Effects of Parameter Variations Generated by Pumping on LNAPL Migration in the Aquitard: An Analytical and Experimental Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Derivation of the NAPL Contaminant Migration Equation
2.1.1. Concept Model and Governing Equation
2.1.2. Derivation of the Porosity Variation
2.1.3. Derivation of the Groundwater Flow Rate
2.1.4. Contaminant Migration Equation with Variable Parameters
2.2. Experimental Materials and Design
2.2.1. Design of Experimental Model
2.2.2. Observation of the Pore Water and Consolidation Deformation
2.2.3. Contaminant Injection and Sampling Analysis
2.2.4. Pumping Simulation
3. Results and Analysis
3.1. Effect of the Pore Water Pressure on LNAPL Migration
3.2. Effect of the Consolidation Deformation on LNAPL Migration
3.3. Effect of the Pumping Rate on LNAPL Migration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LNAPL | Light Non-aqueous Phase Liquid |
NAPL | Non-aqueous Phase Liquid |
PVC | Poly Vinyl Chloride |
P&T | pump-and-treat technology |
Notations | |
C | concentration of Non-aqueous Phase Liquid |
C0 | initial concentration of Non-aqueous Phase Liquid |
r | radius distance from the center of the well |
rw | radius of the well |
z | vertical distance |
v | groundwater flow rate |
Dz | radial dispersion coefficient |
Dr | vertical dispersion coefficient |
D0 | effective diffusion coefficient |
Da | free water molecular diffusion coefficient of the solute |
ar | radial dispersivity values |
az | vertical dispersivity values |
R | retardation factor of the aquitard |
T | thickness |
h | water level drawdown |
kd | equilibrium distribution coefficient |
ρb | bulk density of the aquitard material |
θ | porosity in the aquitard |
Q | pumping rate |
s | Laplace transform parameter with respect to t |
t | time |
Cv | consolidation coefficient |
u | pore water pressure in the aquitard |
γw | weight of water |
e0 | initial void ratio of the aquitard |
k0 | initial hydraulic conductivity of the aquitard |
k | hydraulic conductivity |
a | compression coefficient of the aquitard |
sc | consolidation deformation |
S | water storage rate |
References
- Konikow, L.F.; Neuzil, C.E. A method to estimate groundwater depletion from confining layers. Water Resour. Res. 2007, 43, W07417. [Google Scholar] [CrossRef]
- Julio-Miranda, P.; Ortíz-Rodríguez, A.J.; Palacio-Aponte, A.G.; Lopez-Doncel, R.; Barboza-Gudino, R. Damage assessment associated with land subsidence in the San Luis Potosi-Soledad de Graciano Sanchez metropolitan area, Mexico, elements for risk management. Nat. Hazards 2012, 64, 751–765. [Google Scholar] [CrossRef]
- Smith, R.G.; Knight, R.; Chen, J.; Reeves, A.; Zebker, H.A.; Farr, T.; Liu, Z. Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley, California. Water Resour. Res. 2017, 53, 2133–2148. [Google Scholar] [CrossRef]
- Bonte, M.; Zaadnoordijk, W.J.; Maas, K. A simple analytical formula for the leakage flux through a perforated aquitard. Groundwater 2015, 53, 638–644. [Google Scholar] [CrossRef]
- Cihan, A.; Zhou, Q.; Birkholzer, J.T.; Kraemer, S.R. Flow in horizontally anisotropic multilayered aquifer systems with leaky wells and aquitards. Water Resour. Res. 2014, 50, 741–747. [Google Scholar] [CrossRef]
- Yang, M.; Annable, M.D.; Jawitz, J.W. Forward and back diffusion through argillaceous formations. Water Resour. Res. 2017, 53, 4514–4523. [Google Scholar] [CrossRef]
- Field, J.A.; Sierra-Alvarez, R. Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev. Environ. Sci. Bio 2024, 3, 185–254. [Google Scholar] [CrossRef]
- Ko, S.; Crimi, M.; Marvin, B.K.; Holmes, V.; Huling, S.G. Comparative study on oxidative treatments of NAPL containing chlorinated ethanes and ethenes using hydrogen peroxide and persulfate in soils. J. Environ. Manag. 2012, 108, 42–48. [Google Scholar] [CrossRef]
- Dayana, C.C.; Edgar, Q.B.; Mehrab, M. An integrated framework to model salinity intrusion in coastal unconfined aquifers considering intrinsic vulnerability factors, driving forces, and land subsidence. J. Environ. Chem. Eng. 2021, 10, 106873. [Google Scholar] [CrossRef]
- Van Geel, P.J.; Roy, S.D. A proposed model to include a residual NAPL saturation in a hysteretic capillary pressure-saturation relationship. J. Contam. Hydrol. 2002, 58, 79–110. [Google Scholar] [CrossRef]
