Immobilization of Inorganic Phosphorus on Soils by Zinc Oxide Engineered Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Materials
2.2. Characterization of Soils Without and with 1% ZnO–ENPs
2.3. Batch Adsorption Equilibrium Studies
2.4. Batch Desorption Studies
2.5. Data Analysis
3. Results and Discussion
3.1. Soil Physicochemical Properties with and Without ZnO–ENPs
3.2. Adsorption–Desorption Studies
3.2.1. Pi Adsorption Kinetics
3.2.2. Pi Adsorption Isotherms
3.2.3. ENPs Doses
3.2.4. pH Studies Regarding the Adsorption of Pi
3.2.5. Pi Desorption Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niu, K.; Li, M.; Lenzen, M.; Wiedmann, T.; Han, X.; Jin, S.; Malik, A.; Gu, B. Impacts of Global Trade on Cropland Soil-Phosphorus Depletion and Food Security. Nat. Sustain. 2024, 7, 1128–1140. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, Q.; Chen, Z.; Wu, G.; Li, J.; Zhou, W.; Pan, X.; Zhang, X.; Ao, J.; Chen, D. Varying Phosphate Fertilizers Exerted Different Effects on Inorganic Phosphorus Transformation, Tobacco Growth, and Phosphorus Use Efficiency in Purple Soil. J. Soil Sci. Plant Nutr. 2023, 23, 3991–4003. [Google Scholar] [CrossRef]
- Mabagala, F.S.; Mng’ong’o, M.E. On the Tropical Soils; The Influence of Organic Matter (OM) on Phosphate Bioavailability. Saudi J. Biol. Sci. 2022, 29, 3635–3641. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, P.; Chen, A.; Ye, Y.; Chen, Q.; Cui, R.; Zhang, D. Prediction of Phosphorus Concentrations in Shallow Groundwater in Intensive Agricultural Regions Based on Machine Learning. Chemosphere 2023, 313, 137623. [Google Scholar] [CrossRef] [PubMed]
- Penuelas, J.; Coello, F.; Sardans, J. A Better Use of Fertilizers Is Needed for Global Food Security and Environmental Sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- Mayakaduwa, M.A.P.; Rafii, Y.M.; Ismail, R.; Liyanage, L.R.M.C.; Rupasinghe, M.G.N.; Hanafi, M.M. Identification of Phosphate Sorption-Desorption and Accumulation Characteristics to Reduce Environmental Consequences. Commun. Soil Sci. Plant Anal. 2023, 54, 926–944. [Google Scholar] [CrossRef]
- Suazo-Hernández, J.; Sepúlveda, P.; Cáceres-Jensen, L.; Castro-Rojas, J.; Poblete-Grant, P.; Bolan, N.; Mora, M.d.l.L. nZVI-Based Nanomaterials Used for Phosphate Removal from Aquatic Systems. Nanomaterials 2023, 13, 399. [Google Scholar] [CrossRef]
- Chen, Q.; Qin, J.; Cheng, Z.; Huang, L.; Sun, P.; Chen, L.; Shen, G. Synthesis of a Stable Magnesium-Impregnated Biochar and Its Reduction of Phosphorus Leaching from Soil. Chemosphere 2018, 199, 402–408. [Google Scholar] [CrossRef]
- Jin, S.; Lin, J.; Zhan, Y. Immobilization of Phosphorus in Water-Sediment System by Iron-Modified Attapulgite, Calcite, Bentonite and Dolomite under Feed Input Condition: Efficiency, Mechanism, Application Mode Effect and Response of Microbial Communities and Iron Mobilization. Water Res. 2023, 247, 120777. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, Y.; Zhuang, H.; Shan, S. In-Situ Retention of Nitrogen, Phosphorus in Agricultural Drainage and Soil Nutrients by Biochar at Different Temperatures and the Effects on Soil Microbial Response. Sci. Total Environ. 2023, 904, 166292. [Google Scholar] [CrossRef]
