Correlation Analysis Between Physical–Chemical and Biological Conditions in the River and the Incidence of Diseases in the City of Piracicaba, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population and Setting
2.3. Data Sources and Collection
2.3.1. Health Data
2.3.2. Physicochemical and Biological Water Variables
2.4. Statistical Analysis
3. Results
3.1. Correlation Analysis Between a Disease and Physicochemical and Biological Water Variables
3.2. Principal Component Analysis of the Physicochemical and Biological Variables of the Piracicaba River
3.3. Diseases of the Respiratory System
3.4. Diseases of the Digestive System
3.5. Diseases of the Nervous System and Other Diseases
4. Discussion
4.1. Diseases of the Respiratory System
4.2. Diseases of the Digestive System
4.3. Diseases of the Nervous System and Other Diseases
4.4. Future Directions
5. Conclusions
- (i)
- Seasonal health risks: High hospital admissions during contamination peaks highlight the vulnerability of populations living near or interacting with polluted water sources.
- (ii)
- Implications for public health policy: Enhanced environmental monitoring and timely public health warnings are essential to mitigate risks during periods of high contamination. Enhanced health system preparedness is critical to effectively address seasonal spikes in hospital admissions.
- (iii)
- Studies that correlate physicochemical and biological parameters are needed to understand disease incidence as well as their effects on humans.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DRS | Diseases of the Respiratory System |
DRS_A | Diseases of the Respiratory System_Asthma |
DRS_ODNPS | Diseases of the Respiratory System- Other Diseases of the Nose and Paranasal Sinuses |
DRS_ODRS | Diseases Of The Respiratory System_ Other Diseases Of The Respiratory System |
DDS | Diseases of the Digestive System |
DDS_ODDS | Diseases of the Digestive System_ Other Diseases of the Digestive System |
DDS_DGPI | Diseases of the Digestive System_ Diarrhea and Gastroenteritis of Presumed Infectious Origin |
DDS_OLV | Diseases of the Digestive System_ Other Liver Diseases |
DDS_OIID | Diseases of the Digestive System_ Other Infectious Intestinal Diseases |
DDS_ODESD | Diseases of the Digestive System_ Other Diseases of the Esophagus, Stomach and Duodenum |
DNS | Diseases of the Nervous System |
DNS_ODNS | Diseases of the Nervous System_ Other Diseases of the Nervous System |
DSST | Diseases of the Skin And Subcutaneous Tissue |
ODSST | Other Diseases of the Skin And Subcutaneous Tissue |
SSTI | Skin and Subcutaneous Tissue Infections |
IPSOCEC | Injuries, Poisoning and Some Other Consequences of External Causes |
DEA | Diseases of the Eye and Adnexa |
ODEA | Other Diseases of the Eye and Adnexa |
AF | Average Flow (m3/s) |
LF | Average Level Flow (m) |
P | Average Precipitation (mm) |
AT | Average Temperature (°C) |
W | Wind, Average Speed (m/s) |
AH | Average Relative Air Humidity (%) |
pH | pH |
DO | Dissolved Oxygen (mg/L O2) |
NTU | Turbidity (UNT) |
NH | N_NH_3 (mg/L) |
NO | N_NO_3 (mg/L) |
N | Ntotal Inorganic (mg/L) |
PH | Ptotal (mg/L) |
PS | Psoluble (mg/L) |
PO | _PO4_3 (mg/L) |
Cyn | Cyanobacteria (n° cel/mL) |
Chl | Chlorophyll (mg/L) |
CETESB | Environmental Company of the State of São Paulo |
SEMAE | Municipal Water and Sewage Services |
BOD | Biochemical Oxygen Demand |
TDS | Total Dissolved Solids |
LPS | Lipopolysaccharides |
SUS | Unified Health System |
DATASUS | Unified Health System’s Information Technology Department |
INMET | National Institute of Meteorology |
PCJ | Comitês das Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí e Comitê da Bacia Hidrográfica dos Rios Piracicaba e Jaguari. |
ICD-10 | International Classification of Diseases |
CCA | canonical correlation analysis |
UPGMA | Unweighted Pair Group Method with Arithmetic Mean |
PCA | Principal Component Analysis |
PC | Principal Components |
References
- CETESB (São Paulo) Qualidade das Águas Interiores no Estado de São Paulo 2023. Available online: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2024/11/RAI-2023-Relatorio-de-Qualidade-de-Aguas-Interiores-2023.pdf (accessed on 1 February 2025).
