Integrated Proteomic and Transcriptomic Analysis Reveals the Mechanism of Selenium-Mediated Cell Wall Polysaccharide in Rice (Oryza sativa L.) Cadmium Detoxification
Abstract
1. Introduction
2. Materials and Methods
2.1. Plants and Growing Conditions
2.2. Measurement and Sampling of Growth Parameters
2.3. Cadmium Content Analysis
2.4. Cadmium Enrichment Factors and Transporters
2.5. Plant Physiological and Biochemical Indicators
2.6. Proteome Analysis
2.7. Transcriptome Analysis
2.8. Statistical Analysis
3. Results
3.1. Indicators of Rice Physiology and Biochemistry
3.2. Proteomic Analysis of Rice Cell Wall Polysaccharides
3.3. Transcriptome Analysis of Rice Cell Wall Polysaccharides
3.4. Joint Transcriptome and Proteome Analysis of Rice Cell Wall Polysaccharide
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Jiao, Q.; Fan, L.; Jiang, Y.; Alyemeni, M.N.; Ahmad, P.; Chen, Y.; Zhu, M.; Liu, H.; Zhao, Y.; et al. Integrated physio-biochemical and transcriptomic analysis revealed mechanism underlying of si-mediated alleviation to cadmium toxicity in wheat. J. Hazard. Mater. 2023, 452, 131366. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Z.; Zhou, S.; Liu, X.; Li, F.; Mao, L. Enhanced early detection of cadmium stress in rice: Introducing a novel spectral index based on an enhanced gami-net model. Sustainability 2024, 16, 8341. [Google Scholar] [CrossRef]
- Ma, J.F.; Shen, R.F.; Shao, J.F. Transport of cadmium from soil to grain in cereal crops: A review. Pedosphere 2021, 31, 3–10. [Google Scholar] [CrossRef]
- Liu, F.; Liu, X.; Ding, C.; Wu, L. The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model. Field Crop Res. 2015, 183, 225–234. [Google Scholar] [CrossRef]
- Chen, J.; He, W.; Zhu, X.; Yang, S.; Yu, T.; Ma, W. Epidemiological study of kidney health in an area with high levels of soil cadmium and selenium: Does selenium protect against cadmium-induced kidney injury? Sci. Total Environ. 2020, 698, 134106. [Google Scholar] [CrossRef]
- Natasha Shahid, M.; Niazi, N.K.; Khalid, S.; Murtaza, B.; Bibi, I.; Rashid, M.I. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ. Pollut. 2018, 234, 915–934. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, X.; Jiang, C.; Li, Q.; Liu, Y.; Gu, C.; Shang, L.; Li, P.; Lin, Y.; Larssen, T. Understanding the paradox of selenium contamination in mercury mining areas: High soil content and low accumulation in rice. Environ. Pollut. 2014, 188, 27–36. [Google Scholar] [CrossRef]
- Al-Saleh, I.; Al-Rouqi, R.; Obsum, C.A.; Shinwari, N.; Mashhour, A.; Billedo, G.; Al-Sarraj, Y.; Rabbah, A. Interaction between cadmium (cd), selenium (se) and oxidative stress biomarkers in healthy mothers and its impact on birth anthropometric measures. Int. J. Hyg. Environ. Health 2015, 218, 66–90. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Zeng, G.; Hu, X.; Ying, Y.; Hu, X.; Zhou, L.; Wang, Y.; Li, H. Mechanism of exogenous selenium alleviates cadmium induced toxicity in Bechmeria nivea (L.) gaud (ramie). Trans. Nonferr. Met. Soc. 2014, 24, 3964–3970. [Google Scholar] [CrossRef]
- Guo, Y.; Mao, K.; Cao, H.; Ali, W.; Lei, D.; Teng, D.; Chang, C.; Yang, X.; Yang, Q.; Niazi, N.K.; et al. Exogenous selenium (cadmium) inhibits the absorption and transportation of cadmium (selenium) in rice. Environ. Pollut. 2021, 268, 115829. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, R.; Liu, Z.; Ding, Y.; Li, T. Non-invasive microelectrode cadmium flux measurements reveal the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator and nonhyperaccumulator ecotypes of sedum alfredii. J. Plant Physiol. 2013, 170, 355–359. [Google Scholar] [CrossRef]
- Gong, B.; Nie, W.; Yan, Y.; Gao, Z.; Shi, Q. Unravelling cadmium toxicity and nitric oxide induced tolerance in cucumis sativus: Insight into regulatory mechanisms using proteomics. J. Hazard. Mater. 2017, 336, 202–213. [Google Scholar] [CrossRef]