- Li, F.; He, S.; Liu, B.; Yang, J.; Wang, X.; Liang, X. Biochar-Blended Manure Modified by Polyacrylamide to Reduce Soil Colloidal Phosphorus Leaching Loss. Environ. Sci. Pollut. Res. 2023, 30, 38592–38604. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Zhang, T.; Fan, B.; Fan, B.; Yin, J.; Chen, S.; Zhang, S.; Chen, Q. Enhanced Phosphorus Fixation in Red Mud-Amended Acidic Soil Subjected to Periodic Flooding-Drying and Straw Incorporation. Environ. Res. 2023, 229, 115960. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Sun, Q.; Ding, S.; Wang, D.; Wang, Y.; Chen, M.; Shi, L.; Fan, X.; Tsang, D.C.W. Mobile Phosphorus Stratification in Sediments by Aluminum Immobilization. Chemosphere 2017, 186, 644–651. [Google Scholar] [CrossRef] [PubMed]
- McDowell, R.W.; Biggs, B.J.F.; Sharpley, A.N.; Nguyen, L. Connecting Phosphorus Loss from Agricultural Landscapes to Surface Water Quality. Chem. Ecol. 2004, 20, 1–40. [Google Scholar] [CrossRef]
- Biswas, P.; Polash, S.A.; Dey, D.; Kaium, M.A.; Mahmud, A.R.; Yasmin, F.; Baral, S.K.; Islam, M.A.; Rahaman, T.I.; Abdullah, A.; et al. Advanced Implications of Nanotechnology in Disease Control and Environmental Perspectives. Biomed. Pharmacother. 2023, 158, 114172. [Google Scholar] [CrossRef]
- Tawiah, B.; Ofori, E.A.; Soney, C.G. Nanotechnology in Societal Development; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–64. ISBN 9789819761838. [Google Scholar]
- Hussein, H.S. The State of the Art of Nanomaterials and Its Applications in Energy Saving. Bull. Natl. Res. Cent. 2023, 47, 7. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Hayat, Z.; Zhang, D.D.; Li, M.Y.; Hu, S.; Wu, Q.; Cao, Y.F.; Yuan, Y. Zinc oxide nanoparticles: Synthesis, characterization, Modification, and Applications in Food and Agriculture. Processes 2023, 11, 1193. [Google Scholar] [CrossRef]
- Prakash, P.; S, S.C. Nano-Phytoremediation of Heavy Metals from Soil: A Critical Review. Pollutants 2023, 3, 360–380. [Google Scholar] [CrossRef]
- Baragaño, D.; Alonso, J.; Gallego, J.R.; Lobo, M.C.; Gil-Díaz, M. Magnetite Nanoparticles for the Remediation of Soils Co-Contaminated with As and PAHs. Chem. Eng. J. 2020, 399, 125809. [Google Scholar] [CrossRef]
- Das, A.; Jaswal, V.; Yogalakshmi, K.N. Degradation of Chlorpyrifos in Soil Using Laccase Immobilized Iron Oxide Nanoparticles and Their Competent Role in Deterring the Mobility of Chlorpyrifos. Chemosphere 2020, 246, 125676. [Google Scholar] [CrossRef]
