Regional Differences in PM2.5 Chemical Composition and Inhalation Risk Assessment: A Case Study of Seoul, Incheon, and Wonju
Abstract
1. Introduction
2. Materials and Methods
2.1. Inhalation Risk Assessment
2.2. Study Design
2.2.1. Sampling Site
Seoul
Incheon
Wonju
2.2.2. Sampling Method
2.2.3. Chemical Analysis and Quality Assurance/Quality Control
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. Statistical Analysis Distribution of PM2.5 and Its Components
3.2. Inhalation Risk Assessment
3.2.1. Exposure Assessment
3.2.2. Non-Carcinogenic Risk Assessment
3.2.3. Carcinogenic Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADD | Average daily dose |
AT | Average exposure time |
BW | Body weight |
CTE | Central tendency exposure |
ECR | Excess cancer risk |
ED | Exposure duration |
EF | Exposure frequency |
ET | Exposure time |
FB | Field blank |
HI | Hazard index |
HQ | Hazard quotient |
KOSIS | Korea Statistical Information Service |
LADD | Lifetime average daily dose |
LAB | Laboratory blank |
LT | Lifetime |
NAS | National Academy of Sciences |
NIER | National Institute of Environmental Research |
PM | Particulate matter |
PM2.5 | Particulate matter with an aerodynamic diameter of 2.5 μm or less |
RfC | Reference concentration |
RfD | Reference dose |
RME | Reasonable maximum exposure |
TECR | Total excess cancer risk |
US EPA | United States Environmental Protection Agency |
References
- Yin, P.; Brauer, M.; Cohen, A.J.; Wang, H.; Li, J.; Burnett, R.T.; Murray, C.J. The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990–2017: An analysis for the Global Burden of Disease Study 2017. Lancet Planet. Health 2020, 4, e386–e398. [Google Scholar] [CrossRef] [PubMed]
- Bowe, B.; Xie, Y.; Yan, Y.; Al-Aly, Z. Burden of cause-specific mortality associated with PM2.5 air pollution in the United States. JAMA Netw. Open 2019, 2, e1915834. [Google Scholar] [CrossRef] [PubMed]
- Health Effects Institute. State of Global Air; Special Report; Health Effects Institute: Boston, MA, USA, 2019. [Google Scholar]
- WHO. Pollutants Not Only Severely Impact health, but Also the Earth’s Climate and Ecosystems Globally; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Hong, Y.C.; Hwang, S.S.; Kim, J.H.; Lee, K.H.; Lee, H.J.; Lee, K.H.; Kim, D.S. Metals in particulate pollutants affect peak expiratory flow of schoolchildren. Environ. Health Perspect. 2007, 115, 430–434. [Google Scholar] [CrossRef]
- Jimoda, L.A.; Sulaymon, I.D.; Alade, A.O.; Adebayo, G.A. Assessment of environmental impact of open burning of scrap tyres on ambient air quality. Int. J. Environ. Res. Public Health 2018, 15, 1323–1330. [Google Scholar] [CrossRef]
- Baumgartner, J.; Zhang, Y.; Schauer, J.J.; Huang, W.; Wang, Y.; Ezzati, M. Highway proximity and black carbon from cookstoves as a risk factor for higher blood pressure in rural China. Proc. Natl. Acad. Sci. USA 2014, 111, 13229–13234. [Google Scholar] [CrossRef]
- Atkinson, R.W.; Kang, S.; Anderson, H.R.; Mills, I.C.; Walton, H.A. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: A systematic review and meta-analysis. Thorax 2014, 69, 660–665. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, Y.M. The influential factors of urban PM2.5 concentrations in China: A spatial econometric analysis. J. Clean. Prod. 2016, 112, 1443–1453. [Google Scholar]
- Chow, W.S.; Huang, X.H.; Leung, K.F.; Huang, L.; Wu, X.; Yu, J.Z. Molecular and elemental marker-based source apportionment of fine particulate matter at six sites in Hong Kong, China. Sci. Total Environ. 2022, 813, 152652. [Google Scholar] [CrossRef]