- Wang, C.; Han, B. Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics. Mol. Plant 2022, 15, 593–619. [Google Scholar] [CrossRef]
- Song, L.-Y.; Liu, X.; Zhang, L.-D.; Hu, W.-J.; Xu, C.-Q.; Li, J.; Song, S.-W.; Guo, Z.-J.; Sun, C.-Y.; Tang, H.-C.; et al. Proteomic analysis reveals differential responsive mechanisms in solanum nigrum exposed to low and high dose of cadmium. J. Hazard. Mater. 2023, 448, 130880. [Google Scholar] [CrossRef]
- Wei, H.Y.; Li, Y.; Yan, J.; Peng, S.Y.; Wei, S.J.; Yin, Y.; Li, K.T.; Cheng, X. Root cell wall remodeling: A way for exopolysaccharides to mitigate cadmium toxicity in rice seedling. J. Hazard. Mater. 2023, 443, 130186. [Google Scholar] [CrossRef]
- Palmer, R.; Cornuault, V.; Marcus, S.E.; Knox, J.P.; Shewry, P.R.; Tosi, P. Comparative in situ analyses of cell wall matrix polysaccharide dynamics in developing rice and wheat grain. Planta 2015, 241, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Tao, Q.; Shohag, M.J.I.; Yang, X.; Sparks, D.L.; Liang, Y. Root cell wall polysaccharides are involved in cadmium hyperaccumulation in sedum alfredii. Plant Soil 2014, 389, 387–399. [Google Scholar] [CrossRef]
- Yuan, Y.; Imtiaz, M.; Rizwan, M.; Dai, Z.; Hossain, M.M.; Zhang, Y.; Huang, H.; Tu, S. The role and its transcriptome mechanisms of cell wall polysaccharides in vanadium detoxication of rice. J. Hazard. Mater. 2022, 425, 127966. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Wang, X.; Wei, T.; Zhou, R.; Muhammad, H.; Hua, L.; Ren, X.; Guo, J.; Ding, Y. Accumulation and fixation of cd by tomato cell wall pectin under cd stress. Environ. Exp. Bot. 2019, 167, 103829. [Google Scholar] [CrossRef]
- Ren, C.; Qi, Y.; Huang, G.; Yao, S.; You, J.; Hu, H. Contributions of root cell wall polysaccharides to cu sequestration in castor (Ricinus communis L.) exposed to different cu stresses. J. Environ. Sci. 2020, 88, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Cai, H.; He, C.; Zhang, W.; Wang, L. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol. 2015, 206, 1063–1074. [Google Scholar] [CrossRef]
- Parrotta, L.; Guerriero, G.; Sergeant, K.; Cai, G.; Hausman, J.F. Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: Differences in the response mechanisms. Front. Plant Sci. 2015, 6, 133. [Google Scholar] [CrossRef]
- GB 15618-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018.
- Zhao, W.; Chen, Z.; Yang, X.; Sheng, L.; Mao, H.; Zhu, S. Metagenomics reveal arbuscular mycorrhizal fungi altering functional gene expression of rhizosphere microbial community to enhance iris tectorum’s resistance to cr stress. Sci. Total Environ. 2023, 895, 164970. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhu, S.; Gu, B.; Yang, X.; Xia, G.; Wang, B. Effects of cr stress on bacterial community structure and composition in rhizosphere soil of Iris tectorum under different cultivation modes. Microbiol. Res. 2023, 14, 243–261. [Google Scholar] [CrossRef]
- Sheng, L.; Zhao, W.; Yang, X.; Mao, H.; Zhu, S. Response characteristics of rhizosphere microbial community and metabolites of iris tectorum to cr stress. Ecotoxicol. Environ. Saf. 2023, 263, 115218. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Chen, Z.; Yang, X.; Sheng, L.; Mao, H.; Zhu, S. Integrated transcriptomics and metabolomics reveal key metabolic pathway responses in pistia stratiotes under cd stress. J. Hazard. Mater. 2023, 452, 131214. [Google Scholar] [CrossRef]
- Kuang, L.; Yan, T.; Gao, F.; Tang, W.; Wu, D. Multi-omics analysis reveals differential molecular responses to cadmium toxicity in rice root tip and mature zone. J. Hazard. Mater. 2024, 462, 132758. [Google Scholar] [CrossRef]