- Lin, J.; Sun, M.; Su, B.; Owens, G.; Chen, Z. Immobilization of Cadmium in Polluted Soils by Phytogenic Iron Oxide Nanoparticles. Sci. Total Environ. 2019, 659, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.J.; Chen, J.H.; Fan, T.T.; Zhou, D.M.; Wang, Y.J. Effect of Nanoparticle Hydroxyapatite on the Immobilization of Cu and Zn in Polluted Soil. Environ. Sci. Pollut. Res. 2018, 25, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Baragaño, D.; Forján, R.; Álvarez, N.; Gallego, J.R.; González, A. Zero Valent Iron Nanoparticles and Organic Fertilizer Assisted Phytoremediation in a Mining Soil: Arsenic and Mercury Accumulation and Effects on the Antioxidative System of Medicago sativa L. J. Hazard. Mater. 2022, 433, 128748. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Li, L.; Zhao, D.; Chen, H. Immobilization of Non-Point Phosphorus Using Stabilized Magnetite Nanoparticles with Enhanced Transportability and Reactivity in Soils. Environ. Pollut. 2010, 158, 35–40. [Google Scholar] [CrossRef]
- Karanpal, S.; Nancy; Singh, G.; Singh, J. Sustainable Synthesis of Biogenic ZnO NPs for Mitigation of Emerging Pollutants and Pathogens. Environ. Res. 2023, 219, 114952. [Google Scholar] [CrossRef]
- Saeed, M.; Marwani, H.M.; Shahzad, U.; Asiri, A.M.; Rahman, M.M. Recent Advances, Challenges, and Future Perspectives of ZnO Nanostructure Materials Towards Energy Applications. Chem. Rec. 2024, 24, e202300106. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, S.; Luo, L.; Han, W.; Zhang, J.; Yang, K.; Christie, P. Dissolution and Microstructural Transformation of ZnO Nanoparticles under the Influence of Phosphate. Environ. Sci. Technol. 2012, 46, 7215–7221. [Google Scholar] [CrossRef]
- Rathnayake, S.; Unrine, J.M.; Judy, J.; Miller, A.F.; Rao, W.; Bertsch, P.M. Multitechnique Investigation of the pH Dependence of Phosphate Induced Transformations of ZnO Nanoparticles. Environ. Sci. Technol. 2014, 48, 4757–4764. [Google Scholar] [CrossRef]
- Luo, Z.; Zhu, S.; Liu, Z.; Liu, J.; Huo, M.; Yang, W. Study of Phosphate Removal from Aqueous Solution by Zinc Oxide. J. Water Health 2015, 13, 704–713. [Google Scholar] [CrossRef]
- Khamis, M.; Gouda, G.A.; Nagiub, A.M. Biosynthesis Approach of Zinc Oxide Nanoparticles for Aqueous Phosphorous Removal: Physicochemical Properties and Antibacterial Activities. BMC Chem. 2023, 17, 99. [Google Scholar] [CrossRef]
- Sadzawka, R.A.; Carrasco, R.M.A.; Grez, Z.R.; Mora, G.M.d.l.L.; Flores, P.H.; Neaman, A. Métodos de Análisis Recomendados Para Suelos Chilenos; Comisión de Normalización y Acreditación (CNA): Sociedad Chilena de La Ciencia Del Suelo: Santiago, Chile, 2006. [Google Scholar]
- Olsen, S.R.; Sommer, L.E. Phosphorus. In Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties; Wiley: Hoboken, NJ, USA, 1982; pp. 403–430. [Google Scholar] [CrossRef]
- Hooda, P.S.; Alloway, B.J. The Plant Availability and DTPA Extractability of Trace Metals in Sludge-Amended Soils. Sci. Total Environ. 1994, 149, 39–51. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Nájera, F.; Tapia, Y.; Baginsky, C.; Figueroa, V.; Cabeza, R.; Salazar, O. Evaluation of Soil Fertility and Fertilisation Practices for Irrigated Maize (Zea mays L.) under Mediterranean Conditions in Central Chile. J. Soil Sci. Plant Nutr. 2015, 15, 84–97. [Google Scholar] [CrossRef]