- Wipfler, E.L.; Ness, M.; Breedveld, G.D.; Marsman, A.; Van der Zee, S.E.A.T.M. Infiltration and redistribution of LNAPL into unsaturated layered porous media. J. Contam. Hydrol. 2004, 71, 47–66. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Huang, Y.; Illman, W.A.; Su, Y.; Miao, K.H. Migration behaviour of LNAPL in fractures filled with porous media: Laboratory experiments and numerical simulations. J. Contam. Hydrol. 2022, 253, 104118. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Huang, Y.; Shen, H. Experimental study on migration characteristics of LNAPL in the aquitard under pumping conditions. Environ. Sci. Pollut. Res. 2024, 31, 46061–46072. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Yang, J.; Jia, Y.; Xu, Z. Experimental study on non-aqueous phase liquid multiphase flow characteristics and controlling factors in heterogeneous porous media. Environ. Earth Sci. 2016, 75, 75. [Google Scholar] [CrossRef]
- Oostrom, M.; Hofstee, C.; Wietsma, T.W. LNAPLs do not Always Float: An Example Case of a Viscous LNAPL under Variable Water Table Conditions. Soil Sediment Contam. 2006, 15, 543–564. [Google Scholar] [CrossRef]
- Chapman, S.W.; Parker, B.L.; Sale, T.C.; Doner, L.A. Testing high resolution numerical models for analysis of contaminant storage and release from low permeability zones. J. Contam. Hydrol. 2012, 136–137, 106–116. [Google Scholar] [CrossRef]
- Yu, S.Y.; Yun, S.T.; Hwang, S.I.; Chae, G. One-at-a-time sensitivity analysis of pollutant loadings to subsurface properties for the assessment of soil and groundwater pollution potential. Environ. Sci. Pollut. Res. 2019, 26, 21216–21238. [Google Scholar] [CrossRef]
- Zuo, R.; Zhao, X.; Yang, J.; Pan, M.H.; Xue, Z.K.; Gao, X.; Wang, J.S.; Teng, Y.G. Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions. Int. J. Environ. Res. Public Health 2021, 18, 11073. [Google Scholar] [CrossRef]
- Malama, B.; Kuhlman, K.L.; Barrash, W. Semi-analytical solution for flow in a leaky unconfined aquifer toward a partially penetrating pumping well. J. Hydrol. 2008, 356, 234–244. [Google Scholar] [CrossRef]
- Zheng, J.W.; Yang, Y.; Li, J.; Zhang, H.; Ma, Y. The Migration Mechanism of BTEX in Single- and Double-Lithology Soil Columns under Groundwater Table Fluctuation. Toxics 2023, 11, 630. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Lippincott, D.R.; Klammler, H.; Hatfield, K. Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach. J. Contam. Hydrol. 2018, 209, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Pujades, E.; Carrera, J.; Vázquez-Suñé, E.; Jurado, A.; Vilarrasa, V.; Mascuñano-Salvador, E. Hydraulic characterization of diaphragm walls for cut and cover tunnelling. Eng. Geol. 2012, 125, 1–10. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Gleeson, T.; Bierkens, M.P.; Ferguson, G.; Taylor, R.G. Defining renewable groundwater use and its relevance to sustainable groundwater management. Water Resour. Res. 2023, 59, e2022WR032831. [Google Scholar] [CrossRef]
- Zhuang, C.; Zhou, Z.; Illman, W.A.; Wang, J. Geostatistical inverse modeling for the characterization of aquitard heterogeneity using long-term multi-extensometer data. J. Hydrol. 2019, 578, 124024. [Google Scholar] [CrossRef]
- Bai, E.; Li, X.Y.; Guo, W.B.; Tan, Y.; Shen, C.B.; Wei, Z.Y. Control effect of overburden grout injection on surface subsidence and groundwater quality pollution. Bull. Eng. Geol. Environ. 2024, 83, 387. [Google Scholar] [CrossRef]
- Kechavarzi, C.; Soga, K.; Illangasekare, T.H. Two-dimensional laboratory simulation of LNAPL infiltration and redistribution in the vadose zone. J. Contam. Hydrol. 2005, 76, 211–233. [Google Scholar] [CrossRef]
- Yeh, H.D.; Chang, Y.C. Recent advances in modeling of well hydraulics. Adv. Water Resour. 2013, 51, 27–51. [Google Scholar] [CrossRef]
- Li, Z.P.; Liu, Y.; Zhao, G.Z.; Liu, S.K.; Liu, W.H. LNAPL migration processes based on time-lapse electrical resistivity tomography. J. Contam. Hydrol. 2023, 259, 104260. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Z.Y.; Zhang, X.Y.; Jiang, Y.S.; Hou, G.Y.; Shao, X.K.; Qi, W.Q. Experimental study on the influences of water content, consolidation time, and soil conditioning on the adhesion of clay in EPB shields. Bull. Eng. Geol. Environ. 2022, 81, 426. [Google Scholar] [CrossRef]
- Sivakumar, V.; Jeludine, D.; Bell, A.; Glynn, D.T.; Mackinnon, P. The pressure distribution along stone columns in soft clay under consolidation and foundation loading. Géotechnique 2011, 61, 613–620. [Google Scholar] [CrossRef]
