Health Risk Assessment of Toluene and Formaldehyde Based on a Short-Term Exposure Scenario: A Comparison of the Reference Concentration, Reference Dose, and Minimal Risk Level
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Health Guidance Values
2.3. Multimedia Environmental Dynamics Model
2.4. Non-Carcinogenic Health Risk Assessment
Substance | Exposure Pathway | HGV | Duration | Value | Reference |
---|---|---|---|---|---|
Toluene | Inhalation | RfC a | Chronic (lifespan) | 5.00 mg/m3 | [18] |
MRL b | Acute (1–14 d) | 7.54 mg/m3 | [10] | ||
Oral | RfD c | Chronic (lifespan) | 0.08 mg/kg/d | [18] | |
MRL | Acute (1–14 d) | 0.8 mg/kg/d | [10] | ||
Formaldehyde | Inhalation | RfC | Chronic (lifespan) | 0.007 mg/m3 | [19] |
MRL | Intermediate (15–364 d) | 0.037 mg/m3 | [20] | ||
Oral | RfD | Chronic (lifespan) | 0.2 mg/kg/d | [21] | |
MRL | Intermediate (15–364 d) | 0.3 mg/kg/d | [20] |
3. Results and Discussion
3.1. Health Guidance Values
Category | RfC | Acute MRL | Chronic MRL |
---|---|---|---|
Critical study | Multiple human studies (n = 10) | Little et al. [28] | Multiple human studies (n = 6) |
Test subjects | Workers | Sensitive group | Workers |
Exposure duration | ≥1 year | 20 min | 13.5 years |
Critical effect | Neurological effects | Neurological effects | Neurological effects |
Point of departure | NOAEL (ADJ) a, 12.21 ppm | LOAEL b 15 ppm | NOAEL (ADJ) c, 10 ppm |
Uncertainty factors | 10 (intraspecies variation) | 3 (LOAEL to NOAEL) 3 (intraspecies variation) | 10 (intraspecies variation) |
Value | 5.00 mg/m3 | 7.54 mg/m3 | 3.77 mg/m3 |
Reference | [18] | [10] | [10] |
Category | RfC | Acute MRL | Intermediate MRL | Chronic MRL |
---|---|---|---|---|
Critical study | Krzyzanowski et al. [29]; Venn et al. [30]; Annesi-Maesano et al. [31] | Pazdrak et al. [32] | Rusch et al. [33] | Holmström et al. [34] |
Test subjects | Children | Human | Cynomolgus monkey | Workers |
Exposure duration | ≤2 weeks | 2 h | 26 weeks | 10.4 years |
Critical effect | Pulmonary function decreases; Asthma prevalence or control; Allergic conditions | Nasal and eye irritation | Nasopharyngeal irritation; Nasal epithelial lesions | Nasal epithelium damage; Eyes and upper respiratory tract irritation |
Point of departure | osRfC a, 0.006–0.008 mg/m3 (midpoint = 0.007 mg/m3) | LOAEL b, 0.4 ppm | NOAEL c, 0.98 ppm | LOAEL, 0.24 ppm |
Uncertainty factors | 3 or 10 (intraspecies variation) | 3 (LOAEL to NOAEL) 3 (intraspecies variation) | 3 (interspecies variation) 10 (intraspecies variation) | 3 (LOAEL to NOAEL) 10 (intraspecies variation) |
Value | 0.007 mg/m3 | 0.049 mg/m3 | 0.037 mg/m3 | 0.010 mg/m3 |
Reference | [19] | [20] | [20] | [20] |
3.2. Non-Carcinogenic Health Risk Assessment
Substance | TRV a | Age | Inhalation | Ingestion | ||||
---|---|---|---|---|---|---|---|---|
Min | Max | Median | Min | Max | Median | |||
Toluene | RfC | 0–9 | 8.86 × 10−12 | 1.37 × 101 | 1.25 × 10−7 | 5.47 × 10−19 | 8.46 × 10−7 | 7.73 × 10−15 |
10–18 | 2.91 × 10−12 | 4.49 × 100 | 4.11 × 10−8 | 3.79 × 10−20 | 5.86 × 10−8 | 5.35 × 10−16 | ||
19–64 | 2.68 × 10−12 | 4.13 × 100 | 3.78 × 10−8 | 3.16 × 10−20 | 4.89 × 10−8 | 4.47 × 10−16 | ||
