New Horizons in Skin Sensitization Assessment of Complex Mixtures: The Use of New Approach Methodologies Beyond Regulatory Approaches
Abstract
1. Introduction
2. Landscape for the Evaluation of Skin Sensitization Potential
2.1. Animal Testing and Human Clinical Studies
2.2. Modern Established NAMs and Emerging Testing Trends
3. The Challenging Landscape of BNP and UVCBS Within the Context of Skin Sensitization Assessment
3.1. Inclusion and Exclusion Criteria
3.2. Complex Mixtures Used as Tools for Evaluation of Skin Sensitization NAMs
3.3. Botanical Extracts
3.4. Medical and Wearable Devices
3.5. Agrochemicals
4. NAMs and Associated Challenges
5. Strategies and Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliver, B.; Krishnan, S.; Rengifo Pardo, M.; Ehrlich, A. Cosmeceutical Contact Dermatitis—Cautions To Herbals. Curr. Treat. Options Allergy 2015, 2, 307–321. [Google Scholar] [CrossRef]
- Alinaghi, F.; Bennike, N.H.; Egeberg, A.; Thyssen, J.P.; Johansen, J.D. Prevalence of Contact Allergy in the General Population: A Systematic Review and Meta-analysis. Contact Dermat. 2019, 80, 77–85. [Google Scholar] [CrossRef]
- Scientific Committee on Consumer Safety SCCS. OPINION on Fragrance Allergens in Cosmetic Products; Scientific Committee on Consumer Safety SCCS: Brussels, Belgium, 2012. [Google Scholar] [CrossRef]
- Shiraishi, E.; Ishida, K.; Matsumaru, D.; Ido, A.; Hiromori, Y.; Nagase, H.; Nakanishi, T. Evaluation of the Skin-Sensitizing Potential of Brazilian Green Propolis. Int. J. Mol. Sci. 2021, 22, 13538. [Google Scholar] [CrossRef]
- Strickland, J.; Truax, J.; Corvaro, M.; Settivari, R.; Henriquez, J.; McFadden, J.; Gulledge, T.; Johnson, V.; Gehen, S.; Germolec, D.; et al. Application of Defined Approaches for Skin Sensitization to Agrochemical Products. Front. Toxicol. 2022, 4, 852856. [Google Scholar] [CrossRef]
- Kanďárová, H.; Pôbiš, P. The “Big Three” in Biocompatibility Testing of Medical Devices: Implementation of Alternatives to Animal Experimentation—Are We There Yet? Front. Toxicol. 2024, 5, 1337468. [Google Scholar] [CrossRef]
- Pei, Y.; Ren, J.; Zhang, H.; Liu, Q.S.; Hou, X.; Zhou, Q.; Jiang, G. Screening Allergenic Potencies of Skin-Contact Products Using the Human-Derived THP-1 Cell Activation Test. Environ. Sci. Technol. 2024, 58, 291–301. [Google Scholar] [CrossRef]
- Sukakul, T.; Chaweekulrat, P.; Limphoka, P.; Boonchai, W. Changing Trends of Contact Allergens in Thailand: A 12-Year Retrospective Study. Contact Dermat. 2019, 81, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Roe, A.L.; McMillan, D.A.; Mahony, C. A Tiered Approach for the Evaluation of the Safety of Botanicals Used as Dietary Supplements: An Industry Strategy. Clin. Pharmacol. Ther. 2018, 104, 446–457. [Google Scholar] [CrossRef]
- European Chemicals Agency. Chapter R.7a: Endpoint Specific Guidance Version 6.0-Guidance on Information Requirements and Chemical Safety Assessment; European Chemicals Agency: Helsinki, Finland, 2017. [Google Scholar] [CrossRef]
- Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures|Risk Assessment Portal|US EPA. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=20533 (accessed on 8 June 2025).
- ECHA Read-Across Assessment Framework (RAAF)—Publications Office of the EU. Available online: https://op.europa.eu/en/publication-detail/-/publication/85f7f484-1bd8-4239-b77b-c847e11d10ee/language-en (accessed on 9 April 2025).
- European Chemicals Agency. Guidance for Identification and Naming of Substances Under REACH and CLP—Version 2.1, May 2017; European Chemicals Agency: Helsinki, Finland, 2017; Available online: https://data.europa.eu/doi/10.2823/538683 (accessed on 16 August 2025).
- Andres, E.; Sá-Rocha, V.M.; Barrichello, C.; Haupt, T.; Ellis, G.; Natsch, A. The Sensitivity of the KeratinoSensTM Assay to Evaluate Plant Extracts: A Pilot Study. Toxicol. In Vitro 2013, 27, 1220–1225. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.C.; de Ávila, R.I.; Veloso, D.F.M.C.; Pedrosa, T.N.; Lima, E.S.; do Couto, R.O.; Lima, E.M.; Batista, A.C.; de Paula, J.R.; Valadares, M.C. In Vitro Safety and Efficacy Evaluations of a Complex Botanical Mixture of Eugenia Dysenterica DC. (Myrtaceae): Prospects for Developing a New Dermocosmetic Product. Toxicol. In Vitro 2017, 45, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Puginier, M.; Roso, A.; Groux, H.; Gerbeix, C.; Cottrez, F. Strategy to Avoid Skin Sensitization: Application to Botanical Cosmetic Ingredients. Cosmetics 2022, 9, 40. [Google Scholar] [CrossRef]
- Kolle, S.N.; Flach, M.; Kleber, M.; Basketter, D.A.; Wareing, B.; Mehling, A.; Hareng, L.; Watzek, N.; Bade, S.; Funk-Weyer, D.; et al. Plant Extracts, Polymers and New Approach Methods: Practical Experience with Skin Sensitization Assessment. Regul. Toxicol. Pharmacol. 2023, 138, 105330. [Google Scholar] [CrossRef] [PubMed]
- Avonto, C.; Chittiboyina, A.G.; Sadrieh, N.; Vukmanovic, S.; Khan, I.A. In Chemico Skin Sensitization Risk Assessment of Botanical Ingredients. J. Appl. Toxicol. 2018, 38, 1047–1053. [Google Scholar] [CrossRef]
- Ezendam, J.; Braakhuis, H.M.; Vanderbriel, R.J. State of the Art in Non-animal Approaches for Skin Sensitization Testing: From Individual Test Methods Towards Testing Strategies. Arch. Toxicol. 2016, 90, 2861–2883. [Google Scholar] [CrossRef]
