Characteristics and Health Risks of Trace Metals in PM2.5 Before and During the Heating Period over Three Years in Shijiazhuang, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Observational Site
2.2. Sample Collection and Laboratory Analysis
2.3. Analysis Methods
2.3.1. Health Risk Assessment Model
2.3.2. Potential Source Contribution Function
3. Results and Discussion
3.1. PM2.5 Variations and Its Trace Element Concentrations Before and During the Heating Period
3.2. Health Risk Assessment Before and During the Heating Period
3.3. Potential Health Risk Regions Before and During the Heating Period
3.4. Variations in Health Risks During Different Pollution Levels Before and During the Heating Period
3.4.1. Concentrations of Trace Elements as Pollution Worsens
3.4.2. Health Risks of Trace Elements at Different Pollution Levels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HQ | Hazard Quotient |
CR | Cancer Risk |
References
- Liu, B.S.; Wu, J.H.; Wang, J.; Shi, L.Y.; Meng, H.; Dai, Q.L.; Wang, J.; Song, C.B.; Zhang, Y.F.; Feng, Y.C.; et al. Chemical characteristics and sources of ambient PM2.5 in a harbor area: Quantification of health risks to workers from source-specific selected toxic elements. Environ. Pollut. 2021, 268, 115926. [Google Scholar] [CrossRef]
- WHO. WHO Releases Country Estimates on Air Pollution Exposure and Health Impact; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- USEPA. Integrated Science Assessment for Particulate Matter, December 2019, Report No. EPA/600/R-19/188; Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2019.
- Sun, Y.M.; Tian, Y.Z.; Xue, Q.Q.; Jia, B.; Wei, Y.; Song, D.L.; Huang, F.X.; Feng, Y.C. Source-specific risks of synchronous heavy metals and PAHs in inhalable particles atdifferent pollution levels: Variations and health risks during heavy pollution. Environ. Int. 2021, 146, 106162. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Jayawardena, T.U.; Kim, H.-S.; Lee, W.W.; Vaas, A.P.J.P.; De Silva, H.I.C.; Abayaweera, G.S.; Nanayakkara, C.M.; Abeytunga, D.T.U.; Lee, D.-S.; et al. Beijing urban particulate matter-induced injury and inflammation in human lung epithelial cells and the protective effects of fucosterol from Sargassum binderi (Sonder ex J. Agardh). Environ. Res. 2019, 172, 150–158. [Google Scholar] [CrossRef]
- Gualtieri, M.; Øvrevik, J.; Holme, J.A.; Perrone, M.G.; Bolzacchini, E.; Schwarze, P.E.; Camatini, M. Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells. Toxicol. Vitro 2010, 24, 29–39. [Google Scholar] [CrossRef]
- Kermani, M.; Rahmatinia, T.; Oskoei, V.; Norzaee, S.; Shahsavani, A.; Farzadkia, M.; Kazemi, M.H. Potential cytotoxicity of trace elements and polycyclic aromatic hydrocarbons bounded to particulate matter: A review on in vitro studies on human lung epithelial cells. Environ. Sci. Pollut. Res. 2021, 28, 55888–55904. [Google Scholar] [CrossRef]