- Serviço Municipal de Água e Esgoto (SEMAE) de Piracicaba. Qualidade da Água—Relatórios Mensais e Anual Decreto 5.440. Available online: https://www.semaepiracicaba.sp.gov.br/?p=Y2F0ZWdvcmlh=&pg=1&sec=Ng==&cat=NDA= (accessed on 1 February 2025).
- Soares, A.L.; Pinto, C.C.; Oliveira, S.C. Impacts of anthropogenic activities and calculation of the relative risk of violating surface water quality standards established by environmental legislation: A case study from the Piracicaba and Paraopeba river basins, Brazil. Environ. Sci. Pollut. Res. 2020, 27, 14085–14099. [Google Scholar] [CrossRef]
- Conceição, F.T.; Fernandes, A.M.; Hissler, C.; Lupinacci, C.M.; Menegário, A.A.; Moruzzi, R.B. Multi-tracer analysis to estimate the historical evolution of pollution in riverbed sediment of subtropical watershed, the lower course of the Piracicaba River, São Paulo, Brazil. Sci. Total Environ. 2020, 743, 140730. [Google Scholar] [CrossRef] [PubMed]
- News about the Episode of Cyanobacterial Blooms in Piracicaba Rivers in December 2023 and January 2024. Available online: https://g1.globo.com/sp/piracicaba-regiao/noticia/2023/12/30/rio-piracicaba-amanhece-com-tonalidade-verde-e-especialista-coleta-amostra-para-analise.ghtml (accessed on 1 February 2025).
- Chen, L.; Giesy, J.P.; Svirčev, Z.; Meriluoto, J.; Codd, G.A.; Mijovic, B.; Shi, T.; Tuo, X.; Li, S.; Pan, B.; et al. Challenges of using blooms of Microcystis spp. in animal feeds: A comprehensive review of nutritional, toxicological and microbial health evaluation. Sci. Total Environ. 2021, 764, 142319. [Google Scholar] [CrossRef]
- Svirčev, Z.; Lalić, D.; Savić, G.B.; Tokodi, N.; Backović, D.D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef]
- Chorus, I.; Welker, M. Toxic Cyanobacteria in Water. A Guide to Their Public Health Consequences, Monitoring and Management, 2nd ed; WHO Team—Water, Sanitation, Hygiene and Health (WSH); CRC Press: Boca Raton, FL, USA, 2021; p. 859. Available online: https://www.routledge.com/Toxic-Cyanobacteria-in-Water-A-Guide-to-Their-Public-Health-Consequences/Chorus-Welker/p/book/9780367533311 (accessed on 1 February 2025)ISBN 978-1-003-08144-9.
- Plaas, H.; Paerl, H. Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. Environ. Sci. Technol. 2021, 55, 44–64. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.S.; Yue, Z.; Irvin, M.; Kirkpatrick, B.; Backer, L.C. Characterization of Aerosols Containing Microcystin. Mar. Drugs 2007, 5, 136–150. [Google Scholar] [CrossRef]
- Labohá, P.; Sychrová, E.; Brózman, O.; Sovadinová, I.; Bláhová, L.; Prokeš, R.; Ondráček, J.; Babica, P. Cyanobacteria, cyanotoxins and lipopolysaccharides in aerosols from inland freshwater bodies and their effects on human bronchial cells. Environ. Toxicol. Pharmacol. 2023, 98, 104073. [Google Scholar] [CrossRef]
- Vejerano, E.P.; Ahn, J.; Scott, G.I. Aerosolized algal bloom toxins are not inert. Environ. Sci. Atmos. 2024, 4, 1113–1128. [Google Scholar] [CrossRef]
- Shultana, S.; Khan, R.A. Water quality assessment, reasons of river water pollution, impact on human health and remediation of polluted river water. GSCARR 2022, 10, 107–115. [Google Scholar] [CrossRef]
- Katakwar, M. Narmada river water: Pollution and its impact on the human health. Int. J. Chem. Stud. 2016, 4, 66–70. Available online: https://www.chemijournal.com/archives/2016/vol4issue2/PartB/4-2-20.pdf (accessed on 1 February 2025).
- Kormoker, T.; Islam, M.S.; Siddique, M.A.B.; Kumar, S.; Phoungthong, K.; Kabir, M.H.; Iqubal, K.F.; Kumar, R.; Ali, M.M.; Islam, A.R.M. Layer-wise physicochemical and elemental distribution in an urban river water, Bangladesh: Potential pollution, sources, and human health risk assessment. Environ. Sci. Adv. 2023, 2, 1382–1398. [Google Scholar] [CrossRef]
- Departamento de Informação e Informática do SUS (DATASUS). Available online: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sih/cnv/nisp.def (accessed on 1 February 2025).