- Herrmann, R.; García-García, F.J.; Reller, A. Rapid Degradation of Zinc Oxide Nanoparticles by Phosphate Ions. Beilstein J. Nanotechnol. 2014, 5, 2007–2015. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xie, C. Zn2+ Release from Zinc and Zinc Oxide Particles in Simulated Uterine Solution. Colloids Surf. B Biointerfaces 2006, 47, 140–145. [Google Scholar] [CrossRef]
- Shemawar; Mahmood, A.; Hussain, S.; Mahmood, F.; Iqbal, M.; Shahid, M.; Ibrahim, M.; Ali, M.A.; Shahzad, T. Toxicity of Biogenic Zinc Oxide Nanoparticles to Soil Organic Matter Cycling and Their Interaction with Rice-Straw Derived Biochar. Sci. Rep. 2021, 11, 8429. [Google Scholar] [CrossRef]
- Suazo-Hernández, J.; Sans-Serramitjana, E.; de la Luz Mora, M.; Fuentes, B.; de los Ángeles Sepúlveda, M.; Silva-Yumi, J.; Celletti, S.; Celi, L.; Rivas, S.; Ruiz, A. Assessment of the Effects of ZnO and CuO Engineered Nanoparticles on Physicochemical Properties of Volcanic Ash Soil and Phosphorus Availability. Environments 2024, 11, 208. [Google Scholar] [CrossRef]
- Raliya, R.; Tarafdar, J.C.; Biswas, P. Enhancing the Mobilization of Native Phosphorus in the Mung Bean Rhizosphere Using ZnO Nanoparticles Synthesized by Soil Fungi. J. Agric. Food Chem. 2016, 64, 3111–3118. [Google Scholar] [CrossRef]
- Lv, W.; Geng, H.; Zhou, B.; Chen, H.; Yuan, R.; Ma, C.; Liu, R.; Xing, B.; Wang, F. The Behavior, Transport, and Positive Regulation Mechanism of ZnO Nanoparticles in a Plant-Soil-Microbe Environment. Environ. Pollut. 2022, 315, 120368. [Google Scholar] [CrossRef]
- Liu, Q.; Niu, X.; Zhang, D.; Ye, X.; Tan, P.; Shu, T.; Lin, Z. Phototransformation of Phosphite Induced by Zinc Oxide Nanoparticles (ZnO NPs) in Aquatic Environments. Water Res. 2023, 245, 120571. [Google Scholar] [CrossRef]
- Jośko, I.; Dobrzyńska, J.; Dobrowolski, R.; Kusiak, M.; Terpiłowski, K. The Effect of pH and Ageing on the Fate of CuO and ZnO Nanoparticles in Soils. Sci. Total Environ. 2020, 721, 137771. [Google Scholar] [CrossRef] [PubMed]
- Verma, Y.; Singh, S.K.; Jatav, H.S.; Rajput, V.D.; Minkina, T. Interaction of Zinc Oxide Nanoparticles with Soil: Insights into the Chemical and Biological Properties. Environ. Geochem. Health 2022, 44, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Cui, P.; Du, H.; Alves, M.E.; Zhou, D.; Wang, Y. Long-Term Dissolution and Transformation of ZnO in Soils: The Roles of Soil pH and ZnO Particle Size. J. Hazard. Mater. 2021, 415, 125604. [Google Scholar] [CrossRef] [PubMed]
- Khodaparast, M.; Rajabi, A.M.; Mohammadi, M. Mechanical Properties of Silty Clay Soil Treated with a Mixture of Lime and Zinc Oxide Nanoparticles. Constr. Build. Mater. 2021, 281, 122548. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.; Fu, Q.L.; Xiong, J.W.; Hong, C.; Hu, H.Q.; Violante, A. Adsorption of Phosphate onto Ferrihydrite and Ferrihydrite-Humic Acid Complexes. Pedosphere 2015, 25, 405–414. [Google Scholar] [CrossRef]