- Stafoggia, M.; Cesaroni, G.; Peters, A.; Andersen, Z.J.; Badaloni, C.; Beelen, R.; Caracciolo, B.; Cyrys, J.; de Faire, U.; de Hoogh, K.; et al. Long-Term exposure to ambient air pollution and incidence of cerebrovascularevents: Results from 11 European cohorts within the ESCAPE project. Environ. Health Perspect. 2014, 122, 919–925. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Ji, X.T.; Ku, T.T.; Li, G.K.; Sang, N. Heavy metals bound to fine particulate matter from northern China include season-dependent health risk: A study based on myocardial toxicity. Environ. Pollut. 2016, 216, 380–390. [Google Scholar] [CrossRef]
- Peng, X.; Shi, G.L.; Liu, G.R.; Xu, J.; Tian, Y.Z.; Zhang, Y.F.; Feng, Y.C.; Russell, A.G. Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model. Environ. Pollut. 2017, 221, 335–342. [Google Scholar] [CrossRef]
- Liang, B.; Li, X.L.; Ma, K.; Liang, S.X. Pollution characteristics of metal pollutants in PM2.5 and comparison of risk on human health in heating and non-heating seasons in Baoding, China. Ecotoxicol. Environ. Saf. 2019, 170, 166–171. [Google Scholar] [CrossRef]
- Liu, J.W.; Chen, Y.J.; Chao, S.H.; Cao, H.B.; Zhang, A.C. Levels and health risks of PM2.5-bound toxic metals from firework/firecracker burning during festival periods in response to management strategies. Ecotoxicol. Environ. Saf. 2019, 171, 406–413. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, M.; Liu, Y.; Yan, C.Q.; Liu, J.Y.; Liu, J.M.; Cheng, Y. Exploring sources and health risks of metals in Beijing PM2.5: Insights from long-term online measurements. Sci. Total Environ. 2022, 814, 151954. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, X.Y.; Li, C.; Ding, H.J.; Tang, L.; Ji, H.B. Characteristics of PM2.5 in Miyun, the northeastern suburb of Beijing: Chemical composition and evaluation of health risk. Environ. Sci. Pollut. Res. 2015, 22, 16688–16699. [Google Scholar] [CrossRef]
- Liu, J.Y.; Ma, T.; Chen, J.H.; Peng, X.; Zhang, Y.C.; Wang, Y.L.; Peng, J.F.; Shi, G.L.; Wei, Y.T.; Gao, J. Insights into PM2.5 pollution of four small and medium-sized cities in Chinese representative regions: Chemical compositions, sources and health risks. Sci. Total Environ. 2024, 918, 170620. [Google Scholar] [CrossRef]
- Li, J.W.; Ren, L.H.; Wu, Y.F.; Zhang, R.J.; Yang, X.Y.; Li, G.; Gao, E.H.; An, J.T.; Xu, Y.S. Different variations in PM2.5 sources and their specific health risks in different periods in a heavily polluted area of the Beijing-Tianjin-Hebei region of China. Atmos. Res. 2024, 308, 107519. [Google Scholar] [CrossRef]
- Liu, B.S.; Cheng, Y.; Zhou, M.; Liang, D.N.; Dai, Q.L.; Wang, L.; Jin, W.; Zhang, L.Z.; Ren, Y.B.; Zhou, J.B.; et al. Effectiveness evaluation of temporary emission control action in 2016 in winter in Shijiazhuang, China. Atmos. Chem. Phys. 2018, 18, 7019–7039. [Google Scholar] [CrossRef]
- Qin, K.; Wang, L.Y.; Wu, L.X.; Xu, J.; Rao, L.L.; Letu, H.S.; Shi, T.W.; Wang, R.F. A campaign for investigating aerosol optical properties during winter hazes over Shijiazhuang, China. Atmos. Res. 2017, 198, 113–122. [Google Scholar] [CrossRef]