- Comitês das Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí (PCJ). Boletins Mensais. Available online: https://www.sspcj.org.br/index.php/boletimmensal (accessed on 1 February 2025).
- Instituto Nacional de Meteorologia (INMET). Available online: https://bdmep.inmet.gov.br/ (accessed on 1 February 2024).
- Sahu, N.; Maldhure, A.; Labhasetwar, P. Management of cyanobacteria and cyanotoxins in drinking water: A comprehensive review on occurrence, toxicity, challenges and treatment approaches. Sci Total Environ 2025, 976, 179260. [Google Scholar] [CrossRef] [PubMed]
- Ministério da Saúde, Brasil. Resolução Nº 466, de 12 de Dezembro de 2012. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/cns/2013/res0466_12_12_2012.html (accessed on 1 February 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 1 February 2025).
- Manly, B.F.J.; Alberto, J.A.N. Métodos Estatísticos Multivariados: Uma Introdução, 4th ed.; Bookman Editora: Porto Alegre, Brazil, 2019. [Google Scholar]
- Oksanen, J.; Blanchet, F.H.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Package ‘vegan’. Community Ecol. Package Version 2013, 2, 1–295. [Google Scholar]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Revelle, W.R. Package ‘psych’: Procedures for Personality and Psychological Research; Northwestern University: Evanston, IL, USA, 2017. [Google Scholar]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Hinde, J.; Demetrio, C.G.B. Overdipersion: Models and estimation. Comput Stat Data Anal. 1998, 27, 151–170. [Google Scholar] [CrossRef]
- Hanif, M.; Miah, R.; Islam, M.; Marzia, S. Impact of Kapotaksha river water pollution on human health and environment. Prog. Agri. 2020, 31, 1–9. [Google Scholar] [CrossRef]
- BRASIL, Resolução CONAMA n°357, de 17 de março de 2005. Classificação de águas, Doces, Salobras e Salinas do Território Nacional. Available online: https://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=450 (accessed on 1 February 2025).
- Brasil, Portaria do Ministério da Saúde Portaria GM/MS n° 888, de 4 de maio de 2021. Procedimentos de Controle e de Vigilância da Qauldiade da água para Consumo Humano e Seu Padrão de Potabilidade. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/gm/2021/prt0888_07_05_2021.html (accessed on 1 February 2025).
- D’Amato, G.; D’Amato, M. Climate change, air pollution, pollen allergy and extreme atmospheric events. Curr. Opin. Pediatr. 2023, 35, 356–361. [Google Scholar] [CrossRef]
- Maciorowski, D.; Sharma, D.; Kunamneni, A. Environmental factors and their role in the transmission of SARS-CoV-2. Biosaf. Health 2021, 3, 235–237. [Google Scholar] [CrossRef]
- Lipner, E.M.; French, J.P.; Mercaldo, R.A.; Nelson, S.; Zelazny, A.M.; Marshall, J.E.; Strong, M.; Falkinham, J.O., 3rd; Prevots, D.R. The risk of pulmonary NTM infections and water-quality constituents among persons with cystic fibrosis in the United States, 2010–2019. Environ. Epidemiol. 2023, 7, e266. [Google Scholar] [CrossRef]
- Lad, A.; Breidenbach, J.D.; Su, R.C.; Murray, J.; Kuang, R.; Mascarenhas, A.; Najjar, J.; Patel, S.; Hegde, P.; Youssef, M.; et al. As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life 2022, 12, 418. [Google Scholar] [CrossRef] [PubMed]