- Manquián-Cerda, K.; Calderón, R.; Molina-Roco, M.; Maldonado, T.; Arancibia-Miranda, N. Cd2+ Sorption Alterations in Ultisol Soils Triggered by Different Engineered Nanoparticles and Incubation Times. Nanomaterials 2023, 13, 3115. [Google Scholar] [CrossRef]
- Maamoun, I.; Eljamal, R.; Falyouna, O.; Bensaida, K.; Sugihara, Y.; Eljamal, O. Insights into Kinetics, Isotherms and Thermodynamics of Phosphorus Sorption onto Nanoscale Zero-Valent Iron. J. Mol. Liq. 2021, 328, 115402. [Google Scholar] [CrossRef]
- Giles, C.H.; D’Silva, A.P.; Easton, I.A. A General Treatment and Classification of the Solute Adsorption Isotherm Part. II. Experimental Interpretation. J. Colloid Interface Sci. 1974, 47, 766–778. [Google Scholar] [CrossRef]
- Jiang, N.; Erdős, M.; Moultos, O.A.; Shang, R.; Vlugt, T.J.H.; Heijman, S.G.J.; Rietveld, L.C. The Adsorption Mechanisms of Organic Micropollutants on High-Silica Zeolites Causing S-Shaped Adsorption Isotherms: An Experimental and Monte Carlo Simulation Study. Chem. Eng. J. 2020, 389, 123968. [Google Scholar] [CrossRef]
- Osorio, N.W.; Habte, M. Soil Phosphate Desorption Induced by a Phosphate-Solubilizing Fungus. Commun. Soil Sci. Plant Anal. 2014, 45, 451–460. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Cui, P.; Du, H.; Alves, M.E.; Liu, C.; Zhou, D.; Wang, Y. Dissolution and Transformation of ZnO Nano- and Microparticles in Soil Mineral Suspensions. ACS Earth Space Chem. 2019, 3, 495–502. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Cao, M.; Zhou, B.; Chen, H.; Yuan, R.; Liu, S.; Xing, B. Mechanisms of ZnO Nanoparticles Enhancing Phototransformation of Biologically Derived Organic Phosphorus in Aquatic Environments. Environ. Sci. Technol. 2023, 57, 3691–3702. [Google Scholar] [CrossRef] [PubMed]
- Mohebian, H.; Jalali, M.; Merrikhpour, H. The Effect of Zeolite, ZnO, and CuO Nanoparticles on Heavy Metals Retention in a Sandy Loam Soil: A Column Leaching and Batch Study. Environ. Earth Sci. 2022, 81, 407. [Google Scholar] [CrossRef]
- Suazo-Hernández, J.; Urdiales, C.; Poblete-Grant, P.; Pesenti, H.; Cáceres-Jensen, L.; Sarkar, B.; Bolan, N.; de la Luz Mora, M. Effect of Particle Size of Nanoscale Zero–Valent Copper on Inorganic Phosphorus Adsorption–Desorption in a Volcanic Ash Soil. Chemosphere 2023, 340, 139836. [Google Scholar] [CrossRef]
- Vistoso, E.; Theng, B.K.G.; Bolan, N.S.; Parfitt, R.L.; Mora, M.L. Competitive Sorption of Molybdate and Phosphate in Andisols. J. Soil Sci. Plant Nutr. 2012, 12, 59–72. [Google Scholar] [CrossRef]
- Milani, N.; Hettiarachchi, G.M.; Kirby, J.K.; Beak, D.G.; Stacey, S.P.; McLaughlin, M.J. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil. PLoS ONE 2015, 10, e0126275. [Google Scholar] [CrossRef]
- Hamisi, R.; Renman, A.; Renman, G.; Wörman, A.; Thunvik, R. Long-Term Phosphorus Sorption and Leaching in Sand Filters for Onsite Treatment Systems. Sci. Total Environ. 2022, 833, 155254. [Google Scholar] [CrossRef]