- Zhang, W.H.; Liu, B.S.; Zhang, Y.F.; Li, Y.F.; Sun, X.Y.; Gu, Y.; Dai, C.L.; Li, N.; Song, C.B.; Dai, Q.L.; et al. A refined source apportionment study of atmospheric PM2.5 during winter heating period in Shijiazhuang, China, using a receptor model coupled with a source-oriented model. Atmos. Environ. 2020, 222, 117157. [Google Scholar] [CrossRef]
- Xie, Y.Z.; Liu, Z.R.; Wen, T.X.; Huang, X.J.; Liu, J.Y.; Tang, G.Q.; Yang, Y.; Li, X.R.; Shen, R.R.; Hu, B.; et al. Characteristics of chemical composition and seasonal variations of PM2.5 in Shijiazhuang, China: Impact of primary emissions and secondary formation. Sci. Total Environ. 2019, 677, 215–229. [Google Scholar] [CrossRef]
- Xiao, Q.Y.; Geng, G.N.; Xue, T.; Liu, S.G.; Cai, C.L.; He, K.B.; Zhang, Q. Tracking PM2.5 and O3 Pollution and the Related Health Burden in China 2013–2020. Environ. Sci. Technol. 2022, 56, 6922–6932. [Google Scholar] [CrossRef]
- Feng, J.L.; Sun, P.; Hu, X.L.; Zhao, W.; Wu, M.H.; Fu, J.M. The chemical composition and sources of PM2.5 during the 2009 Chinese New Year’s holiday in Shanghai. Atmos. Res. 2012, 118, 435–444. [Google Scholar] [CrossRef]
- Huang, X.; Betha, R.; Tan, L.Y.; Balasubramanian, R. Risk assessment of bioaccessible trace elements in smoke haze aerosols versus urban aerosols using simulated lung fluids. Atmos. Environ. 2016, 125, 505–511. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, S.; Xu, C.; An, Z.S. The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmos. Environ. 2007, 41, 417–431. [Google Scholar] [CrossRef]
- Liao, C.M.; Chiang, K.C. Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples. Chemosphere 2006, 63, 1610–1619. [Google Scholar] [CrossRef]
- Wang, J.Y.; Gao, A.F.; Li, S.R.; Liu, Y.H.; Zhao, W.F.; Wang, P.; Zhang, H.L. Regional joint PM2.5-O3 control policy benefits further air quality improvement and human health protection in Beijing-Tianjin-Hebei and its surrounding areas. J. Environ. Sci. 2023, 130, 75–84. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Liu, B.S.; Zhang, Y.F.; Dai, Q.L.; Song, C.B.; Duan, L.Q.; Guo, L.L.; Zhao, J.; Xue, Z.G.; Bi, X.H. Potential health risks of inhaled toxic elements and risk sources during different COVID-19 lockdown stages in Linfen, China. Environ. Pollut. 2021, 284, 117454. [Google Scholar] [CrossRef]
- Guo, L.H.; Wang, X.M.; Baklanov, A.; Shao, M. PM2.5 Concentration Gap Reduction between Typical Urban and Nonurban China from 2000 to 2023. Environ. Sci. Technol. Air 2024, 2, 90–98. [Google Scholar] [CrossRef]
- Gao, J.J.; Wang, K.; Wang, Y.; Liu, S.H.; Zhu, C.Y.; Hao, J.M.; Liu, H.L.; Hua, S.B.; Tian, H.Z. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environ. Pollut. 2018, 233, 714–724. [Google Scholar] [CrossRef]
- Huang, X.D.; Olmez, I.; Aras, N.K.; Gordon, G.E. Emissions of trace elements from motor vehicles: Potential marker elements and source composition profile. Atmos. Environ. 1994, 28, 1385–1391. [Google Scholar] [CrossRef]
- Bozlaker, A.; Spada, N.J.; Fraser, M.P.; Chellam, S. Elemental characterization of PM2.5 and PM10 emitted from light duty vehicles in the Washburn Tunnel of Houston, Texas: Release of rhodium, palladium, and platinum. Environ. Sci. Technol. 2014, 48, 54–62. [Google Scholar] [CrossRef]