- Olson, N.E.; Cooke, M.E.; Shi, H.; Birbeck, J.A.; Westrick, J.A.; Ault, A.P. Harmful Algal Bloom Toxins in Aerosol Generated from Inland Lake Water. Environ. Sci. Technol. 2020, 54, 4769–4780. [Google Scholar] [CrossRef]
- Changhai, L.; Zaichun, W.; Bo, Y.; Dan, L.; Shaohua, W. Micronutrientes e doenças alérgicas: Um estudo de randomização mendeliana. Int. Arch. Allergy Immunol. 2025, 186, 41–51. [Google Scholar] [CrossRef]
- Peroni, D.G.; Hufnagl, K.; Comberiati, P.; Roth-Walter, F. Lack of iron, zinc, and vitamins as a contributor to the etiology of atopic diseases. Front. Nutr. 2023, 9, 1032481. [Google Scholar] [CrossRef]
- Lorenz, C.; Libonati, R.; Belém, L.B.C.; Oliveira, A.; Chiaravalloti, R.M.; Nunes, A.V.; Batista, E.K.L.; Fernandes, G.W.; Chiaravalloti-Neto, F.; Damasceno-Junior, G.A.; et al. Historical association between respiratory diseases hospitalizations and fire occurrence in the Pantanal wetland, Brazil. Atmos. Pollut. Res. 2024, 15, 102182. [Google Scholar] [CrossRef]
- Camargo, J.A.; Alonso, A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef]
- Marozkina, N.V.; Gaston, B. Nitrogen Chemistry and Lung Physiology. Ann. Rev. Physiol. 2015, 77, 431–452. [Google Scholar] [CrossRef] [PubMed]
- Fares, A. Global patterns of seasonal variation in gastrointestinal diseases. J. Postgrad. Med. 2013, 59, 203–207. [Google Scholar] [CrossRef]
- Ji, Y.; Wu, J.; Wang, Y.; Elumalai, V.; Subramani, T. Seasonal Variation of Drinking Water Quality and Human Health Risk Assessment in Hancheng City of Guanzhong Plain, China. Expo Health 2020, 12, 469–485. [Google Scholar] [CrossRef]
- Giannuzzi, L.; Sedan, D.; Echenique, R.; Andrinolo, D. An Acute Case of Intoxication with Cyanobacteria and Cyanotoxins in Recreational Water in Salto Grande Dam, Argentina. Mar. Drugs 2011, 9, 2164–2175. [Google Scholar] [CrossRef]
- Reid, N.; Reyne, M.I.; O’Neill, W.; Greer, B.; He, Q.; Burdekin, O.; McGrath, J.W.; Elliott, C.T. Unprecedented Harmful algal bloom in the UK and Ireland’s largest lake associated with gastrointestinal bacteria, microcystins and anabaenopeptins presenting an environmental and public health risk. Environ. Int. 2024, 190, 108934. [Google Scholar] [CrossRef]
- Peacock, M. Phosphate Metabolism in Health and Disease. Calcif. Tissue Int. 2021, 108, 3–15. [Google Scholar] [CrossRef]
- Hamedani, A.G.; Thibault, D.; Willis, A.W. Seasonal Variation in Neurologic Hospitalizations in the United States. Ann. Neurol. 2023, 93, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Song, H.; Cheng, Y.; Yao, X.; Li, Y. The mortality burden of nervous system diseases attributed to ambient temperature: A multi-city study in China. Sci. Total Environ. 2021, 800, 149548. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Song, H.; Wang, Z.; Cheng, Y.; Liu, Y.; Hao, S.; Li, N.; Wang, Y.; Wang, Y.; Zhang, X.; et al. Heat and outpatient visits of skin diseases—A multisite analysis in China, 2014–2018. Heliyon 2022, 8, 11203. [Google Scholar] [CrossRef]
- Khodaei, B.; Seyedpour, S.; Gholami, B.; Garmarudi, G.; Nasimi, M. Seasonal and gender variation in skin disease: A cross-sectional study of 3120 patients at Razi hospital. Int. J. Women’s Dermatol. 2021, 7, 799–802. [Google Scholar] [CrossRef]