- Peng, X.; Shi, G.; Liu, G.; Xu, J.; Tian, Y.; Zhang, Y.; Russell, A.G. Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model. Environ. Pollut. 2017, 221, 335–342. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Chao, S.; Cao, H.; Zhang, A.; Yang, Y. Emission control priority of PM2.5-bound heavy metals in different seasons: A comprehensive analysis from health risk perspective. Sci. Total Environ. 2018, 644, 20–30. [Google Scholar] [CrossRef]
- IARC. Gallium arsenide, cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC Monogr. Eval. Carcinog. Risks Hum. 2006, 86, 163–196. [Google Scholar]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Sulaymon, I.D.; Mei, X.; Yang, S.; Chen, S.; Zhang, Y.; Hopke, P.K.; Zhang, Y. PM2.5 in Abuja, Nigeria: Chemical characterization, source apportionment, temporal variations, transport pathways and the health risks assessment. Atmos. Res. 2020, 237, 104833. [Google Scholar] [CrossRef]
- Duan, S.; Zhang, M.; Sun, Y.; Fang, Z.; Wang, H.; Li, S.; Peng, Y.; Li, J.; Li, J.; Tian, J.; et al. Mechanism of PM2.5-induced human bronchial epithelial cell toxicity in central China. J. Hazard. Mater. 2020, 396, 122747. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Ding, Z.; Wang, T.; Lian, H.; Sun, Y.; Wu, J. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- MohseniBandpi, A.; Eslami, A.; Ghaderpoori, M.; Shahsavani, A.; Jeihooni, A.K.; Ghaderpoury, A.; Alinejad, A. Health risk assessment of heavy metals on PM2.5 in Tehran air, Iran. Data Brief 2018, 17, 347–355. [Google Scholar] [CrossRef]
- Cui, Y.; Ji, D.; He, J.; Kong, S.; Wang, Y. In situ continuous observation of hourly elements in PM2.5 in urban Beijing, China: Occurrence levels, temporal variation, potential source regions and health risks. Atmos. Environ. 2020, 222, 117164. [Google Scholar] [CrossRef]
- Liu, J.; Han, Y.; Tang, X.; Zhu, J.; Zhu, T. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network. Sci. Total Environ. 2016, 568, 1253–1262. [Google Scholar] [CrossRef]
- Park, S.Y.; Jeon, J.I.; Jung, J.Y.; Yoon, S.W.; Kwon, J.; Lee, C.M. PM2.5 and heavy metals in urban and agro-industrial areas: Health risk assessment considerations. Asian J. Atmos. Environ. 2024, 18, 16. [Google Scholar] [CrossRef]
- Lin, Y.C.; Hsu, S.C.; Chou, C.C.K.; Zhang, R.; Wu, Y.; Kao, S.J.; Huang, Y.T. Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals. Environ. Pollut. 2016, 208, 284–293. [Google Scholar] [CrossRef]
- Li, Q.; Liu, H.; Alattar, M.; Jiang, S.; Han, J.; Ma, Y.; Jiang, C. The preferential accumulation of heavy metals in different tissues following frequent respiratory exposure to PM2.5 in rats. Sci. Rep. 2015, 5, 16936. [Google Scholar] [CrossRef]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69. [Google Scholar] [PubMed]
- Cho, C.C.; Hsieh, W.Y.; Tsai, C.H.; Chen, C.Y.; Chang, H.F.; Lin, C.S. In vitro and in vivo experimental studies of PM2.5 on disease progression. Int. J. Environ. Res. Public Health 2018, 15, 1380. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Risk Assessment in the Federal Government: Managing the Process; National Academy: Washington, DC, USA, 1983. [Google Scholar]
- US EPA. Chapter 7 Characterizing Risk and Hazard. In Human Health Risk Assessment Protocol; US EPA: Washington, DC, USA, 2005. [Google Scholar]
- US EPA. Guidelines for Carcinogen Risk Assessment; US EPA: Washington, DC, USA, 2005.
- US EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); US EPA: Washington, DC, USA, 2009.