- Khan, J.Z.; Sun, L.; Tian, Y.Z.; Shi, G.L.; Feng, Y.C. Chemical characterization and source apportionment of PM1 and PM2.5 in Tianjin, China: Impacts of biomass burning and primary biogenic sources. J. Environ. Sci. 2021, 99, 196–209. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Liu, X.H.; Wang, S.S.; Yu, X.; Yin, S.S.; Duan, S.G.; Wang, S.B.; Zhang, R.Q.; Li, S.L. Pollution characterization, source identification, and health risks of atmospheric-particle-bound heavy metals in PM10 and PM2.5 at multiple sites in an emerging megacity in the central region of China. Aerosol Air Qual. Res. 2019, 19, 247–271. [Google Scholar] [CrossRef]
- Lin, Y.C.; Tsai, C.J.; Wu, Y.C.; Zhang, R.; Chi, K.H.; Huang, Y.T.; Lin, S.H.; Hsu, S.C. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: Size distribution, potential source, and fingerprinting metal ratio. Atmos. Chem. Phys. 2015, 15, 4117–4130. [Google Scholar] [CrossRef]
- Ali, K.; Acharja, P.; Trivedi, D.K.; Kulkarni, R.; Pithani, P.; Safai, P.D.; Chate, D.M.; Ghude, S.; Jenamanj, R.K.; Rajeevan, M. Characterization and source identification of PM2.5 and its chemical and carbonaceous constituents during winter fog experiment 2015–16 at Indira Gandhi International Airport, Delhi. Sci. Total Environ. 2019, 662, 687–696. [Google Scholar] [CrossRef]
- Zhao, Z.P.; Lv, S.; Zhang, Y.H.; Zhao, Q.B.; Shen, L.; Xu, S.; Yu, J.Q.; Hou, J.W.; Jin, C.Y. Characteristics and source apportionment of PM2.5 in Jiaxing, China. Environ. Sci. Pollut. Res. 2019, 26, 7497–7511. [Google Scholar] [CrossRef]
- Cheng, K.; Chang, Y.H.; Lee, X.H.; Ji, D.S.; Qiao, L.P.; Zou, Z.; Duan, Y.S.; Huang, R.J. Life-Course Health Risk Assessment of PM2.5 Elements in China: Exposure Disparities by Species, Source, Age, Gender, and Location. Environ. Sci. Technol. 2024, 58, 3629–3640. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.; Furger, M.; Slowik, J.G.; Canonaco, F.; Fröhlich, R.; Hüglin, C.; Minguillón, M.C.; Petterson, K.; Baltensperger, U.; Prévôt, A.S.H. Source apportionment of highly time-resolved elements during a firework episode from a rural freeway site in Switzerland. Atmos. Chem. Phys. 2020, 20, 1657–1674. [Google Scholar] [CrossRef]
- Rai, P.; Furger, M.; El Haddad, I.; Kumar, V.; Wang, L.; Singh, A.; Dixit, K.; Bhattu, D.; Petit, J.-E.; Ganguly, D.; et al. Real-time measurement and source apportionment of elements in Delhi’s atmosphere. Sci. Total Environ. 2020, 742, 140332. [Google Scholar] [CrossRef]
- Wang, H.L.; Miao, Q.; Shen, L.J.; Yang, Q.; Wu, Y.Z.; Wei, H. Air pollutant variations in Suzhou during the 2019 novel coronavirus (COVID-19) lockdown of 2020: High time-resolution measurements of aerosol chemical compositions and source apportionment. Environ. Pollut. 2021, 271, 116298. [Google Scholar] [CrossRef]
- Diao, L.L.; Zhang, H.H.; Liu, B.S.; Dai, C.L.; Zhang, Y.F.; Dai, Q.L.; Bi, X.H.; Zhang, L.Z.; Song, C.B.; Feng, Y.C. Health risks of inhaled selected toxic elements during the haze episodes in Shijiazhuang, China: Insight into critical risk sources. Environ. Pollut. 2021, 276, 116664. [Google Scholar] [CrossRef]