- OECD. Guideline No. 497: Defined Approaches on Skin Sensitisation; OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2025; ISBN 9789264903005. [Google Scholar]
- Hubrecht, R.C.; Carter, E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals 2019, 9, 754. [Google Scholar] [CrossRef]
- Gerberick, F.C.; Robinson, M.K. A Skin Sensitization Risk Assessment Approach for Evaluation of New Ingredients and Products. Am. J. Contact Dermat. 2000, 11, 65–73. [Google Scholar] [CrossRef]
- OECD. Test No. 406: Skin Sensitisation; OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2022; ISBN 9789264070660. [Google Scholar]
- OECD. Test No. 429: Skin Sensitisation; OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2010; ISBN 9789264071100. [Google Scholar]
- OECD. Test No. 442A: Skin Sensitization; OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2010; ISBN 9789264090972. [Google Scholar]
- European Commission. Toxicity and Assessment of Chemical Mixtures; European Commission: Brussels, Belgium, 2012. [Google Scholar] [CrossRef]
- OECD. Test No. 442B: Skin Sensitization; OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2024; ISBN 9789264090996. [Google Scholar]
- Gądarowska, D.; Kalka, J.; Daniel-Wójcik, A.; Mrzyk, I. Alternative Methods for Skin-Sensitization Assessment. Toxics 2022, 10, 740. [Google Scholar] [CrossRef] [PubMed]
- Botham, P.A.; Basketter, D.A.; Maurer, T.; Mueller, D.; Potokar, M.; Bontinck, W.J. Skin Sensitization—A Critical Review of Predictive Test Methods in Animals and Man. Food Chem. Toxicol. 1991, 29, 275–286. [Google Scholar] [CrossRef]
- Schwartz, L.; Peck, S.M. The Patch Test in Contact Dermatitis. Public Health Rep. (1896–1970) 1944, 59, 546. [Google Scholar] [CrossRef]
- Kligman, A.M. The Identification of Contact Allergens by Human Assay. I. A Critique of Standard Methods. J. Investig. Dermatol. 1966, 47, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Marzulli, F.N.; Maibach, H.I. Contact Allergy: Predictive Testing in Man. Contact Dermat. 1976, 2, 1–17. [Google Scholar] [CrossRef]
- McNamee, P.M.; Api, A.M.; Basketter, D.A.; Frank Gerberick, G.; Gilpin, D.A.; Hall, B.M.; Jowsey, I.; Robinson, M.K. A Review of Critical Factors in the Conduct and Interpretation of the Human Repeat Insult Patch Test. Regul. Toxicol. Pharmacol. 2008, 52, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Na, M.; Ritacco, G.; O’Brien, D.; Lavelle, M.; Api, A.M.; Basketter, D. Fragrance Skin Sensitization Evaluation and Human Testing: 30-Year Experience. Dermatitis 2021, 32, 339–352. [Google Scholar] [CrossRef]
- Api, A.M.; Basketter, D.A.; Cadby, P.A.; Cano, M.-F.; Ellis, G.; Gerberick, G.F.; Griem, P.; McNamee, P.M.; Ryan, C.A.; Safford, R. Dermal Sensitization Quantitative Risk Assessment (QRA) for Fragrance Ingredients. Regul. Toxicol. Pharmacol. 2008, 52, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, N.; Alépée, N.; Hoffmann, S.; Kern, P.S.; van Vliet, E.; Bury, D.; Miyazawa, M.; Nishida, H.; Europe, C. Applying a Next Generation Risk Assessment Framework for Skin Sensitization to Inconsistent New Approach Methodology Information. ALTEX 2023, 40, 439–451. [Google Scholar] [CrossRef]
- Cardin, C.W.; Weaver, J.E.; Bailey, P.T. Dose-response Assessments of Kathon® Biocide (II) Threshold Prophetic Patch Testing. Contact Dermat. 1986, 15, 10–16. [Google Scholar] [CrossRef]
- Strickland, J.; Abedini, J.; Allen, D.G.; Gordon, J.; Hull, V.; Kleinstreuer, N.C.; Ko, H.-S.; Matheson, J.; Thierse, H.-J.; Truax, J.; et al. A Database of Human Predictive Patch Test Data for Skin Sensitization. Arch. Toxicol. 2023, 97, 2825–2837. [Google Scholar] [CrossRef]
- Lang, M.; Giménez-Arnau, E.; Lepoittevin, J.P. Is It Possible to Assess the Allergenicity of Mixtures Based on in Chemico Methods? Preliminary Results on Common Fragrance Aldehydes. Flavour. Fragr. J. 2017, 32, 63–71. [Google Scholar] [CrossRef]
- OECD. The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins; OECD Series on Testing and Assessment; OECD: Paris, France, 2014; ISBN 9789264221444. [Google Scholar]
- Aleksic, M.; Rajagopal, R.; de-Ávila, R.; Spriggs, S.; Gilmour, N. The Skin Sensitization Adverse Outcome Pathway: Exploring the Role of Mechanistic Understanding for Higher Tier Risk Assessment. Crit. Rev. Toxicol. 2024, 54, 69–91. [Google Scholar] [CrossRef]
- OECD. Test No. 442C: In Chemico Skin Sensitisation; OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2024; ISBN 9789264229709. [Google Scholar]
- Chipinda, I.; Ajibola, R.O.; Morakinyo, M.K.; Ruwona, T.B.; Simoyi, R.H.; Siegel, P.D. Rapid and Simple Kinetics Screening Assay for Electrophilic Dermal Sensitizers Using Nitrobenzenethiol. Chem. Res. Toxicol. 2010, 23, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.W.; Natsch, A. High Throughput Kinetic Profiling Approach for Covalent Binding to Peptides: Application to Skin Sensitization Potency of Michael Acceptor Electrophiles. Chem. Res. Toxicol. 2009, 22, 592–603. [Google Scholar] [CrossRef]
- Wareing, B.; Urbisch, D.; Kolle, S.N.; Honarvar, N.; Sauer, U.G.; Mehling, A.; Landsiedel, R. Prediction of Skin Sensitization Potency Sub-Categories Using Peptide Reactivity Data. Toxicol. In Vitro 2017, 45, 134–145. [Google Scholar] [CrossRef] [PubMed]