- Sim, K.T.; Kim, D.H.; Lee, J.W.; Lee, C.H.; Park, S.Y.; Seok, K.S.; Kim, Y.H. Exposure and risk assessments of multimedia of arsenic in environment. J. Environ. Impact Assess. 2019, 28, 152–168. [Google Scholar]
- National Institute of Environmental Research (NIER). Korean Exposure Factors Handbook for Children; National Institute of Environmental Research (NIER): Incheon, Republic of Korea, 2019.
- Chen, R.; Zhao, Y.; Tian, Y.; Feng, X.; Feng, Y. Sources and uncertainties of health risks for PM2.5-bound heavy metals based on synchronous online and offline filter-based measurements in a Chinese megacity. Environ. Int. 2022, 164, 107236. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, W.; Yu, Y.; Hu, B.; Xin, J.; Sun, Y.; Wang, Y. Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: Emerging results from the CARE-China network. Atmos. Chem. Phys. 2018, 18, 8849–8871. [Google Scholar] [CrossRef]
- Hoddinott, K.B.; Lee, A.P. The use of environmental risk assessment methodologies for an indoor air quality investigation. Chemosphere 2000, 41, 77–84. [Google Scholar] [CrossRef]
- US EPA. Risk Assessment Guidance for Superfund: Volume III Part A, Process for Conducting Probabilistic Risk Assessment; Environmental Protection Agency: Washington, DC, USA, 2001.
- Ji, W.; Zeng, J.; Zhao, K.; Liu, J. Source apportionment and health-risk assessment of PM2.5-bound elements in indoor/outdoor residential buildings in Chinese megacities. Build. Environ. 2025, 267, 112250. [Google Scholar] [CrossRef]
- US EPA. User’s Guide/Technical Background Document for US EPA Region 9’s RSL (Regional Screening Levels) Tables; US EPA: Washington, DC, USA, 2013.
- Fang, B.; Zeng, H.; Zhang, L.; Wang, H.; Liu, J.; Hao, K.; Yang, W. Toxic metals in outdoor/indoor airborne PM2.5 in port city of Northern, China: Characteristics, sources, and personal exposure risk assessment. Environ. Pollut. 2021, 279, 116937. [Google Scholar] [CrossRef]
- Chen, X.; Yin, L.; Fan, Y.; Song, L.; Ji, T.; Liu, Y.; Tian, J.; Zheng, W. Temporal evolution characteristics of PM2.5 concentration based on continuous wavelet transform. Sci. Total Environ. 2020, 699, 134244. [Google Scholar]
- Statistics Korea. Population and Population Density by Region. South Korean Government, 2024. Available online: https://www.index.go.kr/unity/potal/main/EachDtlPageDetail.do?idx_cd=1007#:~:text=%C2%B0%20%EC%A7%80%EC%97%AD%EB%B3%84%20%EC%9D%B8%EA%B5%AC%20%ED%86%B5%EA%B3%84%EC%9E%90%EB%A3%8C,%EC%9E%88%EC%9D%8C%EC%9D%84%20%EC%95%8C%20%EC%88%98%20%EC%9E%88%EC%9D%8C (accessed on 22 January 2025).
- Ministry of the Interior and Safety. Resident Registration Population and Household Status by Administrative District. South Korean Government, 2024. Available online: https://jumin.mois.go.kr/statMonth.do (accessed on 22 January 2025).
- Hong, S.; Lee, S.; Han, Y. Characteristics of ionic and carbonaceous constituents of PM2.5 collected near the industrial complexes and charcoal manufacturing facility in Wonju, Korea. J. Korean Soc. Atmos. Environ. 2023, 39, 239–250. [Google Scholar] [CrossRef]
- Lee, H.; Park, S.; Jeon, J.; Hong, J.; Hong, S.; Lee, Y.; Han, Y. Comparable study on the chemical characteristics of PM2.5 measured in Chuncheon and Wonju, Gangwon-do. J. Korean Soc. Atmos. Environ. 2023, 39, 165–177. [Google Scholar] [CrossRef]
- Ministry of Environment, National Fine Dust Information Center. Emission of Air Pollutants. Ministry of Environment. Available online: https://www.index.go.kr/unity/potal/main/EachDtlPageDetail.do?idx_cd=1037 (accessed on 18 December 2024).