≥65 | 3.00 × 10−12 | 4.62 × 100 | 4.23 × 10−8 | 3.51 × 10−20 | 5.43 × 10−8 | 4.96 × 10−16 | ||
Acute MRL | 0–9 | 5.88 × 10−12 | 9.07 × 100 | 8.30 × 10−8 | 5.47 × 10−20 | 8.46 × 10−8 | 7.73 × 10−16 | |
10–18 | 1.93 × 10−12 | 2.98 × 100 | 2.73 × 10−8 | 3.79 × 10−21 | 5.86 × 10−9 | 5.35 × 10−17 | ||
19–64 | 1.77 × 10−12 | 2.74 × 100 | 2.51 × 10−8 | 3.16 × 10−21 | 4.89 × 10−9 | 4.47 × 10−17 | ||
≥65 | 1.99 × 10−12 | 3.07 × 100 | 2.81 × 10−8 | 3.51 × 10−21 | 5.43 × 10−9 | 4.96 × 10−17 | ||
Formaldehyde | RfC | 0–9 | 1.74 × 10−5 | 1.28 × 103 | 3.90 × 10−3 | 6.02 × 10−16 | 4.41 × 10−8 | 1.35 × 10−13 |
10–18 | 5.72 × 10−6 | 4.19 × 102 | 1.28 × 10−3 | 4.17 × 10−17 | 3.05 × 10−9 | 9.35 × 10−15 | ||
19–64 | 5.26 × 10−6 | 3.85 × 102 | 1.18 × 10−3 | 3.48 × 10−17 | 2.55 × 10−9 | 7.81 × 10−15 | ||
≥65 | 5.89 × 10−6 | 4.31 × 102 | 1.32 × 10−3 | 3.86 × 10−17 | 2.83 × 10−9 | 8.66 × 10−15 | ||
Intermediate MRL | 0–9 | 2.48 × 10−6 | 2.43 × 102 | 7.42 × 10−4 | 4.01 × 10−16 | 2.94 × 10−8 | 9.00 × 10−14 | |
10–18 | 8.16 × 10−7 | 7.96 × 101 | 2.43 × 10−4 | 2.78 × 10−17 | 2.04 × 10−9 | 6.23 × 10−15 | ||
19–64 | 7.50 × 10−7 | 7.32 × 101 | 2.24 × 10−4 | 2.32 × 10−17 | 1.70 × 10−9 | 5.21 × 10−15 | ||
≥65 | 1.12 × 10−6 | 8.20 × 101 | 2.51 × 10−4 | 2.57 × 10−17 | 1.89 × 10−9 | 5.78 × 10−15 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADD | Average daily dose |
ARE | Acute reference exposure |
AT | Average exposure time |
ATSDR | Agency for Toxic Substances and Disease Registry |
BMDL | A lower one-sided confidence limit on the benchmark dose |
BW | Body weight |
C | Concentration |
CLT | Period until extinction of the target chemical in the environment |
HGV | Health guidance value |
HQ | Hazard quotient |
IET | Indoor exposure time |
IHR | Inhalation rate |
IRIS | Integrated Risk Information System |
ITR | Intake rate |
LOAEL | Lowest-observed-adverse-effect level |
MoE | Ministry of the Environment |
MOIS | Ministry of Interior and Safety |
MRL | Minimal risk level |
NICS | National Institute of Chemical Safety |
NIER | National Institute of Environmental Research |
NOAEL | No-observed-adverse-effect level |
OET | outdoor exposure time |
RfC | Reference concentration |
RfD | Reference dose |
TRV | Toxicity reference value |
UF | Uncertainty factor |
US EPA | United States Environmental Protection Agency |
References
- Choi, J.U. Re-evaluation of the Impact Range Considering Decomposition Products in the Event of Chemical Accidents Involving Nitric Acid Leakage. Master’s Thesis, Graduate School of Industry Kumoh National Institute of Technology, Gyeongbuk, Republic of Korea, 2020. [Google Scholar]
- Jeon, B.H.; Kim, H.S. Improvement on accident statistic analysis and response of hazardous chemical transport vehicle. J. Soc. Disaster Inf. 2018, 14, 59–64. [Google Scholar]
- Chun, K.S.; Kim, S.B.; Ahn, S.R.; Park, Y.S.; Park, C.H. Chemical accident response information systems improvement risk assessment research, Korean. J. Hazard. Mater. 2013, 1, 69–74. [Google Scholar]