- de Ávila, R.I.; Carreira Santos, S.; Siino, V.; Levander, F.; Lindstedt, M.; Zeller, K.S. Adjuvants in Fungicide Formulations Can Be Skin Sensitizers and Cause Different Types of Cell Stress Responses. Toxicol. Rep. 2022, 9, 2030–2041. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 442D: In Vitro Skin Sensitisation; OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2024; ISBN 9789264229822. [Google Scholar]
- Lindberg, T.; de Ávila, R.I.; Zeller, K.S.; Levander, F.; Eriksson, D.; Chawade, A.; Lindstedt, M. An Integrated Transcriptomic- and Proteomic-Based Approach to Evaluate the Human Skin Sensitization Potential of Glyphosate and Its Commercial Agrochemical Formulations. J. Proteom. 2020, 217, 103647. [Google Scholar] [CrossRef]
- de Ávila, R.I.; Aleksic, M.; Zhu, B.; Li, J.; Pendlington, R.; Valadares, M.C. Non-Animal Approaches for Photoallergenicity Safety Assessment: Needs and Perspectives for the Toxicology for the 21st Century. Regul. Toxicol. Pharmacol. 2023, 145, 105499. [Google Scholar] [CrossRef]
- OECD. Test No. 442E: In Vitro Skin Sensitisation; OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2024; ISBN 9789264264359. [Google Scholar]
- Larsson, K.; Lindstedt, M.; Borrebaeck, C.A.K. Functional and Transcriptional Profiling of MUTZ-3, a Myeloid Cell Line Acting as a Model for Dendritic Cells. Immunology 2006, 117, 156–166. [Google Scholar] [CrossRef]
- Hu, Z.B.; Ma, W.; Zaborski, M.; MacLeod, R.A.F.; Quentmeier, H.; Drexler, H.G. Establishment and Characterization of Two Novel Cytokine-Responsive Acute Myeloid and Monocytic Leukemia Cell Lines, MUTZ-2 and MUTZ-3. Leukemia 1996, 10, 1025–1040. [Google Scholar]
- Quentmeier, H.; Duschl, A.; Hu, Z.B.; Schnarr, B.; Zaborski, M.; Drexler, H.G. MUTZ-3, a Monocytic Model Cell Line for Interleukin-4 and Lipopolysaccharide Studies. Immunology 1996, 89, 606–612. [Google Scholar] [CrossRef]
- Masterson, A.J.; Sombroek, C.C.; De Gruijl, T.D.; Graus, Y.M.F.; van der Vliet, H.J.J.; Lougheed, S.M.; van den Eertwegh, A.J.M.; Pinedo, H.M.; Scheper, R.J. MUTZ-3, a Human Cell Line Model for the Cytokine-Induced Differentiation of Dendritic Cells from CD34+ Precursors. Blood 2002, 100, 701–703. [Google Scholar] [CrossRef]
- Hoffmann, S.; Kleinstreuer, N.; Alépée, N.; Allen, D.; Api, A.M.; Ashikaga, T.; Clouet, E.; Cluzel, M.; Desprez, B.; Gellatly, N.; et al. Non-Animal Methods to Predict Skin Sensitization (I): The Cosmetics Europe Database. Crit. Rev. Toxicol. 2018, 48, 344–358. [Google Scholar] [CrossRef] [PubMed]
- Strickland, J. Skin Sensitization Testing Using New Approach Methodologies. Toxics 2025, 13, 326. [Google Scholar] [CrossRef]
- Leontaridou, M.; Urbisch, D.; Kolle, S.N.; Ott, K.; Mulliner, D.S.; Gabbert, S.; Landsiedel, R. The Borderline Range of Toxicological Methods: Quantification and Implications for Evaluating Precision. ALTEX 2017, 34, 525–538. [Google Scholar] [CrossRef]
- Kolle, S.N.; Natsch, A.; Gerberick, G.F.; Landsiedel, R. A Review of Substances Found Positive in 1 of 3 in Vitro Tests for Skin Sensitization. Regul. Toxicol. Pharmacol. 2019, 106, 352–368. [Google Scholar] [CrossRef]
- Natsch, A.; Gerberick, G.F. Integrated Skin Sensitization Assessment Based on OECD Methods (I): Deriving a Point of Departure for Risk Assessment. ALTEX 2022, 39, 636–646. [Google Scholar] [CrossRef]
- Natsch, A.; Gerberick, G.F. Integrated Skin Sensitization Assessment Based on OECD Methods (II): Hazard and Potency by Combining Kinetic Peptide Reactivity and the “2 out of 3” Defined Approach. ALTEX 2022, 39, 647–655. [Google Scholar] [CrossRef]
- Kolle, S.N.; Mathea, M.; Natsch, A.; Landsiedel, R. Assessing Experimental Uncertainty in Defined Approaches: Borderline Ranges for in Chemico and in Vitro Skin Sensitization Methods Determined from Ring Trial Data. Appl. Vitr. Toxicol. 2021, 7, 102–111. [Google Scholar] [CrossRef]
- Reinke, E.N.; Reynolds, J.; Gilmour, N.; Reynolds, G.; Strickland, J.; Germolec, D.; Allen, D.G.; Maxwell, G.; Kleinstreuer, N.C. The Skin Allergy Risk Assessment-Integrated Chemical Environment (SARA-ICE) Defined Approach to Derive Points of Departure for Skin Sensitization. Curr. Res. Toxicol. 2025, 8, 100205. [Google Scholar] [CrossRef]
- Kleinstreuer, N.C.; Hoffmann, S.; Alépée, N.; Allen, D.; Ashikaga, T.; Casey, W.; Clouet, E.; Cluzel, M.; Desprez, B.; Gellatly, N.; et al. Non-Animal Methods to Predict Skin Sensitization (II): An Assessment of Defined Approaches. Crit. Rev. Toxicol. 2018, 48, 359–374. [Google Scholar] [CrossRef] [PubMed]
- de Ávila, R.I.; Veloso, D.F.M.C.; Teixeira, G.C.; Rodrigues, T.L.; Lindberg, T.; Lindstedt, M.; Fonseca, S.G.; Lima, E.M.; Valadares, M.C. Evaluation of in Vitro Testing Strategies for Hazard Assessment of the Skin Sensitization Potential of “Real-Life” Mixtures: The Case of Henna-Based Hair-Colouring Products Containing p-Phenylenediamine. Contact Dermat. 2019, 81, 194–209. [Google Scholar] [CrossRef] [PubMed]
- Bialas, I.; Zelent-Kraciuk, S.; Jurowski, K. The Skin Sensitisation of Cosmetic Ingredients: Review of Actual Regulatory Status. Toxics 2023, 11, 392. [Google Scholar] [CrossRef]
- Bergal, M.; Puginier, M.; Gerbeix, C.; Groux, H.; Roso, A.; Cottrez, F.; Milius, A. In Vitro Testing Strategy for Assessing the Skin Sensitizing Potential of “Difficult to Test” Cosmetic Ingredients. Toxicol. In Vitro 2020, 65, 104781. [Google Scholar] [CrossRef]