- Gao, M.; Zhou, J.; Liu, H.; Zhang, W.; Hu, Y.; Liang, J.; Zhou, J. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Sci. Total. Environ. 2018, 631–632, 1100–1108. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Y.; Cui, H.; Zhang, L.; Sha, T.; Wang, C.; Fan, C.; Luan, F.; Wang, X. Linkage mapping and comparative transcriptome analysis of firmness in watermelon (Citrullus lanatus). Front. Plant Sci. 2020, 11, 831. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.Q.; Chang, Y.P.; Zhang, B.; Zhao, Q.Z.; Zhao, W.L. The basic helix-loop-helix transcription factor osblr1 regulates leaf angle in rice via brassinosteroid signalling. Plant Mol. Biol. 2020, 102, 589–602. [Google Scholar] [CrossRef]
- Yu, H.; Guo, J.; Li, Q.; Zhang, X.; Huang, H.; Huang, F.; Yang, A.; Li, T. Characteristics of cadmium immobilization in the cell wall of root in a cadmium-safe rice line (Oryza sativa L.). Chemosphere 2020, 241, 125095. [Google Scholar] [CrossRef]
- Meychik, N.; Nikolaeva, Y.; Kushunina, M.; Yermakov, I. Are the carboxyl groups of pectin polymers the only metal-binding sites in plant cell walls? Plant Soil 2014, 381, 25–34. [Google Scholar] [CrossRef]
- Wu, Y.; He, R.; Wang, Z.; Yuan, J.; Xing, C.; Wang, L.; Ju, X. A safe, efficient and simple technique for the removal of cadmium from brown rice flour with citric acid and analyzed by inductively coupled plasma mass spectrometry. Anal. Methods 2016, 8, 6313–6322. [Google Scholar] [CrossRef]
- Mahmud, J.A.; Hasanuzzaman, M.; Nahar, K.; Bhuyan, M.; Fujita, M. Insights into citric acid-induced cadmium tolerance and phytoremediation in brassica juncea l.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol. Environ. Saf. 2018, 147, 990–1001. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Meng, J.; Zeng, L.; Liu, X.; Dai, Z.; Tang, C.; Xu, J. Novel agricultural waste-based materials decrease the uptake and accumulation of cadmium by rice (Oryza sativa L.) in contaminated paddy soils. Environ. Pollut. 2021, 289, 117838. [Google Scholar] [CrossRef]
- Jia, L.; Liu, G.; He, J. Acidic electrolyzed water treatment delays the senescence of ‘lingwu long’ jujube fruit during cold storage by regulating energy and respiratory metabolism. Postharvest Biol. Technol. 2024, 207, 112608. [Google Scholar] [CrossRef]
- Li, C.; Liu, C.Q.; Zhang, H.S.; Chen, C.P.; Yang, X.R.; Chen, L.F.; Liu, Q.S.; Guo, J.; Sun, C.H.; Wang, P.R.; et al. Lps1, encoding iron-sulfur subunit SDH2-1 of succinate dehydrogenase, affects leaf senescence and grain yield in rice. Int. J. Mol. Sci. 2020, 22, 157. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Zhong, S.; Shen, J.; Sun, Y.; Gao, X.; Wang, X.; Li, F.; Lu, L.; Liu, X. Multiple mutations in SDHB and SDHC2 subunits confer resistance to the succinate dehydrogenase inhibitor cyclobutrifluram in fusarium fujikuroi. J. Agric. Food Chem. 2023, 71, 3694–3704. [Google Scholar] [CrossRef]
- Singla, P.; Bhardwaj, R.D.; Kaur, S.; Kaur, J.; Grewal, S.K. Metabolic adjustments during compatible interaction between barley genotypes and stripe rust pathogen. Plant Physiol. Biochem. 2020, 147, 295–302. [Google Scholar] [CrossRef]
- Falahi, H.; Sharifi, M.; Chashmi, N.A.; Maivan, H.Z. Water stress alleviation by polyamines and phenolic compounds in scrophularia striata is mediated by no and H2O2. Plant Physiol. Biochem. 2018, 130, 139–147. [Google Scholar] [CrossRef]
- Clemens, S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 2006, 88, 1707–1719. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, Y.; Xu, Y.; Wang, L.; Liang, X.; Li, Y. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials. Environ. Pollut. 2016, 208, 739–746. [Google Scholar] [CrossRef]
- Huang, R.; Dong, M.; Mao, P.; Zhuang, P.; Paz-Ferreiro, J.; Li, Y.; Li, Y.; Hu, X.; Netherway, P.; Li, Z. Evaluation of phytoremediation potential of five Cd (hyper) accumulators in two Cd contaminated soils. Sci. Total Environ. 2020, 721, 137581. [Google Scholar] [CrossRef]