- Park, S.H.; Lim, H.B.; Hong, H.J.; Kim, H.S.; Yoon, D.K.; Lee, H.W.; Kong, H.K.; Jeon, J.I.; Choi, J.W.; Cho, E.M.; et al. Health risk assessment for multimedia exposure of formaldehyde emitted by chemical accident. Environ. Sci. Pollut. Res. Int. 2021, 28, 9712–9722. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Risk Assessment in the Federal Government: Managing the Process; National Academies Press: Washington, DC, USA, 1983. [CrossRef]
- United States Environmental Protection Agency (US EPA). Methods for Derivation of Inhalation Reference Concentrations and Application of Inhalation Dosimetry; US EPA: Durham, NC, USA, 1994.
- United States Environmental Protection Agency (US EPA). A Review of the Reference Dose and Reference Concentration Processes; US EPA: Washington, DC, USA, 2002.
- Agency for Toxic Substances and Disease Registry (ATSDR). About Minimal Risk Levels. Available online: https://www.atsdr.cdc.gov/minimal-risk-levels/php/about/?CDC_AAref_Val=https://www.atsdr.cdc.gov/mrls/index.html (accessed on 25 June 2025).
- Ministry of the Environment (MoE). Designation of Substances Requiring Accident Preparedness. Available online: https://www.law.go.kr/%ED%96%89%EC%A0%95%EA%B7%9C%EC%B9%99/%EC%82%AC%EA%B3%A0%EB%8C%80%EB%B9%84%EB%AC%BC%EC%A7%88%EC%9D%98%EC%A7%80%EC%A0%95 (accessed on 25 June 2025).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Toluene; ATSDR: Atlanta, GA, USA, 2017.
- United States Environmental Protection Agency (US EPA). Chemistry, Fate, and Transport Assessment for Formaldehyde CASRN 50-00-0; US EPA: Washington, DC, USA, 2024.
- National Institute of Chemical Safety (NICS). Current Status and Cases of Chemical Accidents. Available online: https://icis.me.go.kr/search/searchType2.do (accessed on 25 June 2025).
- Lee, Y.A.; Kim, H.S.; Lee, D.S. Evaluation Using A Multimedia Fate and Transport Model of Surface Water Pollution Potential of Organic Chemicals Accidentally Release into Air During A Rainfall Event; SETAC: Helsinki, Finland, 2019. [Google Scholar]
- Jung, J.Y.; Park, S.H.; Moon, J.E.; Yoon, J.H.; Yoon, S.W.; Lee, C.M. Aggregate risk assessment for multi-route exposure to hazardous chemicals caused by chemical accidents, with a focus on toluene. Asian J. Atmos. Environ. 2024, 18, 17. [Google Scholar] [CrossRef]
- Hong, H.J.; Park, S.H.; Lim, H.B.; Lee, C.M. Development on health risk assessment method for multi-media exposure of hazardous chemical by chemical accident. Int. J. Environ. Res. Public Health 2020, 17, 3385. [Google Scholar] [CrossRef]
- National Institute of Environmental Research (NIER). Multi-Media and Multi-Pathway Aggregate Risk Aassessment (I)-Toluene-; Ministry of Environment: Sejong City, Republic of Korea, 2011. [Google Scholar]
- National Institute of Environmental Research (NIER). Multi-Media and Multi-Pathway Aggregate Risk Assessment (Ⅱ)-Formaldehyde-; Ministry of Environment: Sejong City, Republic of Korea, 2012. [Google Scholar]
- United States Environmental Protection Agency (US EPA). Toxicological Review of Toluene (CAS No. 108-88-3) in Support of Summary Information on the Integrated Risk Information System (IRIS); US EPA: Washington, DC, USA, 2005.