- Silva, R.J.; Tamburic, S. A State-of-the-Art Review on the Alternatives to Animal Testing for the Safety Assessment of Cosmetics. Cosmetics 2022, 9, 90. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, A.R.; Gautam, R.; Kim, Y.G.; Shin, S.J.; Song, E.S.; Kim, H.J.; Yang, S.J.; Acharya, M.; Jo, J.H.; et al. Prediction of the Skin Sensitization Potential of Didecyldimethylammonium Chloride and 3,7-Dimethyl-2,6-Octadienal and Mixtures of These Compounds with the Excipient Ethylene Glycol through the Human Cell Line Activation Test and the Direct Peptide Reactivity Assay. Toxicol. Ind. Health 2019, 35, 507–519. [Google Scholar] [CrossRef]
- Greminger, A.; Frasca, J.; Goyak, K.; North, C. Challenges Integrating Skin Sensitization Data for Assessment of Difficult to Test Substances. ALTEX 2024, 41, 104–118. [Google Scholar] [CrossRef]
- Nishijo, T.; Miyazawa, M.; Saito, K.; Otsubo, Y.; Mizumachi, H.; Sakaguchi, H. The Dermal Sensitization Threshold (DST) Approach for Mixtures Evaluated as Negative in in Vitro Test Methods; Mixture DST. J. Toxicol. Sci. 2019, 44, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Cottrez, F.; Boitel, E.; Berrada-Gomez, M.P.; Dalhuchyts, H.; Bidan, C.; Rattier, S.; Ferret, P.J.; Groux, H. In Vitro Measurement of Skin Sensitization Hazard of Mixtures and Finished Products: Results Obtained with the SENS-IS Assays. Toxicol. In Vitro 2020, 62, 104644. [Google Scholar] [CrossRef] [PubMed]
- de Souza, I.R.; Iulini, M.; Galbiati, V.; Rodrigues, A.C.; Gradia, D.F.; Andrade, A.J.M.; Firman, J.W.; Pestana, C.; Leme, D.M.; Corsini, E. The Evaluation of Skin Sensitization Potential of the UVCB Substance Diisopentyl Phthalate by in Silico and in Vitro Methods. Arch. Toxicol. 2024, 98, 2153–2171. [Google Scholar] [CrossRef]
- Yang, S.J.; Heo, Y.; Gautam, R.; Lee, J.H.; Maharjan, A.; Jo, J.H.; Acharya, M.; Kim, C.Y.; Kim, H.A. Prediction of the Skin Sensitization Potential of Polyhexamethylene Guanidine and Triclosan and Mixtures of These Compounds with the Excipient Propylene Glycol through the Human Cell Line Activation Test. Toxicol. Ind. Health 2021, 37, 1–8. [Google Scholar] [CrossRef]
- Marcelis, Q.; Deconinck, E.; Rogiers, V.; Vanhaecke, T.; Desmedt, B. Applicability of the DPRA on Mixture Testing: Challenges and Opportunities. Arch. Toxicol. 2023, 97, 2453–2461. [Google Scholar] [CrossRef] [PubMed]
- De Rentiis, A.M.A.; Pink, M.; Verma, N.; Schmitz-Spanke, S. Assessment of the different skin sensitization potentials of irritants and allergens as single substances and in combination using the KeratinoSens assay. Contact Dermat. 2021, 84, 317–325. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as Active Ingredients for Cosmetic Products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef]
- Dutra, R.C.; Campos, M.M.; Santos, A.R.S.; Calixto, J.B. Medicinal Plants in Brazil: Pharmacological Studies, Drug Discovery, Challenges and Perspectives. Pharmacol. Res. 2016, 112, 4–29. [Google Scholar] [CrossRef]
- De Paula Pereira, N. Sustainability of Cosmetic Products in Brazil. J. Cosmet. Dermatol. 2009, 8, 160–161. [Google Scholar] [CrossRef] [PubMed]
- Caramori, S.S.; Lima, C.S.; Fernandes, K.F. Biochemical Characterization of Selected Plant Species from Brazilian Savannas. Braz. Arch. Biol. Technol. 2004, 47, 253–259. [Google Scholar] [CrossRef]
- Mortimer, S.; Reeder, M. Botanicals in Dermatology: Essential Oils, Botanical Allergens, and Current Regulatory Practices. Dermatitis 2016, 27, 317–324. [Google Scholar] [CrossRef]
- Fonseca-Santos, B.; Antonio Corrêa, M.; Chorilli, M. Sustainability, Natural and Organic Cosmetics: Consumer, Products, Efficacy, Toxicological and Regulatory Considerations. Braz. J. Pharm. Sci. 2015, 51, 17–26. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Magalhães, M.C.; Oliveira, R.; Sousa-Lobo, J.M.; Almeida, I.F. Trends in the Use of Botanicals in Anti-Aging Cosmetics. Molecules 2021, 26, 3584. [Google Scholar] [CrossRef]
- Antignac, E.; Nohynek, G.J.; Re, T.; Clouzeau, J.; Toutain, H. Safety of Botanical Ingredients in Personal Care Products/Cosmetics. Food Chem. Toxicol. 2011, 49, 324–341. [Google Scholar] [CrossRef]
- Galli, C.L.; Walker, N.J.; Oberlies, N.H.; Roe, A.L.; Edwards, J.; Fitzpatrick, S.; Griffiths, J.C.; Hayes, A.W.; Mahony, C.; Marsman, D.S.; et al. Development of a Consensus Approach for Botanical Safety Evaluation—A Roundtable Report. Toxicol. Lett. 2019, 314, 10–17. [Google Scholar] [CrossRef]
- Roberts, G.K.; Gardner, D.; Foster, P.M.; Howard, P.C.; Lui, E.; Walker, L.; van Breemen, R.B.; Auerbach, S.S.; Rider, C. Finding the Bad Actor: Challenges in Identifying Toxic Constituents in Botanical Dietary Supplements. Food Chem. Toxicol. 2019, 124, 431–438. [Google Scholar] [CrossRef]
- Kern, P.S.; Ellingson, K.; Gao, Y.; Krutz, N.L.; Krivos, K.; Quijano, M.; Xu, Y.; Ryan, C.A. Development of a Peptide Reactivity Assay for Screening Botanicals and Natural Substances: Proof of Concept Studies. Toxicol. In Vitro 2023, 90, 105591. [Google Scholar] [CrossRef]
- Botanical Ingredients—Cosmetics Info. Available online: https://www.cosmeticsinfo.org/ingredient/botanical-ingredients/ (accessed on 17 May 2025).