- Liu, B.S.; Wu, J.H.; Zhang, J.Y.; Wang, L.; Yang, J.M.; Liang, D.N.; Dai, Q.L.; Bi, X.H.; Feng, Y.C.; Zhang, Y.F.; et al. Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ. Pollut. 2017, 222, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Park, E.H.; Heo, J.; Kim, H.; Yi, S.M. Long term trends of chemical constituents and source contributions of PM2.5 in Seoul. Chemosphere 2020, 251, 126371. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.L.; Bi, X.H.; Liu, B.S.; Li, L.W.; Ding, J.; Song, W.B.; Bi, S.Y.; Schulze, B.C.; Song, C.B.; Wu, J.H.; et al. Chemical nature of PM2.5 and PM10 in Xi’an, China: Insights into primary emissions and secondary particle formation. Environ. Pollut. 2018, 240, 155–166. [Google Scholar] [CrossRef]
- Chen, H.; Yan, Y.L.; Hu, D.M.; Peng, L.; Wang, C. PM2.5-bound heavy metals in a typical industrial city of Changzhi in North China: Pollution sources and health risk assessment. Atmos. Environ. 2024, 321, 120344. [Google Scholar] [CrossRef]
- Xie, Y.H.; Mao, Y.; Zhong, P.; Zhang, Y.; Zhang, L.; Chen, W.; Qu, C.K.; Xing, X.L.; Cao, J.J.; Zhang, J.Q. Seasonal variations and size-dependent distribution of heavy metals in particulate matter in Huangshi: Implications for human health risk assessment. Atmos. Environ. 2024, 322, 120384. [Google Scholar] [CrossRef]
- Li, F.; Yan, J.J.; Wei, Y.C.; Zeng, J.J.; Wang, X.Y.; Chen, X.Y.; Zhang, C.R.; Li, W.D.; Chen, M.; Lü, G.N. PM2.5-bound heavy metals from the major cities in China: Spatiotemporal distribution, fuzzy exposure assessment and health risk management. J. Clean. Prod. 2020, 286, 124967. [Google Scholar] [CrossRef]
- Behera, S.N.; Cheng, J.P.; Huang, X.; Zhu, Q.Y.; Liu, P.; Balasubramanian, R. Chemical composition and acidity of size-fractionated inorganic aerosols of 2013-14 winter haze in Shanghai and associated health risk of toxic elements. Atmos. Environ. 2018, 122, 259–271. [Google Scholar] [CrossRef]
- Lin, Y.C.; Hsu, S.C.; Chou, C.C.K.; Zhang, R.J.; Wu, Y.F.; Kao, S.J.; Luo, L.; Huang, C.H.; Lin, S.H.; Huang, Y.T. Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals. Environ. Pollut. 2016, 208, 284–293. [Google Scholar] [CrossRef]
- Ji, W.; Wang, Y.; Zhuang, D.F. Spatial distribution differences in PM2.5 concentration between heating and non-heating seasons in Beijing, China. Environ. Pollut. 2019, 248, 574–583. [Google Scholar] [CrossRef]
- US EPA. Risk Assessment Guidance for Superfund. In Part A: Human Health Evaluation Manual; Part E, Supplemental Guidance for Dermal Risk Assessment; Part F, Supplemental Guidance for Inhalation Risk Assessment; US EPA: Washington, DC, USA, 2011; Volume I. [Google Scholar]
- Feng, J.L.; Yu, H.; Su, X.F.; Liu, S.H.; Li, Y.; Pan, Y.P.; Sun, J.H. Chemical composition and source apportionment of PM2.5 during Chinese Spring Festival at Xinxiang, a heavily polluted city in North China: Fireworks and health risks. Atmos. Res. 2016, 182, 176–188. [Google Scholar] [CrossRef]