- Pizarro, C.; Fabris, J.D.; Stucki, J.; Garg, V.K.; Morales, C.; Aravena, S.; Gautier, J.L.; Galindo, G. Distribution of Fe-Bearing Compounds in an Ultisol as Determined with Selective Chemical Dissolution and Mössbauer Spectroscopy. Hyperfine Interact. 2007, 175, 95–101. [Google Scholar] [CrossRef]
- Molina, M.; Manquian-Cerda, K.; Escudey, M. Sorption and Selectivity Sequences of Cd, Cu, Ni, Pb, and Zn in Single- and Multi-Component Systems in a Cultivated Chilean Mollisol. Soil Sediment Contam. 2010, 19, 405–418. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Y.; Chen, W.; Shi, J.; Zhang, N.; Wang, X.; Li, Z.; Gao, L.; Zhang, Y. Modified Bentonite Adsorption of Organic Pollutants of Dye Wastewater. Mater. Chem. Phys. 2017, 202, 266–276. [Google Scholar] [CrossRef]
- Suazo-Hernández, J.; Sepúlveda, P.; Manquián-Cerda, K.; Ramírez-Tagle, R.; Rubio, M.A.; Bolan, N.; Sarkar, B.; Arancibia-Miranda, N. Synthesis and Characterization of Zeolite-Based Composites Functionalized with Nanoscale Zero-Valent Iron for Removing Arsenic in the Presence of Selenium from Water. J. Hazard. Mater. 2019, 373, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Alkaim, A.F.; Sadik, Z.; Mahdi, D.K.; Alshrefi, S.M.; Al-Sammarraie, A.M.; Alamgir, F.M.; Singh, P.M.; Aljeboree, A.M. Preparation, Structure and Adsorption Properties of Synthesized Multiwall Carbon Nanotubes for Highly Effective Removal of Maxilon Blue Dye. Korean J. Chem. Eng. 2015, 32, 2456–2462. [Google Scholar] [CrossRef]
Parameters | Weight ENPs | pH | Kinetics | Isotherms |
---|---|---|---|---|
Agitation time (min) | 1440 | 1440 | 0–1440 | 1440 |
ENPs doses (g) | 0.001–0.010 | 0.005 | 0.005 | 0.005 |
Adsorbent dose (g) | 0.5 | 0.5 | 0.5 | 0.5 |
Initial P concentration (mmol L−1) | 6.46 | 6.46 | 6.46 | 0.02–6.46 |
pH solution | 5.5 | 4.5–10.5 | 5.5 | 5.5 |
Volume of adsorbate (mL) | 20 | 20 | 20 | 20 |
Shaking speed (rpm) | 200 | 200 | 200 | 200 |
Soil Analysis | Ultisol | Mollisol | Ultisol + 1% ZnO–ENPs | Mollisol + 1% ZnO–ENPs |
---|---|---|---|---|
Available N (mg kg−1) | 10 | 10 | 9 | 8 |
Available P (mg kg−1) | 11 | 37 | 4 | 15 |
pHH2O | 6.14 | 6.33 | 8.08 | 8.14 |
Electrical conductivity (dS m−1) | 0.039 | 0.078 | 0.054 | 0.097 |
Organic matter (%) | 2.07 | 2.36 | 2.13 | 2.68 |
K (cmol+ kg−1) | 0.21 | 0.80 | 0.20 | 0.73 |
Na (cmol+ kg−1) | 0.11 | 0.11 | 0.10 | 0.09 |
Ca (cmol+ kg−1) | 6.98 | 7.98 | 7.08 | 7.96 |
Mg (cmol+ kg−1) | 2.49 | 1.77 | 2.46 | 1.71 |
ECEC (cmol+ kg−1) * | 9.82 | 10.68 | 9.87 | 10.51 |
Zn–DTPA (mg kg−1) | 0.69 | 15.3 | 871 | 912 |
Cu–DTPA (mg kg−1) | 2.09 | 1.64 | 0.25 | 0.24 |
Fe–DTPA (mg kg−1) | 57.0 | 34.0 | 1.56 | 0.51 |
BET surface area (m2 g−1) | 25.490 | 22.998 | 20.685 | 16.279 |
Average pore volume (cm3 g−1) | 0.025 | 0.027 | 0.021 | 0.018 |
Average pore diameter (nm) | 3.827 | 3.827 | 3.784 | 3.827 |
Kinetic Parameters | Ultisol | Mollisol | Ultisol + 1% ZnO–ENPs | Mollisol + 1% ZnO–ENPs |
---|---|---|---|---|
qexp (mmol kg−1) | 72.10 ± 13.27 | 46.80 ± 11.06 | 112.53 ± 14.12 | 79.14 ± 10.05 |
qexp (%) | 27.73 | 17.89 | 42.98 | 30.58 |