- Chauhan, R.; Awasthi, S.; Tripathi, P.; Mishra, S.; Dwivedi, S.; Niranjan, A.; Mallick, S.; Tripathi, P.; Pande, V.; Tripathi, R.D. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2017, 138, 47–55. [Google Scholar] [CrossRef]
- Wu, F.B.; Dong, J.; Qian, Q.Q.; Zhang, G.P. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere 2005, 60, 1437–1446. [Google Scholar] [CrossRef]
- Krzesłowska, M. The cell wall in plant cell response to trace metals: Polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant 2010, 33, 35–51. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Guo, J.; Dong, Y.; Wang, Z.; Gong, L.; Li, X. Polystyrene microplastics disturb the redox homeostasis, carbohydrate metabolism and phytohormone regulatory network in barley. J. Hazard. Mater. 2021, 415, 125614. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Z.; Hu, W.; Liu, S.; Sun, R.; Jin, S.; Nergui, K.; Zhao, G.; Gao, L.; Liu, Y.; et al. A genome-wide association study identifies novel Qtl for wheat yield stability under drought stress. Curr. Plant Biol. 2024, 37, 100326. [Google Scholar] [CrossRef]
- Martin, A.F.; Tobimatsu, Y.; Lam, P.Y.; Matsumoto, N.; Tanaka, T.; Suzuki, S.; Kusumi, R.; Miyamoto, T.; Takeda-Kimura, Y.; Yamamura, M.; et al. Lignocellulose molecular assembly and deconstruction properties of lignin-altered rice mutants. Plant Physiol. 2023, 191, 70–86. [Google Scholar] [CrossRef]
- Zou, Q.; Tu, R.; Wu, J.; Huang, T.; Sun, Z.; Ruan, Z.; Cao, H.; Yang, S.; Shen, X.; He, G.; et al. A polygalacturonase gene OSPG1 modulates water homeostasis in rice. Crop J. 2024, 12, 79–91. [Google Scholar] [CrossRef]
- Peng, S.; Liu, Y.; Xu, Y.; Zhao, J.; Gao, P.; Liu, Q.; Yan, S.; Xiao, Y.; Zuo, S.M.; Kang, H. Genome-wide association study identifies a plant-height-associated gene OSPG3 in a population of commercial rice varieties. Int. J. Mol. Sci. 2023, 24, 11454. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Yang, A.; Wang, K.; Li, Q.; Ye, D.; Huang, H.; Zhang, X.; Wang, Y.; Zheng, Z.; Li, T. The role of polysaccharides functional groups in cadmium binding in root cell wall of a cadmium-safe rice line. Ecotoxicol. Environ. Saf. 2021, 226, 112818. [Google Scholar] [CrossRef]
- Loix, C.; Huybrechts, M.; Vangronsveld, J.; Gielen, M.; Keunen, E.; Cuypers, A. Corrigendum: Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front. Plant Sci. 2018, 9, 391. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.D.; Huang, S.; Konishi, N.; Wang, P.; Chen, J.; Huang, X.Y.; Ma, J.F.; Zhao, F.J. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain. J. Exp. Bot. 2020, 71, 5705–5715. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Du, X.; Zhao, W.; Yang, X.; Sheng, L.; Mao, H.; Su, S. Integrated Proteomic and Transcriptomic Analysis Reveals the Mechanism of Selenium-Mediated Cell Wall Polysaccharide in Rice (Oryza sativa L.) Cadmium Detoxification. Toxics 2025, 13, 642. https://doi.org/10.3390/toxics13080642
Zhu S, Du X, Zhao W, Yang X, Sheng L, Mao H, Su S. Integrated Proteomic and Transcriptomic Analysis Reveals the Mechanism of Selenium-Mediated Cell Wall Polysaccharide in Rice (Oryza sativa L.) Cadmium Detoxification. Toxics. 2025; 13(8):642. https://doi.org/10.3390/toxics13080642
Chicago/Turabian StyleZhu, Sixi, Xianwang Du, Wei Zhao, Xiuqin Yang, Luying Sheng, Huan Mao, and Suxia Su. 2025. "Integrated Proteomic and Transcriptomic Analysis Reveals the Mechanism of Selenium-Mediated Cell Wall Polysaccharide in Rice (Oryza sativa L.) Cadmium Detoxification" Toxics 13, no. 8: 642. https://doi.org/10.3390/toxics13080642
APA StyleZhu, S., Du, X., Zhao, W., Yang, X., Sheng, L., Mao, H., & Su, S. (2025). Integrated Proteomic and Transcriptomic Analysis Reveals the Mechanism of Selenium-Mediated Cell Wall Polysaccharide in Rice (Oryza sativa L.) Cadmium Detoxification. Toxics, 13(8), 642. https://doi.org/10.3390/toxics13080642