- Yoo, J.W.; Park, S.Y.; Lee, K.; Lee, D.; Lee, Y.; Lee, S.H. Impacts of plateau-induced lee troughs on regional PM2.5 over the Korean Peninsula. Atmos. Pollut. Res. 2022, 13, 101459. [Google Scholar] [CrossRef]
- Park, S.Y.; Jang, H.; Kwon, J.; Choi, Y.; Kim, K.R.; Ha, H.J.; Lim, H.; Park, J.S.; Lee, C.M. Integrated source analysis of particulate and gaseous pollutants: Seoul as an urban case study. J. Hazard. Mater. Adv. 2025, 17, 100535. [Google Scholar] [CrossRef]
- NIER. Air Pollution Process Testing Standards; South Korean Government: Seoul, Republic of Korea, 2024.
- Lee, Y.S.; Kim, Y.K.; Choi, E.; Jo, H.; Hyun, H.; Yi, S.M.; Kim, J.Y. Health risk assessment and source apportionment of PM2.5-bound toxic elements in the industrial city of Siheung, Korea. Environ. Sci. Pollut. Res. 2022, 29, 66591–66604. [Google Scholar]
- Zhang, X.; Eto, Y.; Aikawa, M. Risk assessment and management of PM2.5-bound heavy metals in the urban area of Kitakyushu, Japan. Sci. Total Environ. 2021, 795, 148748. [Google Scholar] [CrossRef]
- Okuda, T.; Nakao, S.; Katsuno, M.; Tanaka, S. Source identification of nickel in TSP and PM2.5 in Tokyo, Japan. Atmos. Environ. 2007, 41, 7642–7648. [Google Scholar]
- Li, J.; Cen, Y.; Li, Y. The research advances in the mechanism of manganese-induced neurotoxicity. Toxin Rev. 2019, 38, 54–60. [Google Scholar] [CrossRef]
- Sharma, S.; Katrak, S.M. Chronic manganese toxicity in Indian mines—An historical account of the contributions of Dr. TP Niyogi. Indian Acad. Neurol. 2021, 24, 81–83. [Google Scholar] [CrossRef]
- Al Kuisi, M.; Al-Hwaiti, M.; Mashal, K.; Abed, A.M. Spatial distribution patterns of molybdenum (Mo) concentrations in potable groundwater in Northern Jordan. Environ. Monit. Assess. 2015, 187, 1–26. [Google Scholar]
- Ji, Y.; Feng, Y.; Wu, J.; Zhu, T.; Bai, Z.; Duan, C. Using geoaccumulation index to study source profiles of soil dust in China. J. Environ. Sci. 2008, 20, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Shi, Y.; Liu, Y.; Zhang, C.; Wang, X.; Cao, Q.; Zhang, F. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China. Fuel Process. Technol. 2014, 126, 469–475. [Google Scholar] [CrossRef]
- Mokhtar, M.M.; Taib, R.M.; Hassim, M.H. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies. J. Air Waste Manag. Assoc. 2014, 64, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Hedberg, E.; Gidhagen, L.; Johansson, C. Source contributions to PM10 and arsenic concentrations in Central Chile using positive matrix factorization. Atmos. Environ. 2005, 39, 549–561. [Google Scholar]
- Dai, Q.L.; Bi, X.H.; Wu, J.H.; Zhang, Y.F.; Wang, J.; Xu, H.; Feng, Y.C. Characterization and source identification of heavy metals in ambient PM10 and PM2.5 in an integrated iron and steel industry zone compared with a background site. Aerosol Air Qual. Res. 2015, 15, 875–887. [Google Scholar] [CrossRef]
- Jablonska, M.; Rietmeijer, F.J.; Janeczek, J. Fine-grained barite in coal fly ash from the Upper Silesian Industrial Region. Environ. Geol. 2001, 40, 941–948. [Google Scholar]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Grandjean, P. Widening perspectives of lead toxicity: A review of health effects of lead exposure in adults. Environ. Res. 1978, 17, 303–321. [Google Scholar] [CrossRef]
- WHO. Lead Poisoning. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 19 January 2025).