Pseudo–first–order | ||||
qe (mmol kg−1) | 66.25 ± 2.32 | 42.75 ± 2.40 | 101.08 ± 4.57 | 72.35 ± 2.90 |
k1 (×10−3 min−1) | 128.71 ± 22.97 | 93.51 ± 26.23 | 171.75 ± 40.10 | 241.90 ± 53.01 |
r2 | 0.943 | 0.870 | 0.892 | 0.902 |
χ2 | 36 | 35 | 146 | 61 |
Pseudo–second–order | ||||
qe (mmol kg−1) | 69.81 ± 1.44 | 44.98 ± 1.77 | 105.95 ± 3.32 | 75.11 ± 2.01 |
k2 (×10−3 kg mmol−1 min−1) | 2.41 ± 0.00 | 3.00 ± 0.00 | 2.24 ± 0.00 | 4.99 ± 1.05 |
h (mmol kg−1 min−1) | 11.74 ± 0.00 | 6.07 ± 0.00 | 25.14 ± 0.00 | 28.15 ± 0.00 |
r2 | 0.983 | 0.942 | 0.954 | 0.961 |
χ2 | 11 | 16 | 61 | 24 |
Elovich | ||||
α (mmol kg−1 min−1) | 187.74 ± 14.74 | 85.01 ± 6.31 | 1022.03 ± 70.86 | 6715.18 ± 118.24 |
β (kg mmol−1) | 0.14 ± 0.01 | 0.20 ± 0.02 | 0.10 ± 0.00 | 0.173 ± 0.012 |
r2 | 0.953 | 0.951 | 0.976 | 0.987 |
χ2 | 30 | 13 | 32 | 8 |
Ultisol | Mollisol | Ultisol + 1% ZnO–ENPs | Mollisol + 1% ZnO–ENPs | |
---|---|---|---|---|
Langmuir | ||||
KL | 1.35 ± 0.60 | 0.24 ± 0.06 | 0.04 ± 0.00 | 0.19 ± 0.05 |
qmax | 68.66 ± 8.60 | 76.61 ± 10.11 | 1650.87 ± 127.74 | 214.89 ± 37.25 |
r2 | 0.947 | 0.991 | 0.992 | 0.992 |
χ2 | 36 | 3 | 29 | 11 |
Freundlich | ||||
KF | 34.15 ± 2.00 | 14.25 ± 1.66 | 58.09 ± 3.06 | 1.37 ± 0.11 |
n | 2.44 ± 0.27 | 1.48 ± 0.18 | 1.10 ± 008 | 34.07 ± 2.43 |
r2 | 0.976 | 0.972 | 0.993 | 0.988 |
χ2 | 16 | 9 | 23 | 17 |
Temkin | ||||
KT | 48.90 ± 15.09 | 10.77 ± 5.09 | 100.60 ± 19.67 | 37.42 ± 33.18 |
BT | 230.31 ± 20.62 | 279.44 ± 51.81 | 143.16 ± 44.87 | 180.69 ± 48.17 |
r2 | 0.962 | 0.855 | 0.673 | 0.740 |
χ2 | 26 | 50 | 1150 | 393 |
Linear | ||||
K (L kg−1) | 12.15 ± 2.13 | 8.14 ± 1.02 | 51.27 ± 1.14 | 22.80 ± 1.82 |
r2 | 0.866 | 0.928 | 0.998 | 0.970 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suazo-Hernández, J.; Mlih, R.; Bustamante, M.; Castro-Castillo, C.; Mora, M.d.l.L.; Sepúlveda-Parada, M.d.l.Á.; Mella, C.; Cornejo, P.; Ruiz, A. Immobilization of Inorganic Phosphorus on Soils by Zinc Oxide Engineered Nanoparticles. Toxics 2025, 13, 363. https://doi.org/10.3390/toxics13050363
Suazo-Hernández J, Mlih R, Bustamante M, Castro-Castillo C, Mora MdlL, Sepúlveda-Parada MdlÁ, Mella C, Cornejo P, Ruiz A. Immobilization of Inorganic Phosphorus on Soils by Zinc Oxide Engineered Nanoparticles. Toxics. 2025; 13(5):363. https://doi.org/10.3390/toxics13050363
Chicago/Turabian StyleSuazo-Hernández, Jonathan, Rawan Mlih, Marion Bustamante, Carmen Castro-Castillo, María de la Luz Mora, María de los Ángeles Sepúlveda-Parada, Catalina Mella, Pablo Cornejo, and Antonieta Ruiz. 2025. "Immobilization of Inorganic Phosphorus on Soils by Zinc Oxide Engineered Nanoparticles" Toxics 13, no. 5: 363. https://doi.org/10.3390/toxics13050363
APA StyleSuazo-Hernández, J., Mlih, R., Bustamante, M., Castro-Castillo, C., Mora, M. d. l. L., Sepúlveda-Parada, M. d. l. Á., Mella, C., Cornejo, P., & Ruiz, A. (2025). Immobilization of Inorganic Phosphorus on Soils by Zinc Oxide Engineered Nanoparticles. Toxics, 13(5), 363. https://doi.org/10.3390/toxics13050363