | Single time | 1.2 × 104 | HC5: 4.2–6.8 | 1.76–2.86 |
Tetrabromobisphenol A | Single time | 10.8 | PNEC: 42.9 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Hou, Y.; Wei, C.; Ling, J.; Zheng, X. Aquatic Microcosms in Ecotoxicology: The Community-Level Ecological Risk Assessment of Pollutants. Toxics 2025, 13, 694. https://doi.org/10.3390/toxics13080694
Yang D, Hou Y, Wei C, Ling J, Zheng X. Aquatic Microcosms in Ecotoxicology: The Community-Level Ecological Risk Assessment of Pollutants. Toxics. 2025; 13(8):694. https://doi.org/10.3390/toxics13080694
Chicago/Turabian StyleYang, Dongning, Yin Hou, Chao Wei, Jianan Ling, and Xin Zheng. 2025. "Aquatic Microcosms in Ecotoxicology: The Community-Level Ecological Risk Assessment of Pollutants" Toxics 13, no. 8: 694. https://doi.org/10.3390/toxics13080694
APA StyleYang, D., Hou, Y., Wei, C., Ling, J., & Zheng, X. (2025). Aquatic Microcosms in Ecotoxicology: The Community-Level Ecological Risk Assessment of Pollutants. Toxics, 13(8), 694. https://doi.org/10.3390/toxics13080694