- United States Environmental Protection Agency (US EPA). IRIS Toxicological Review of Formaldehyde (Inhalation) CASRN 50-00-0; US Environmental Protection Agency, Office of Research and Development; US EPA: Washington, DC, USA, 2024.
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Formaldehyde; ATSDR: Atlanta, GA, USA, 1999.
- United States Environmental Protection Agency (US EPA). IRIS Summary of Formaldehyde (Noncancer, 1991); US EPA: Washington, DC, USA, 1991.
- Hong, H.J.; Kong, H.K.; Park, S.H.; Yoon, D.K.; Lim, H.B.; Namgoung, S.J.; Lee, C.M. Health Risk Assessment of Hazardous Chemicals from Soil Ingestion in Chemical Accident. In Proceedings of the Korea Environmental Sciences Society Conference, JESI, Gyeongju City, Repulic of Korea, 7–9 November 2019. [Google Scholar]
- National Institute of Environmental Research (NIER). Korean Exposure Factors Handbook for Children; Ministry of Environment: Sejong City, Republic of Korea, 2019. [Google Scholar]
- National Institute of Environmental Research (NIER). Korean Exposure Factors Handbook; Ministry of Environment: Sejong City, Republic of Korea, 2019. [Google Scholar]
- United States Environmental Protection Agency (US EPA). Update for Chapter 5 of the Exposure Factors Handbook-Soil and Dust Ingestion); US EPA: Washington, DC, USA, 2017.
- Park, S.H.; Yoon, D.K.; Park, T.H.; Hong, H.J.; Lee, E.S. A study on the prediction of hazardous substance concentration in the indoor space by indoor inflow of chemical accident material. Proc. Environ. Sci. Soc. 2018, 27, 95. [Google Scholar]
- National Institute of Environmental Research (NIER). Regulation on Specific Methods of Chemical Risk Assessment. Available online: https://www.law.go.kr/%ED%96%89%EC%A0%95%EA%B7%9C%EC%B9%99/%ED%99%94%ED%95%99%EB%AC%BC%EC%A7%88%EC%9C%84%ED%95%B4%EC%84%B1%ED%8F%89%EA%B0%80%EC%9D%98%EA%B5%AC%EC%B2%B4%EC%A0%81%EB%B0%A9%EB%B2%95%EB%93%B1%EC%97%90%EA%B4%80%ED%95%9C%EA%B7%9C%EC%A0%95 (accessed on 25 June 2025).
- Little, C.H.; Georgiou, G.M.; Shelton, M.J.; Simpson, F.; Cone, R.E. Clinical and immunological responses in subjects sensitive to solvents. Arch. Environ. Health 1999, 54, 6–14. [Google Scholar] [CrossRef]
- Krzyzanowski, M.; Quackenboss, J.J.; Lebowitz, M.D. Chronic respiratory effects of indoor formaldehyde exposure. Environ. Res. 1990, 52, 117–125. [Google Scholar] [CrossRef]
- Venn, A.J.; Cooper, M.; Antoniak, M.; Laughlin, C.; Britton, J.; Lewis, S.A. Effects of volatile organic compounds, damp, and other environmental exposures in the home on wheezing illness in children. Thorax 2003, 58, 955–960. [Google Scholar] [CrossRef]
- Annesi-Maesano, I.; Hulin, M.; Lavaud, F.; Raherison, C.; Kopferschmitt, C.; de Blay, F.; Charpin, D.A.; Denis, C. Poor air quality in classrooms related to asthma and rhinitis in primary schoolchildren of the French 6 Cities Study. Thorax 2012, 67, 682–688. [Google Scholar] [CrossRef]