- Lemly, A.D. Evaluation of the hazard quotient method for risk assessment of selenium. Ecotoxicol. Environ. Saf. 1996, 35, 156–162. [Google Scholar] [CrossRef]
- Khillare, P.S.; Sarkar, S. Airborne inhalable metals in residential areas of Delhi, India: Distribution, source apportionment and health risks. Atmos. Pollut. Res. 2012, 3, 46–54. [Google Scholar]
- Fan, M.Y.; Zhang, Y.L.; Lin, Y.C.; Cao, F.; Sun, Y.; Qiu, Y.; Xing, G.; Dao, X.; Fu, P. Specific sources of health risks induced by metallic elements in PM2.5 during the wintertime in Beijing China. Atmos. Environ. 2021, 246, 118112. [Google Scholar] [CrossRef]
Exposure Factor | Unit | Value | References | |
---|---|---|---|---|
CTE a | RME b | |||
IR | m3/day | 14.10 | 18.0 | [31] |
ET | hr/day | 2.27 | 6.26 | [31] |
EF | days/yr | 350 | 365 | [32,33] |
ED | yrs | 30 | [34] | |
BW | kg | 59.78 | [31] | |
AT | h | ED × 365 × 24 | This study | |
LT | h | 82.7 × 365 × 24 | [31] |
Component | Unit | Concentration | ||||||
---|---|---|---|---|---|---|---|---|
N a | Seoul | N a | Incheon | N a | Wonju | p-Value | ||
PM2.5 | µg/m3 | 80 | 30.11 ± 14.93 | 80 | 27.17 ± 18.17 | 40 | 15.13 ± 11.40 | 0.00 |
Al | ng/m3 | 14 | 266.59 ± 335.24 | 5 | 79.78 ± 55.11 | 1 | 54.10 | N.A. |
V | 72 | 1.67 ± 1.49 | 71 | 1.82 ± 1.60 | 28 | 0.61 ± 0.34 | 0.00 | |
Mn | 80 | 17.49 ± 9.35 | 80 | 17.34 ± 14.18 | 39 | 8.31 ± 8.66 | 0.00 | |
Ni | 79 | 1.92 ± 1.68 | 79 | 2.88 ± 1.99 | 39 | 0.87 ± 0.50 | 0.00 | |
Co | 72 | 1.53 ± 0.81 | 79 | 1.42 ± 0.76 | 37 | 0.62 ± 0.57 | 0.00 | |
As | 80 | 7.23 ± 6.43 | 78 | 9.07 ± 11.64 | 36 | 1.64 ± 2.27 | 0.00 | |
Mo | 35 | 3.01 ± 2.86 | 49 | 2.01 ± 1.85 | 20 | 1.54 ± 1.10 | 0.03 | |
Cd | 60 | 6.61 ± 5.59 | 60 | 4.35 ± 4.78 | 31 | 4.45 ± 4.04 | 0.03 | |
Ba | 59 | 18.93 ± 11.40 | 73 | 19.38 ± 23.55 | 27 | 10.21 ± 7.51 | 0.06 | |
Cr | 80 | 3.52 ± 1.74 | 80 | 4.01 ± 2.25 | 39 | 2.44 ± 1.52 | 0.00 | |
Pb | 80 | 20.55 ± 11.68 | 79 | 24.15 ± 23.39 | 32 | 6.10 ± 5.12 | 0.00 |
Component | Seoul | Incheon | Wonju | |||
---|---|---|---|---|---|---|
CTE a | RME b | CTE a | RME b | CTE a | RME b | |
PM2.5 | 1.5 × 10−1 | 1.1 × 100 | 1.4 × 10−1 | 1.1 × 100 | 7.6 × 10−2 | 6.4 × 10−1 |
Al | 4.0 × 10−3 | 4.5 × 10−2 | 1.2 × 10−3 | 8.2 × 10−3 | 8.1 × 10−4 | 3.0 × 10−3 |
V | 1.3 × 10−3 | 1.5 × 10−2 | 1.4 × 10−3 | 1.4 × 10−2 | 4.6 × 10−4 | 3.3 × 10−3 |