- Mandell, J.T.; Idarraga, M.; Kumar, N.; Galor, A. impact of Air Pollution and Weather on Dry Eye. J. Clin. Med. 2020, 9, 3740. [Google Scholar] [CrossRef]
- Berg, E.J.; Ying, G.; Maguire, M.G.; Sheffield, P.E.; Szczotka-Flynn, L.B.; Asbell, P.A.; Shen, J.F. DREAM Study Research Group; Climatic and Environmental Correlates of Dry Eye Disease Severity: A Report From the Dry Eye Assessment and Management (DREAM) Study. Trans. Vis. Sci. Tech. 2020, 9, 25. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, F.; Carpenter, M.; Weller, R.B.; Tabor, D.; Payne, S.R. The effect of indoor thermal and humidity condition on the oldest-old people’s comfort and skin condition in winter. Build. Environ. 2020, 174, 106790. [Google Scholar] [CrossRef]
- Skowron, K.; Bauza-Kaszewska, J.; Kraszewska, Z.; Wiktorczyk-Kapischke, N.; Grudlewska-Buda, K.; Kwiecińska-Piróg, J.; Wałecka-Zacharska, E.; Radtke, L.; Gospodarek-Komkowska, E. Human Skin Microbiome: Impact of Intrinsic and Extrinsic Factors on Skin Microbiota. Microorganisms 2021, 9, 543. [Google Scholar] [CrossRef]
- Zhang, W.; Whalen, J.K.; Cai, C.; Shan, K.; Zhou, H. Harmful cyanobacteria-diatom/dinoflagellate blooms and their cyanotoxins in freshwaters: A nonnegligible chronic health and ecological hazard. Water Res. 2023, 233, 119807. [Google Scholar] [CrossRef] [PubMed]
- Funari, E.; Manganelli, M.; Buratti, F.M.; Testai, E. Cyanobacteria blooms in water: Italian guidelines to assess and manage the risk associated to bathing and recreational activities. Sci. Total Environ. 2017, 598, 867–880. [Google Scholar] [CrossRef] [PubMed]
Variable | Domain | Min | Max | Mean | SD | Range |
---|---|---|---|---|---|---|
DRS | Disease | 56 | 321 | 192.8406 | 59.3352 | 265.0000 |
DRS_A | Disease | 1 | 37 | 8.6377 | 6.5078 | 36.0000 |
DRS_ODNPS | Disease | 1 | 51 | 23.5362 | 11.0435 | 50.0000 |
DRS_ODRS | Disease | 15 | 49 | 30.1739 | 7.7724 | 34.0000 |
DDS | Disease | 103 | 671 | 347.8406 | 131.5954 | 568.0000 |
DDS_ODDS | Disease | 14 | 69 | 35.5362 | 10.7095 | 55.0000 |
DDS_DGPI | Disease | 1 | 20 | 6.9130 | 4.0791 | 19.0000 |
DDS_OLV | Disease | 2 | 14 | 8.3478 | 2.6392 | 12.0000 |
DDS_OIID | Disease | 1 | 8 | 3.5362 | 1.7199 | 7.0000 |
DDS_ODESD | Disease | 1 | 86 | 11.8696 | 15.6627 | 85.0000 |
DNS | Disease | 26 | 89 | 51.6522 | 13.9493 | 63.0000 |
DNS_ODNS | Disease | 2 | 21 | 10.5942 | 3.9494 | 19.0000 |
DSST | Disease | 18 | 203 | 77.3768 | 47.1163 | 185.0000 |
ODSST | Disease | 12 | 181 | 62.4638 | 44.6258 | 169.0000 |
SSTI | Disease | 4 | 27 | 14.8841 | 5.8650 | 23.0000 |
IPSOCEC | Disease | 214 | 373 | 289.3913 | 31.1388 | 159.0000 |
DEA | Disease | 2 | 745 | 110.9420 | 135.3495 | 743.0000 |
ODEA | Disease | 1 | 22 | 4.8986 | 3.7735 | 21.0000 |
AF | PBW | 15 | 216 | 66.6022 | 48.3878 | 200.1700 |
LF | PBW | 1 | 3 | 1.5646 | 0.4919 | 2.0500 |
P | PBW | 13 | 248 | 98.3890 | 61.2965 | 234.7800 |
AT | PBW | 17 | 27 | 222,630 | 2.6199 | 9.9000 |
AH | PBW | 34 | 83 | 65.7413 | 10.9020 | 48.8500 |
pH | PBW | 7 | 8 | 7.3117 | 0.2076 | 1.1000 |
DO | PBW | 1 | 5 | 2.9617 | 0.9753 | 4.5500 |
Turbidity | PBW | 3 | 478 | 36.1996 | 80.5959 | 474.7800 |
N_NH3 | PBW | 0 | 14 | 3.5042 | 2.4983 | 13.1300 |
N_NO3 | PBW | 0 | 39 | 3.2591 | 4.5323 | 38.5000 |
Ni | PBW | 2 | 43 | 6.7635 | 5.2471 | 40.2800 |
PH | PBW | 0 | 2 | 0.7926 | 0.4127 | 1.7600 |