- Pazdrak, K.; Górski, P.; Krakowiak, A.; Ruta, U. Changes in nasal lavage fluid due to formaldehyde inhalation. Int. Arch. Occup. Environ. Health 1993, 64, 515–519. [Google Scholar] [CrossRef]
- Rusch, G.M.; Clary, J.J.; Rinehart, W.E.; Bolte, H.F. A 26-week inhalation toxicity study with formaldehyde in the monkey, rat, and hamster. Toxicol. Appl. Pharmacol. 1983, 68, 329–343. [Google Scholar] [CrossRef]
- Holmström, M.; Wilhelmsson, B.; Hellquist, H.; Rosén, G. Histological changes in the nasal mucosa in persons occupationally exposed to formaldehyde alone and in combination with wood dust. Acta OtoLaryngol. 1989, 107, 120–129. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program. NTP toxicology and carcinogenesis studies of toluene (CAS No. 108-88-3) in F344/N rats and B6C3F1 mice (inhalation studies). Natl. Toxicol. Program Tech. Rep. Ser. 1990, 371, 1–253. [Google Scholar]
- Dyer, R.S.; Bercegeay, M.S.; Mayo, L.M. Acute exposures to p-xylene and toluene alter visual information processing. Neurotoxicol. Teratol. 1988, 10, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, G.C.; Sharma, R.P.; Parker, R.D.R. Immunotoxicological evaluation of toluene exposure via drinking water in mice. Environ. Res. 1989, 49, 93–103. [Google Scholar] [CrossRef]
- Hsieh, G.C.; Parker, R.D.R.; Sharma, R.P.; Hughes, B.J. Subclinical effects of groundwater contaminants: III. Effects of repeated oral exposure to combinations of benzene and toluene on immunologic responses in mice. Arch. Toxicol. 1990, 64, 320–328. [Google Scholar] [CrossRef]
- Hsieh, G.C.; Sharma, R.P.; Parker, R.D.R. Hypothalamic-pituitary-adrenocortical axis activity and immune function after oral exposure to benzene and toluene. Immunopharmacology 1991, 21, 23–31. [Google Scholar] [CrossRef]
- Til, H.P.; Woutersen, R.A.; Feron, V.J.; Hollanders, V.H.M.; Falke, H.E.; Clary, J.J. Two-year drinking-water study of formaldehyde in rats. Food Chem. Toxicol. 1989, 27, 77–87. [Google Scholar] [CrossRef]
- Til, H.P.; Woutersen, R.A.; Feron, V.J.; Clary, J.J. Evaluation of the oral toxicity of acetaldehyde and formaldehyde in a 4-week drinking-water study in rats. Food Chem. Toxicol. 1988, 26, 447–452. [Google Scholar] [CrossRef]
- Barnes, D.G.; Dourson, M.; Preuss, P.; Barnes, D.G.; Bellin, J.; Derosa, C.; Engler, R.; Erdreich, L.; Farber, T.; Fenner-Crisp, P.; et al. Reference dose (RfD): Description and use in health risk assessments. Regul. Toxicol. Pharmacol. 1988, 8, 471–486. [Google Scholar] [CrossRef]
- Casarett, L.J.; Doull, J.; Klaassen, C.D. Casarett and Doull’s Toxicology: The Basic Science of Poisons; McGraw-Hill: New York, NY, USA, 2008; Volume 7. [Google Scholar]
- Ministry of Interior and Safety (MOIS). Status of Administrative Divisions and Population of Local Governments; MOIS: Sejong City, Republic of Korea, 2024.