Mn | 2.6 × 10−2 | 1.7 × 10−1 | 2.6 × 10−2 | 1.9 × 10−1 | 1.2 × 10−2 | 1.5 × 10−1 |
Ni | 1.0 × 10−2 | 1.1 × 10−1 | 1.5 × 10−2 | 1.2 × 10−1 | 4.7 × 10−3 | 3.0 × 10−2 |
Co | 1.9 × 10−2 | 1.4 × 10−1 | 1.8 × 10−2 | 1.2 × 10−1 | 7.7 × 10−3 | 7.8 × 10−2 |
As | 3.6 × 10−2 | 3.4 × 10−1 | 4.5 × 10−2 | 7.1 × 10−1 | 8.2 × 10−3 | 1.3 × 10−2 |
Mo | 1.1 × 10−4 | 1.0 × 10−3 | 7.5 × 10−5 | 8.1 × 10−4 | 5.8 × 10−5 | 4.3 × 10−4 |
Cd | 4.9 × 10−2 | 5.0 × 10−1 | 3.3 × 10−2 | 3.6 × 10−1 | 3.3 × 10−2 | 3.4 × 10−1 |
Ba | 2.8 × 10−3 | 2.0 × 10−2 | 2.9 × 10−3 | 2.8 × 10−2 | 1.5 × 10−3 | 1.1 × 10−2 |
Cr(Ⅵ) | 3.8 × 10−4 | 1.7 × 10−2 | 4.3 × 10−4 | 2.4 × 10−2 | 2.6 × 10−4 | 1.5 × 10−2 |
Component | Seoul | Incheon | Wonju | |||
---|---|---|---|---|---|---|
CTE a | RME b | CTE a | RME b | CTE a | RME b | |
As | 2.3 × 10−6 | 2.2 × 10−5 | 2.9 × 10−6 | 4.6 × 10−5 | 5.3 × 10−7 | 8.5 × 10−6 |
Cr(VI) | 3.2 × 10−6 | 1.4 × 10−4, c | 3.6 × 10−6 | 2.0 × 10−4, c | 2.2 × 10−6 | 1.2 × 10−4, c |
Ni | 3.5 × 10−8 | 3.8 × 10−7 | 5.2 × 10−8 | 4.1 × 10−7 | 1.6 × 10−8 | 1.0 × 10−7 |
Co | 1.1 × 10−6 | 7.6 × 10−6 | 9.9 × 10−7 | 6.7 × 10−6 | 4.3 × 10−7 | 4.3 × 10−6 |
Cd | 8.9 × 10−7 | 8.9 × 10−6 | 5.9 × 10−7 | 6.4 × 10−6 | 6.0 × 10−7 | 6.0 × 10−6 |
Pb | 1.8 × 10−8 | 1.3 × 10−7 | 2.2 × 10−8 | 2.3 × 10−7 | 5.5 × 10−9 | 4.4 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.-H.; Baek, S.-H.; Park, S.-Y.; Lee, C.-M.; Lee, J.-I. Regional Differences in PM2.5 Chemical Composition and Inhalation Risk Assessment: A Case Study of Seoul, Incheon, and Wonju. Toxics 2025, 13, 240. https://doi.org/10.3390/toxics13040240
Jung S-H, Baek S-H, Park S-Y, Lee C-M, Lee J-I. Regional Differences in PM2.5 Chemical Composition and Inhalation Risk Assessment: A Case Study of Seoul, Incheon, and Wonju. Toxics. 2025; 13(4):240. https://doi.org/10.3390/toxics13040240
Chicago/Turabian StyleJung, Seung-Hyun, Seon-Ho Baek, Shin-Young Park, Cheol-Min Lee, and Jung-Il Lee. 2025. "Regional Differences in PM2.5 Chemical Composition and Inhalation Risk Assessment: A Case Study of Seoul, Incheon, and Wonju" Toxics 13, no. 4: 240. https://doi.org/10.3390/toxics13040240
APA StyleJung, S.-H., Baek, S.-H., Park, S.-Y., Lee, C.-M., & Lee, J.-I. (2025). Regional Differences in PM2.5 Chemical Composition and Inhalation Risk Assessment: A Case Study of Seoul, Incheon, and Wonju. Toxics, 13(4), 240. https://doi.org/10.3390/toxics13040240