PS | PBW | 0 | 1 | 0.4418 | 0.2720 | 1.0620 |
P_PO4_3 | PBW | 0 | 3 | 1.3529 | 0.8340 | 3.2500 |
Cyan | PBW | 1943 | 122,480 | 17,167.2899 | 18,618.2456 | 120,537.0000 |
Chl | PBW | 7 | 145 | 39.3371 | 33.4134 | 138.3800 |
Diseases (X) | PBW (Y) | First Canonical Pair | Second Canonical Pair | ||
---|---|---|---|---|---|
X Can1 | Y Can1 | X Can2 | Y Can2 | ||
DRS | AF | 1.1154 | −1.459 | −0.1674 | −0.9173 |
DRS_A | LF | −0.2186 | 1.0894 | 0.5188 | 0.7965 |
DRS_ODNPS | P | −0.4309 | 0.3952 | −0.0246 | −0.3262 |
DRS_ODRS | AT | 0.1153 | −0.5485 | 0.3079 | −0.0159 |
DDS | AH | −0.1943 | −0.1272 | −0.1064 | −0.1788 |
DDS_ODDS | pH | 0.0188 | −0.1819 | 0.4909 | −0.2355 |
DDS_DGPI | DO | −0.0162 | −0.2238 | −0.389 | −0.0324 |
DDS_OLV | Turbidity | 0.0828 | −0.1021 | −0.0423 | −0.1115 |
DDS_OIID | N_NH3 | 0.0766 | 0.1881 | −0.2058 | −1.2125 |
DDS_ODESD | N_NO3 | 0.2984 | 0.7135 | −0.0307 | −0.3094 |
DNS | Ni | −0.0304 | −0.7545 | −0.0619 | 0.826 |
DNS_ODNS | PH | −0.1402 | 0.1609 | −0.1306 | 0.7079 |
DSST | PS | −0.7364 | −3.2199 | 1.691 | 0.7986 |
ODSST | P_PO4_3 | 0.8604 | 2.5739 | −1.1225 | −0.8186 |
SSTI | Cyan | 0.0391 | −0.0752 | 0.0142 | 0.1643 |
IPSOCEC | Chl | −0.1094 | 0.0529 | −0.5083 | −0.7244 |
DEA | - | −1.2629 | - | 0.1506 | - |
ODEA | - | −0.0418 | - | 0.0639 | - |
Correlation | 0.90 | 0.83 | |||
p-value | 0.00037 | 0.036 |
Diseases | Significant Fixed Effects | Year/Season (Random Effect) | Year (Random Effect) |
---|---|---|---|
DRS | - | ✓ | ✓ |
DRS_A | PC2 ↓ | - | - |
DRS_ODNPS | PC1 ↓ | ✓ | ✓ |
DRS_ODRS | - | - | - |
Diseases | Significant Fixed Effects | Year/Season (Random Effect) | Year (Random Effect) |
---|---|---|---|
DDS | - | ✓ | ✓ |
DDS_ODDS | PC2 ↓ | - | - |
DDS_DGPI | PC3 ↑ | ✓ | ✓ |
DDS_OLV | - | - | - |
DDS_OIID | - | - | - |
DDS_ODESD | PC2 ↑ | - | ✓ |
Diseases | Significant Fixed Effects | Year/Season (Random Effect) | Year (Random Effect) |
---|---|---|---|
Diseases nervous system | |||
DNS | - | - | ✓ |
DNS_ODNS | - | - | - |
Other diseases | |||
DSST | - | - | ✓ |
ODSST | - | - | ✓ |
SSTI | PC1↓ and PC2 ↓ | - | ✓ |
IPSOCEC | PC3 ↑ and PC4 ↓ | - | - |
DEA | PC3 ↑ | ✓ | ✓ |
ODEA | - | - | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, A.O.d.; Amorim, D.J.; Pinto, E. Correlation Analysis Between Physical–Chemical and Biological Conditions in the River and the Incidence of Diseases in the City of Piracicaba, Brazil. Toxics 2025, 13, 359. https://doi.org/10.3390/toxics13050359
Souza AOd, Amorim DJ, Pinto E. Correlation Analysis Between Physical–Chemical and Biological Conditions in the River and the Incidence of Diseases in the City of Piracicaba, Brazil. Toxics. 2025; 13(5):359. https://doi.org/10.3390/toxics13050359
Chicago/Turabian StyleSouza, Alexander Ossanes de, Deoclecio Jardim Amorim, and Ernani Pinto. 2025. "Correlation Analysis Between Physical–Chemical and Biological Conditions in the River and the Incidence of Diseases in the City of Piracicaba, Brazil" Toxics 13, no. 5: 359. https://doi.org/10.3390/toxics13050359
APA StyleSouza, A. O. d., Amorim, D. J., & Pinto, E. (2025). Correlation Analysis Between Physical–Chemical and Biological Conditions in the River and the Incidence of Diseases in the City of Piracicaba, Brazil. Toxics, 13(5), 359. https://doi.org/10.3390/toxics13050359