Category | Age Group (Years) | Value | Reference |
---|---|---|---|
Body weight (kg) | 0–9 | 13.21 | [23] |
10–18 | 54.53 | [23] | |
19–64 | 65.30 | [24] | |
≥65 | 58.85 | [24] | |
Inhalation rate (m3/d) | 0–9 | 10.27 | [23] |
10–18 | 14.03 | [23] | |
19–64 | 14.61 | [24] | |
≥65 | 14.60 | [24] | |
Soil intake rate (mg/d) | 0–9 | 35 | [23] |
10–18 | 10 | [25] | |
19–64 | 10 | [25] | |
≥65 | 10 | [25] | |
Outdoor exposure time (d) | 0–9 | 0.063 | [23] |
10–18 | 0.058 | [23] | |
19–64 | 0.090 | [24] | |
≥65 | 0.095 | [24] | |
Indoor exposure time (d) | 0–9 | 0.94 | [23] |
10–18 | 0.94 | [23] | |
19–64 | 0.91 | [24] | |
≥65 | 0.90 | [24] | |
Average exposure time (d) | Toluene | 9 | This study |
Formaldehyde | 69 | This study |
Category | RfD | Acute MRL | Intermediate MRL |
---|---|---|---|
Critical study | National Toxicology Program [35] | Dyer et al. [36] | Hsieh et al. [37,38,39] |
Test subjects | Rats and mice | Rats | Mouse |
Exposure duration | 13 weeks | 45 min | 28 d |
Critical effect | Increased kidney weight | Neurological effects | Immune depression |
Point of departure | BMDL a, 238 mg/kg/d | LOAEL b, 250 mg/kg | NOAEL c, 22 mg/kg/d |
Uncertainty factors | 10 (interspecies variation) 10 (intraspecies variation) 10 (sub-chronic to chronic) 3 (database insufficiencies) | 3 (LOAEL to NOAEL) 10 (interspecies variation) 10 (intraspecies variation) | 10 (interspecies variation) 10 (intraspecies variation) |
Value | 0.08 mg/kg/d | 0.8 mg/kg/d | 0.2 mg/kg/d |
Reference | [18] | [10] | [10] |
Category | RfD | Intermediate MRL | Chronic MRL |
---|---|---|---|
Critical study | Til et al. [40] | Til et al. [41] | Til et al. [40] |
Test subjects | Rats | Rats | Rats |
Exposure duration | 24 months | 4 weeks | 24 months |
Critical effect | Reduced weight gain; Histopathology in rats | Gastrointestinal effects | Gastrointestinal effects |
Point of departure | NOAEL a, 15 mg/kg/d | NOAEL, 25 mg/kg/d | NOAEL, 15 mg/kg/d |
Uncertainty factors | 10 (interspecies variation) 10 (intraspecies variation) | 10 (interspecies variation) 10 (intraspecies variation) | 10 (interspecies variation) 10 (intraspecies variation) |
Value | 0.2 mg/kg/d | 0.3 mg/kg/d | 0.2 mg/kg/d |
Reference | [21] | [20] | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, J.-E.; Park, S.-H.; Kim, Y.-H.; Jang, H.; Jung, J.-Y.; Yoon, S.-W.; Lee, C.-M. Health Risk Assessment of Toluene and Formaldehyde Based on a Short-Term Exposure Scenario: A Comparison of the Reference Concentration, Reference Dose, and Minimal Risk Level. Toxics 2025, 13, 683. https://doi.org/10.3390/toxics13080683
Moon J-E, Park S-H, Kim Y-H, Jang H, Jung J-Y, Yoon S-W, Lee C-M. Health Risk Assessment of Toluene and Formaldehyde Based on a Short-Term Exposure Scenario: A Comparison of the Reference Concentration, Reference Dose, and Minimal Risk Level. Toxics. 2025; 13(8):683. https://doi.org/10.3390/toxics13080683
Chicago/Turabian StyleMoon, Ji-Eun, Si-Hyun Park, Young-Hyun Kim, Hyeok Jang, Ji-Yun Jung, Sung-Won Yoon, and Cheol-Min Lee. 2025. "Health Risk Assessment of Toluene and Formaldehyde Based on a Short-Term Exposure Scenario: A Comparison of the Reference Concentration, Reference Dose, and Minimal Risk Level" Toxics 13, no. 8: 683. https://doi.org/10.3390/toxics13080683
APA StyleMoon, J.-E., Park, S.-H., Kim, Y.-H., Jang, H., Jung, J.-Y., Yoon, S.-W., & Lee, C.-M. (2025). Health Risk Assessment of Toluene and Formaldehyde Based on a Short-Term Exposure Scenario: A Comparison of the Reference Concentration, Reference Dose, and Minimal Risk Level. Toxics, 13(8), 683. https://doi.org/10.3390/toxics13080683