- Api, A.M.; Belsito, D.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; Dekant, W.; et al. The RIFM Approach to Evaluating Natural Complex Substances (NCS). Food Chem. Toxicol. 2022, 159, 112715. [Google Scholar] [CrossRef]
- Roberts, D.W.; Api, A.M.; Safford, R.J.; Lalko, J.F. Principles for Identification of High Potency Category Chemicals for Which the Dermal Sensitisation Threshold (DST) Approach Should Not Be Applied. Regul. Toxicol. Pharmacol. 2015, 72, 683–693. [Google Scholar] [CrossRef]
- Safford, R.J. The Dermal Sensitisation Threshold-A TTC Approach for Allergic Contact Dermatitis. Regul. Toxicol. Pharmacol. 2008, 51, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Safford, R.J.; Aptula, A.O.; Gilmour, N. Refinement of the Dermal Sensitisation Threshold (DST) Approach Using a Larger Dataset and Incorporating Mechanistic Chemistry Domains. Regul. Toxicol. Pharmacol. 2011, 60, 218–224. [Google Scholar] [CrossRef]
- Gilmour, N.; Kern, P.S.; Alépée, N.; Boislève, F.; Bury, D.; Clouet, E.; Hirota, M.; Hoffmann, S.; Kühnl, J.; Lalko, J.F.; et al. Development of a next Generation Risk Assessment Framework for the Evaluation of Skin Sensitisation of Cosmetic Ingredients. Regul. Toxicol. Pharmacol. 2020, 116, 104721. [Google Scholar] [CrossRef] [PubMed]
- Omeragic, E.; Dedic, M.; Elezovic, A.; Becic, E.; Imamovic, B.; Kladar, N.; Niksic, H. Application of Direct Peptide Reactivity Assay for Assessing the Skin Sensitization Potential of Essential Oils. Sci. Rep. 2022, 12, 7470. [Google Scholar] [CrossRef] [PubMed]
- Nishijo, T.; Miyazawa, M.; Saito, K.; Otsubo, Y.; Mizumachi, H.; Sakaguchi, H. Sensitivity of KeratinosensTM and H-CLAT for Detecting Minute Amounts of Sensitizers to Evaluate Botanical Extract. J. Toxicol. Sci. 2019, 44, 13–21. [Google Scholar] [CrossRef]
- Gao, Y.; Ryan, C.A.; Ellingson, K.; Krutz, N.; Kern, P.S. A Botanical Reference Set Illustrating a Weight of Evidence Approach for Skin Sensitization Risk Assessment. Food Chem. Toxicol. 2024, 184, 114413. [Google Scholar] [CrossRef]
- Classification of Products as Drugs and Devices and Additional Product Classification Issues|FDA. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/classification-products-drugs-and-devices-and-additional-product-classification-issues (accessed on 2 June 2025).
- Wearable Technology: What It Is, Features, and Examples. Available online: https://www.repsol.com/en/energy-and-the-future/technology-and-innovation/wearable-technology/index.cshtml (accessed on 18 May 2025).
- Consumer Wearables Sensitizer Testing|EAG Laboratories. Available online: https://www.eag.com/app-note/will-the-newest-wearable-device-leave-you-itching-for-more/ (accessed on 18 May 2025).
- Khatsenko, K.; Khin, Y.; Maibach, H. Allergic Contact Dermatitis to Components of Wearable Adhesive Health Devices. Dermatitis 2020, 31, 283–286. [Google Scholar] [CrossRef]
- Cichoń, M.; Trzeciak, M.; Sokołowska-Wojdyło, M.; Nowicki, R.J. Contact Dermatitis to Diabetes Medical Devices. Int. J. Mol. Sci. 2023, 24, 10697. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-10:2021; Biological Evaluation of Medical Devices—Part 10: Tests for Skin Sensitization. International Organization for Standardization: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/75279.html (accessed on 18 May 2025).
- ISO 10993-12:2021; Biological Evaluation of Medical Devices—Part 12: Sample Preparation and Reference Materials. International Organization for Standardization: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/75769.html (accessed on 18 May 2025).