- Zhuang, C.; Zhou, Z.; Illman, W.A. A joint analytic method for estimating aquitard hydraulic parameters. Groundwater 2017, 55, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Shackelford, C.D.; Moore, S.M. Fickian diffusion of radionuclides for engineered containment barriers: Diffusion coefficients, porosities, and complicating issues. Eng. Geol. 2013, 152, 133–147. [Google Scholar] [CrossRef]
- Chen, Z.L.; Feng, S.J.; Chen, H.X.; Peng, M.Q.; Li, Y.C.; Zhu, Z.W. Analytical solution for transport of degradable contaminant through vertical cutoff wall and aquifer. Environ. Geotech. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Hoffmann, J.; Galloway, D.L.; Zebker, H.A. Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resour. Res. 2003, 39, 1031. [Google Scholar] [CrossRef]
- Halloran, L.J.S.; Hunkeler, D. Controls on the persistence of aqueous-phase groundwater contaminants in the presence of reactive back-diffusion. Sci. Total Environ. 2020, 722, 137749. [Google Scholar] [CrossRef]
- Gambolati, G.; Teatini, P. Geomechanics of subsurface water withdrawal and injection. Water Resour. Res. 2015, 51, 3922–3955. [Google Scholar] [CrossRef]
- Hantush, M.S. Modification of the theory of leaky aquifers. J. Geophys. Res. 1960, 65, 3713–3725. [Google Scholar] [CrossRef]
- Liu, Y.; Helm, D.C. Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal: 1. Methods. Water Resour. Res. 2008, 44, W07423. [Google Scholar] [CrossRef]
- Ali, M.Z.; Chu, H.J.; Burbey, T.J. Mapping and predicting subsidence from spatio-temporal regression models of groundwater-drawdown and subsidence observations. Hydrogeol. J. 2020, 28, 2865–2876. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, P.; Fu, Z.M. Experimental and numerical research on migration of LNAPL contaminants in fractured porous media. Hydrogeol. J. 2020, 28, 1269–1284. [Google Scholar] [CrossRef]
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Chen, C.; Wen, Z.; Zhou, H.; Jakada, H. New semi-analytical model for an exponentially decaying pumping rate with a finite-thickness skin in a leaky aquifer. J. Hydrol. Eng. 2020, 25, 04020037. [Google Scholar] [CrossRef]
- Sen, Z.; Altunkaynak, A. Variable discharge type curve solutions for confined aquifers. J. Am. Water Resour. Assoc. 2004, 40, 1189–1196. [Google Scholar] [CrossRef]
- Feng, Q.; Luo, Y.; Zhan, H. Three-dimensional response to a partially penetration well pumping in a general anisotropic three-layer aquifer system. J. Hydrol. 2020, 585, 124850. [Google Scholar] [CrossRef]
Label of Hole Number | Distance from the Bottom of the Aquitard (cm) | Distance from Pumping Well (cm) | Type |
---|---|---|---|
O | 10 | 30 | Injection hole |
A1 | 15 | 30 | Observation hole |
A2 | 5 | 30 | Observation hole |
A3 | 0 | 30 | Observation hole |
A4 | 10 | 20 | Observation hole |
A5 | 10 | 10 | Observation hole |
A6 | 10 | 2 | Observation hole |
Scenario | Pumping Rate (mL/s) | Initial Water Level (cm) | Groundwater Flow Rate (m/s) | Average Water Level Difference (cm) | LNAPL Start Migration Time | Time to Maximum LNAPL Relative Concentration |
---|---|---|---|---|---|---|
Sce. 1 | 3 | 50 | 2.39 | 2.19 | 180 | 330 |
Sce. 2 | 6 | 50 | 4.77 | 12.81 | 160 | 390 |
Sce. 3 | 9 | 50 | 7.16 | 17.84 | 150 | 430 |
Sce. 4 | 12 | 50 | 9.55 | 38.67 | 140 | 470 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Huang, Y.; Shen, H.; Dong, X.; Sun, X.; Fu, Z. Effects of Parameter Variations Generated by Pumping on LNAPL Migration in the Aquitard: An Analytical and Experimental Study. Toxics 2025, 13, 471. https://doi.org/10.3390/toxics13060471
Su Y, Huang Y, Shen H, Dong X, Sun X, Fu Z. Effects of Parameter Variations Generated by Pumping on LNAPL Migration in the Aquitard: An Analytical and Experimental Study. Toxics. 2025; 13(6):471. https://doi.org/10.3390/toxics13060471
Chicago/Turabian StyleSu, Yue, Yong Huang, Huan Shen, Xiaosong Dong, Xiaochang Sun, and Zhimin Fu. 2025. "Effects of Parameter Variations Generated by Pumping on LNAPL Migration in the Aquitard: An Analytical and Experimental Study" Toxics 13, no. 6: 471. https://doi.org/10.3390/toxics13060471
APA StyleSu, Y., Huang, Y., Shen, H., Dong, X., Sun, X., & Fu, Z. (2025). Effects of Parameter Variations Generated by Pumping on LNAPL Migration in the Aquitard: An Analytical and Experimental Study. Toxics, 13(6), 471. https://doi.org/10.3390/toxics13060471