- Alves, R.; Machado, G.; Zagui, G.; Bandeira, O.; Santos, D.; Nadal, M.; Sierra, J.; Domingo, J.; Segura-Munoz, S. Metals risk assessment for children’s health in water and particulate matter in a southeastern Brazilian city. Environ. Res. 2019, 177, 108623. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lu, X.W.; Li, L.Y. Spatial distribution and risk assessment of metals in dust based on samples from nursery and primary schools of Xi’an, China. Atmos. Environ. 2014, 88, 172–182. [Google Scholar] [CrossRef]
- Wang, B.; Su, Y.; Tian, L.Y.; Peng, S.C.; Ji, R. Heavy metals in face paints: Assessment of the health risks to Chinese opera actors. Sci. Total Environ. 2020, 724, 138163. [Google Scholar] [CrossRef] [PubMed]
Species | 2019 | 2020 | 2021 | |||
---|---|---|---|---|---|---|
Before | During | Before | During | Before | During | |
PM2.5 | 50.15 ± 34.82 | 80.32 ± 50.21 | 67.50 ± 48.65 | 69.97 ± 41.91 | 54.74 ± 41.06 | 58.70 ± 41.97 |
Pb | 32.69 ± 22.51 | 48.89 ± 29.70 | 28.75 ± 42.06 | 44.92 ± 29.09 | 26.72 ± 18.40 | 35.28 ± 21.60 |
Cu | 40.06 ± 46.82 | 49.54 ±56.24 | 18.77 ± 48.79 | 146.75 ± 87.75 | 34.11 ± 60.47 | 24.73 ± 45.55 |
Mn | 44.42 ± 26.29 | 43.95 ± 34.28 | 48.04 ± 47.05 | 68.51 ± 35.46 | 41.10 ± 35.05 | 53.13 ± 37.24 |
V | 0.73 ± 4.63 | 0.00 ± 0.00 | 0.11 ± 0.93 | 0.58 ± 2.64 | 1.05 ± 3.42 | 0.86 ± 2.80 |
As | 3.13 ± 3.35 | 2.79 ± 3.54 | 6.28 ± 6.54 | 2.69 ± 3.47 | 3.47 ± 3.84 | 5.79 ± 4.98 |
Co | 8.29 ± 6.90 | 12.51 ± 9.57 | 0.74 ± 3.27 | 2.94 ± 4.02 | 6.61 ± 7.33 | 2.93 ± 4.76 |
Cr | 35.46 ± 20.49 | 66.28 ± 38.27 | 49.11 ± 41.03 | 50.37 ± 34.74 | 28.69 ± 18.83 | 43.15 ± 26.49 |
Ni | 4.95 ± 5.99 | 6.89 ± 7.78 | 3.99 ± 7.38 | 7.12 ± 8.68 | 5.90 ± 8.12 | 11.26 ± 10.05 |
Zn | 334.67 ± 268.71 | 547.37 ± 414.49 | 118.63 ± 139.67 | 216.56 ± 160.10 | 118.09 ± 77.97 | 205.30 ± 122.93 |
Total | 504.40 ± 405.68 | 778.21 ± 593.86 | 274.99 ± 336.78 | 540.45 ± 365.96 | 265.79 ± 237.08 | 382.44 ± 276.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Zou, S.; Hou, D.; An, Q.; Wang, P.; Wu, Y.; Zhang, R.; Huang, J.; Xue, J.; Gu, L. Characteristics and Health Risks of Trace Metals in PM2.5 Before and During the Heating Period over Three Years in Shijiazhuang, China. Toxics 2025, 13, 291. https://doi.org/10.3390/toxics13040291
Ma Q, Zou S, Hou D, An Q, Wang P, Wu Y, Zhang R, Huang J, Xue J, Gu L. Characteristics and Health Risks of Trace Metals in PM2.5 Before and During the Heating Period over Three Years in Shijiazhuang, China. Toxics. 2025; 13(4):291. https://doi.org/10.3390/toxics13040291
Chicago/Turabian StyleMa, Qingxia, Shuangshuang Zou, Dongli Hou, Qingxian An, Peng Wang, Yunfei Wu, Renjian Zhang, Jinting Huang, Jing Xue, and Lei Gu. 2025. "Characteristics and Health Risks of Trace Metals in PM2.5 Before and During the Heating Period over Three Years in Shijiazhuang, China" Toxics 13, no. 4: 291. https://doi.org/10.3390/toxics13040291
APA StyleMa, Q., Zou, S., Hou, D., An, Q., Wang, P., Wu, Y., Zhang, R., Huang, J., Xue, J., & Gu, L. (2025). Characteristics and Health Risks of Trace Metals in PM2.5 Before and During the Heating Period over Three Years in Shijiazhuang, China. Toxics, 13(4), 291. https://doi.org/10.3390/toxics13040291