- Svobodova, L.; Dvorakova, M.; Rucki, M.; Kejlova, K.; Kandarova, H.; Kolarova, H.; Mannerstrom, M.; Heinonen, T. Safety Testing of Adult Novelties Using in Vitro Methods. Regul. Toxicol. Pharmacol. 2020, 117, 104780. [Google Scholar] [CrossRef]
- Ruparel, N.; Islas-Robles, A.; Hilberer, A.; Cantrell, K.; Madrid, M.; Ryan, C.; Gerberick, G.F.; Persaud, R. Deriving a Point of Departure for Assessing the Skin Sensitization Risk of Wearable Device Constituents with in Vitro Methods. Food Chem. Toxicol. 2024, 189, 114725. [Google Scholar] [CrossRef]
- Jenvert, R.-M.; Larne, O.; Johansson, A.; Berglin, M.; Pedersen, E.; Johansson, H. Evaluation of the Applicability of GARDskin to Predict Skin Sensitizers in Extracts from Medical Device Materials. Front. Toxicol. 2024, 6, 1320367. [Google Scholar] [CrossRef]
- Pellevoisin, C.; Cottrez, F.; Johansson, J.; Pedersen, E.; Coleman, K.; Groux, H. Pre-Validation of SENS-IS Assay for in Vitro Skin Sensitization of Medical Devices. Toxicol. In Vitro 2021, 71, 105068. [Google Scholar] [CrossRef]
- Svobodová, L.; Rucki, M.; Vlkova, A.; Kejlova, K.; Jírová, D.; Dvorakova, M.; Kolarova, H.; Kandárová, H.; Pôbiš, P.; Heinonen, T.; et al. Sensitization Potential of Medical Devices Detected by In Vitro and In Vivo Methods. ALTEX 2021, 38, 419–430. [Google Scholar] [CrossRef]
- Okamoto, Y.; Fukui, C.; Kobayashi, T.; Morioka, H.; Mizumachi, H.; Inomata, Y.; Kaneki, A.; Okada, M.; Haishima, Y.; Yamamoto, E.; et al. Proof of Concept Testing of a Positive Reference Material for in Vivo and in Vitro Sensitization Testing of Medical Devices. J. Biomed. Mater. Res. B Appl. Biomater. 2024, 112, e35386. [Google Scholar] [CrossRef]
- Cottrez, F.; Boitel, E.; Sahli, E.; Groux, H. Validation of a New 3D Epidermis Model for the SENS-IS Assay to Evaluate Skin Sensitization Potency of Chemicals. Toxicol. In Vitro 2025, 106, 106039. [Google Scholar] [CrossRef] [PubMed]
- Takenouchi, O.; Miyazawa, M.; Saito, K.; Ashikaga, T.; Sakaguchi, H. Predictive Performance of the Human Cell Line Activation Test (h-CLAT) for Lipophilic Chemicals with High Octanol-Water Partition Coefficients. J. Toxicol. Sci. 2013, 38, 599–609. [Google Scholar] [CrossRef]
- Settivari, R.S.; Gehen, S.C.; Amado, R.A.; Visconti, N.R.; Boverhof, D.R.; Carney, E.W. Application of the KeratinoSensTM Assay for Assessing the Skin Sensitization Potential of Agrochemical Active Ingredients and Formulations. Regul. Toxicol. Pharmacol. 2015, 72, 350–360. [Google Scholar] [CrossRef] [PubMed]
- de Ávila, R.I.; Teixeira, G.C.; Veloso, D.F.M.C.; Moreira, L.C.; Lima, E.M.; Valadares, M.C. In Vitro Assessment of Skin Sensitization, Photosensitization and Phototoxicity Potential of Commercial Glyphosate-Containing Formulations. Toxicol. In Vitro 2017, 45, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Mizumachi, H.; LeBaron, M.J.; Settivari, R.S.; Miyazawa, M.; Marty, M.S.; Sakaguchi, H. Characterization of Dermal Sensitization Potential for Industrial or Agricultural Chemicals with EpiSensA. J. Appl. Toxicol. 2021, 41, 915–927. [Google Scholar] [CrossRef]
- Corvaro, M.; Henriquez, J.; Settivari, R.; Mattson, U.; Forreryd, A.; Gradin, R.; Johansson, H.; Gehen, S. GARD™skin and GARD™potency: A proof-of-concept study investigating applicability domain for agrochemical formulations. Regul. Toxicol. Pharmacol. 2024, 148, 105595. [Google Scholar] [CrossRef]
- Boberg, J.; Dybdahl, M.; Petersen, A.; Hass, U.; Svingen, T.; Vinggaard, A.M. A Pragmatic Approach for Human Risk Assessment of Chemical Mixtures. Curr. Opin. Toxicol. 2019, 15, 1–7. [Google Scholar] [CrossRef]
- Martin, O.; Scholze, M.; Ermler, S.; McPhie, J.; Bopp, S.K.; Kienzler, A.; Parissis, N.; Kortenkamp, A. Ten Years of Research on Synergisms and Antagonisms in Chemical Mixtures: A Systematic Review and Quantitative Reappraisal of Mixture Studies. Environ. Int. 2021, 146, 106206. [Google Scholar] [CrossRef]
- Patlewicz, G.; Casati, S.; Basketter, D.A.; Asturiol, D.; Roberts, D.W.; Lepoittevin, J.P.; Worth, A.P.; Aschberger, K. Can Currently Available Non-Animal Methods Detect Pre and pro-Haptens Relevant for Skin Sensitization? Regul. Toxicol. Pharmacol. 2016, 82, 147–155. [Google Scholar] [CrossRef]
- Urbisch, D.; Becker, M.; Honarvar, N.; Kolle, S.N.; Mehling, A.; Teubner, W.; Wareing, B.; Landsiedel, R. Assessment of Pre- and Pro-Haptens Using Nonanimal Test Methods for Skin Sensitization. Chem. Res. Toxicol. 2016, 29, 901–913. [Google Scholar] [CrossRef] [PubMed]
- Natsch, A.; Haupt, T.; Wareing, B.; Landsiedel, R.; Kolle, S.N. Predictivity of the Kinetic Direct Peptide Reactivity Assay (KDPRA) for Sensitizer Potency Assessment and GHS Subclassification. ALTEX 2020, 37, 652–664. [Google Scholar] [CrossRef]
- Fabian, E.; Vogel, D.; Blatz, V.; Ramirez, T.; Kolle, S.; Eltze, T.; Van Ravenzwaay, B.; Oesch, F.; Landsiedel, R. Xenobiotic Metabolizing Enzyme Activities in Cells Used for Testing Skin Sensitization in Vitro. Arch. Toxicol. 2013, 87, 1683–1696. [Google Scholar] [CrossRef]
- Roberts, D.W. Dealing with substances with no defined molecular weight in non-animal assays for skin sensitization. A comment on “Plant extracts, polymers and new approach methods: Practical experience with skin sensitization assessment” (Kolle et al., 2023). Regul. Toxicol. Pharmacol. 2024, 148, 105582. [Google Scholar] [CrossRef] [PubMed]
- Kolle, S.N. Response to the Letter to the Editor by David W Roberts “Dealing with substances with no defined molecular weight in non-animal assays for skin sensitization. A comment on “Plant extracts, polymers and new approach methods: Practical experience with skin sensitization assessment” (Kolle et al., 2023)”. Regul. Toxicol. Pharmacol. 2024, 148, 105593. [Google Scholar] [CrossRef]
- Bauch, C.; Kolle, S.N.; Ramirez, T.; Eltze, T.; Fabian, E.; Mehling, A.; Teubner, W.; van Ravenzwaay, B.; Landsiedel, R. Putting the Parts Together: Combining in Vitro Methods to Test for Skin Sensitizing Potentials. Regul. Toxicol. Pharmacol. 2012, 63, 489–504. [Google Scholar] [CrossRef]
- Hemming, J.D.C.; Hosford, M.; Shafer, M.M. Application of the direct peptide reactivity assay (DPRA) to inorganic compounds: A case study of platinum species. Toxicol. Res. (Camb.) 2019, 8, 802–814. [Google Scholar] [CrossRef] [PubMed]
- Baumann, C.A.; Crist, B.D. Nickel Allergy to Orthopaedic Implants: A Review and Case Series. J. Clin. Orthop. Trauma 2020, 11, S596–S603. [Google Scholar] [CrossRef] [PubMed]
- Natsch, A.; Gfeller, H. LC-MS-Based Characterization of the Peptide Reactivity of Chemicals to Improve the in Vitro Prediction of the Skin Sensitization Potential. Toxicol. Sci. 2008, 106, 464–478. [Google Scholar] [CrossRef] [PubMed]
- EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM). DB-ALM Protocol N° 217: Kinetic Direct Peptide Reactivity Assay (KDPRA) Skin Sensitisation & Allergic Contact Dermatitis. 2020. Available online: https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/EURL-ECVAM/datasets/DBALM/LATEST/online/DBALM_docs/217_P_kDPRA_final_27Oct20.pdf (accessed on 15 June 2025).
- Aptula, A.O.; Patlewicz, G.; Roberts, D.W. Skin Sensitization: Reaction Mechanistic Applicability Domains for Structure-Activity Relationships. Chem. Res. Toxicol. 2005, 18, 1420–1426. [Google Scholar] [CrossRef]
- EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM). EURL ECVAM DB-ALM: Method Summary- N° 155: KeratinoSensTM; Version 4; EU Reference Laboratory for Alternatives to Animal Testing: Ispra, Italy, 2018. [Google Scholar]
- Nguyen, T.; Nioi, P.; Pickett, C.B. The Nrf2-Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress. J. Biol. Chem. 2009, 284, 13291–13295. [Google Scholar] [CrossRef]
- Jian, Z.; Tang, L.; Yi, X.; Liu, B.; Zhang, Q.; Zhu, G.; Wang, G.; Gao, T.; Li, C. Aspirin Induces Nrf2-Mediated Transcriptional Activation of Haem Oxygenase-1 in Protection of Human Melanocytes from H2O2-Induced Oxidative Stress. J. Cell Mol. Med. 2016, 20, 1307–1318. [Google Scholar] [CrossRef]
- Gagliotti Vigil de Mello, S.V.; Frode, T.S. In Vitro and In Vivo Experimental Model-Based Approaches for Investigating Anti-Inflammatory Properties of Coumarins. Curr. Med. Chem. 2018, 25, 1446–1476. [Google Scholar] [CrossRef]
- Saito, K.; Takenouchi, O.; Nukada, Y.; Miyazawa, M.; Sakaguchi, H. An in Vitro Skin Sensitization Assay Termed EpiSensA for Broad Sets of Chemicals Including Lipophilic Chemicals and Pre/pro-Haptens. Toxicol. In Vitro 2017, 40, 11–25. [Google Scholar] [CrossRef]
- Mizumachi, H.; Suzuki, S.; Sakuma, M.; Natsui, M.; Imai, N.; Miyazawa, M. Reconstructed Human Epidermis-Based Testing Strategy of Skin Sensitization Potential and Potency Classification Using Epidermal Sensitization Assay and in Silico Data. J. Appl. Toxicol. 2024, 44, 415–427. [Google Scholar] [CrossRef]
- Labouta, H.I.; Asgarian, N.; Rinker, K.; Cramb, D.T. Meta-Analysis of Nanoparticle Cytotoxicity via Data-Mining the Literature. ACS Nano 2019, 13, 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- Mizumachi, H.; Sakuma, M.; Ikezumi, M.; Saito, K.; Takeyoshi, M.; Imai, N.; Okutomi, H.; Umetsu, A.; Motohashi, H.; Watanabe, M.; et al. Transferability and Within- and between-Laboratory Reproducibilities of EpiSensA for Predicting Skin Sensitization Potential in Vitro: A Ring Study in Three Laboratories. J. Appl. Toxicol. 2018, 38, 1233–1243. [Google Scholar] [CrossRef]
- Mirandola, P.; Gobbi, G.; Micheloni, C.; Vaccarezza, M.; Di Marcantonio, D.; Ruscitti, F.; De Panfilis, G.; Vitale, M. Hydrogen Sulfide Inhibits IL-8 Expression in Human Keratinocytes via MAP Kinase Signaling. Lab. Investig. 2011, 91, 1188–1194. [Google Scholar] [CrossRef]
- Kondo, S.; Kono, T.; Sauder, D.N.; McKenzie, R.C. IL-8 Gene Expression and Production in Human Keratinocytes and Their Modulation by UVB. J. Investig. Dermatol. 1993, 101, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Karri, V.; Lidén, C.; Fyhrquist, N.; Högberg, J.; Karlsson, H.L. Impact of Mono-Culture vs. Co-Culture of Keratinocytes and Monocytes on Cytokine Responses Induced by Important Skin Sensitizers. J. Immunotoxicol. 2021, 18, 74–84. [Google Scholar] [CrossRef]
- Schellenberger, M.T.; Bock, U.; Hennen, J.; Groeber-Becker, F.; Walles, H.; Blömeke, B. A Coculture System Composed of THP-1 Cells and 3D Reconstructed Human Epidermis to Assess Activation of Dendritic Cells by Sensitizing Chemicals after Topical Exposure. Toxicol. In Vitro 2019, 57, 62–66. [Google Scholar] [CrossRef]
- Thélu, A.; Catoire, S.; Kerdine-Römer, S. Immune-Competent in Vitro Co-Culture Models as an Approach for Skin Sensitisation Assessment. Toxicol. In Vitro 2020, 62, 104691. [Google Scholar] [CrossRef]
- Brandmair, K.; Dising, D.; Finkelmeier, D.; Schepky, A.; Kuehnl, J.; Ebmeyer, J.; Burger-Kentischer, A. A Novel Three-Dimensional Nrf2 Reporter Epidermis Model for Skin Sensitization Assessment. Toxicology 2024, 503, 153743. [Google Scholar] [CrossRef]
- Gregory, B.; Savino, R.; Ciliberto, G. A Fast and Sensitive Colorimetric Assay for IL-6 in Hepatoma Cells Based on the Production of a Secreted Form of Alkaline Phosphatase (SEAP). J. Immunol. Methods 1994, 170, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.T.; Sinai, P.; Kitts, P.A.; Kain, S.R. Quantification of Gene Expression with a Secreted Alkaline Phosphatase Reporter System. Biotechniques 1997, 23, 1110–1114. [Google Scholar] [CrossRef] [PubMed]
- Burger-Kentischer, A.; Abele, I.S.; Finkelmeier, D.; Wiesmüller, K.H.; Rupp, S. A New Cell-Based Innate Immune Receptor Assay for the Examination of Receptor Activity, Ligand Specificity, Signalling Pathways and the Detection of Pyrogens. J. Immunol. Methods 2010, 358, 93–103. [Google Scholar] [CrossRef]
- Zatsepin, M.; Mattes, A.; Rupp, S.; Finkelmeier, D.; Basu, A.; Burger-Kentischer, A.; Goldblum, A. Computational Discovery and Experimental Confirmation of TLR9 Receptor Antagonist Leads. J. Chem. Inf. Model. 2016, 56, 1835–1846. [Google Scholar] [CrossRef] [PubMed]
- Kühbacher, A.; Sohn, K.; Burger-Kentischer, A.; Rupp, S. Immune Cell-Supplemented Human Skin Model for Studying Fungal Infections. Methods Mol. Biol. 2017, 1508, 439–449. [Google Scholar] [CrossRef]
- Masri, S.; Fauzi, M.B.; Rajab, N.F.; Lee, W.-H.; Zainal Abidin, D.A.; Siew, E.L. In Vitro 3D Skin Culture and Its Sustainability in Toxicology: A Narrative Review. Artif. Cells Nanomed. Biotechnol. 2024, 52, 476–499. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Ahmed, M.M.; Ishaq, A.; Freer, M.; Stebbings, R.; Dickinson, A.M. An In Vitro Human Skin Test for Predicting Skin Sensitization and Adverse Immune Reactions to Biologics. Toxics 2024, 12, 401. [Google Scholar] [CrossRef] [PubMed]
- Wadman, M. FDA No Longer Has to Require Animal Testing for New Drugs. Science 2023, 379, 127–128. [Google Scholar] [CrossRef]
- Stevenson, M.; Czekala, L.; Simms, L.; Tschierske, N.; Larne, O.; Walele, T. The Use of Genomic Allergen Rapid Detection (GARD) Assays to Predict the Respiratory and Skin Sensitising Potential of e-Liquids. Regul. Toxicol. Pharmacol. 2019, 103, 158–165. [Google Scholar] [CrossRef]
- Marika, M.; Marketa, D.; Lada, S.; Marian, R.; Filip, K.; Adam, V.; Věra, V.; Kristina, K.; Dagmar, J.; Tuula, H. New Approach Methods for Assessing Indoor Air Toxicity. Curr. Res. Toxicol. 2022, 3, 100090. [Google Scholar] [CrossRef]
- Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the Indoor Environment. Chem. Rev. 2010, 110, 2536–2572. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Wanibuchi, S.; Sato, A.; Kasahara, T.; Fujita, M. Precipitation of Test Chemicals in Reaction Solutions Used in the Amino Acid Derivative Reactivity Assay and the Direct Peptide Reactivity Assay. J. Pharmacol. Toxicol. Methods 2019, 100, 106624. [Google Scholar] [CrossRef] [PubMed]
- Forreryd, A.; Gradin, R.; Humfrey, C.; Sweet, L.; Johansson, H. Exploration of the GARDTMskin Applicability Domain: Indirectly Acting Haptens, Hydrophobic Substances and UVCBs. ALTEX 2023, 40, 53–60. [Google Scholar] [CrossRef] [PubMed]
Botanicals | Extracts of Medical Devices/Wearables | Agrochemicals | Mixtures | Pollutants | ||
---|---|---|---|---|---|---|
Number of sources analyzed (manuscripts) | 11 | 8 | 7 | 9 | 2 | |
Existing paired data | Human data available | Yes (from clinical studies; no accidental exposure reports) | ||||
Animal data available | Yes | |||||
NAMs used—summary | Validated methods used | DPRA | ||||
KeratinoSens™ | ||||||
h-CLAT | ||||||
GARD™skin | ||||||
U-SENS™ | ||||||
LuSens | LuSens | |||||
kDPRA | ||||||
ADRA | ||||||
RhE-based assay used (validated and non-validated) | Sens-IS | Sens-IS | ||||
EpiSensA | ||||||
Other non-validated NAMs used | 7 | h-CLAT (adaptation) | 3 | 4 | ||
In silico approaches used | OECD QSAR Toolbox | |||||
Derek Nexus | ||||||
VEGA QSAR | ||||||
Toxtree | ||||||
OASIS TIMES | OASIS TIMES | |||||
Combinations of validated NAMs used |
|
|
|
| DPRA + LuSens | |
NAMs technical aspects—summary | Spiking experiments conducted | Yes | ||||
Specific challenges identified for the conduct of NAMs |
| Method(s) used for sampling the pollutants can vary and affect the results. Assessing indoor air pollution based solely on individual chemicals is not an adequate approach [152]. | ||||
Unique aspects discussed | Potency classification using the GARD™potency assay [151]. | |||||
Defined approaches | Potency addressed | Yes [95] | Yes [104] | Yes [5,46,114] | Yes [68,71] | Yes [152] |
Strategies (DA, WoE, others) | 2o3 [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islas-Robles, A.; Ramani, M.; Phillips, J.; Costin, G.-E. New Horizons in Skin Sensitization Assessment of Complex Mixtures: The Use of New Approach Methodologies Beyond Regulatory Approaches. Toxics 2025, 13, 693. https://doi.org/10.3390/toxics13080693
Islas-Robles A, Ramani M, Phillips J, Costin G-E. New Horizons in Skin Sensitization Assessment of Complex Mixtures: The Use of New Approach Methodologies Beyond Regulatory Approaches. Toxics. 2025; 13(8):693. https://doi.org/10.3390/toxics13080693
Chicago/Turabian StyleIslas-Robles, Argel, Meera Ramani, Jakeb Phillips, and Gertrude-Emilia Costin. 2025. "New Horizons in Skin Sensitization Assessment of Complex Mixtures: The Use of New Approach Methodologies Beyond Regulatory Approaches" Toxics 13, no. 8: 693. https://doi.org/10.3390/toxics13080693
APA StyleIslas-Robles, A., Ramani, M., Phillips, J., & Costin, G.-E. (2025). New Horizons in Skin Sensitization Assessment of Complex Mixtures: The Use of New Approach Methodologies Beyond Regulatory Approaches. Toxics, 13(8), 693. https://doi.org/10.3390/toxics13080693