Soil Texture Mediates the Toxicity of ZnO and Fe3O4 Nanoparticles to Microbial Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterization of the Metal Oxide Nanoparticles
2.2. Experimental Setup and Treatments
2.3. Measurement of CO2 Emissions
2.4. Soil Sampling and Analysis
2.5. Statistical Analysis
3. Results
3.1. Characterization of the Nanoparticles
3.2. Carbon Dioxide Emission
3.3. Soil Chemical Parameters
3.4. Microbial Biomass Zn/Fe Contents
3.5. Viable Microbial Colony-Forming Units
3.6. Principal Component Analysis
4. Discussion
4.1. Effects of Metal Oxide Nanoparticles on Soil Chemical Properties
4.2. Toxicity of Zinc Oxide and Iron Oxide Nanoparticles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Heera, P.; Shanmugam, S. Nanoparticle characterization and application: An overview. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 379–386. [Google Scholar]
- Hasan, S. A review on nanoparticles: Their synthesis and types. Res. J. Recent Sci. 2015, 2277, 2502. [Google Scholar]
- McWilliams, A.; Global Markets for Nanocomposites, Nanoparticles, Nanoclays, and Nanotubes. NAN021G Glob. Mark. BCC Research Report 2017. Available online: https://cdn2.hubspot.net/hubfs/308401/NAN%20Report%20Overviews/NAN021G_Report%20Overview.pdf?t=1 (accessed on 23 December 2024).
- Rajput, V.D.; Minkina, T.M.; Behal, A.; Sushkova, S.N.; Mandzhieva, S.; Singh, R.; Gorovtsov, A.; Tsitsuashvili, V.S.; Purvis, W.O.; Ghazaryan, K.A. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environ. Nanotechnol. Monit. Manag. 2018, 9, 76–84. [Google Scholar] [CrossRef]
- Peters, R.J.; Bouwmeester, H.; Gottardo, S.; Amenta, V.; Arena, M.; Brandhoff, P.; Marvin, H.J.; Mech, A.; Moniz, F.B.; Pesudo, L.Q. Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci. Technol. 2016, 54, 155–164. [Google Scholar] [CrossRef]
- Sun, H.; Du, W.; Peng, Q.; Lv, Z.; Mao, H.; Kopittke, P.M. Development of ZnO nanoparticles as an efficient Zn fertilizer: Using synchrotron-based techniques and laser ablation to examine elemental distribution in wheat grain. J. Agric. Food Chem. 2020, 68, 5068–5075. [Google Scholar] [CrossRef]
- Tou, F.; Yang, Y.; Feng, J.; Niu, Z.; Pan, H.; Qin, Y.; Guo, X.; Meng, X.; Liu, M.; Hochella, M.F. Environmental risk implications of metals in sludges from waste water treatment plants: The discovery of vast stores of metal-containing nanoparticles. Environ. Sci. Technol. 2017, 51, 4831–4840. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.M.M.; Kapoor, D.; Rohilla, R.; Sharma, P. Nanomaterials and their toxicity to beneficial soil microbiota and fungi associated plants rhizosphere. In Nanomaterials and Nanocomposites Exposures to Plants: Response, Interaction, Phytotoxicity and Defense Mechanisms; Springer: Berlin/Heidelberg, Germany, 2023; pp. 353–380. [Google Scholar]
- Ismail, R.A.; Sulaiman, G.M.; Abdulrahman, S.A.; Marzoog, T.R. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng. C 2015, 53, 286–297. [Google Scholar] [CrossRef]
- Rashid, M.I.; Shahzad, T.; Shahid, M.; Ismail, I.M.; Shah, G.M.; Almeelbi, T. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil. J. Hazard. Mater. 2017, 324, 298–305. [Google Scholar] [CrossRef]
- Rashid, M.I.; Shah, G.A.; Iqbal, Z.; Shahzad, K.; Ali, N.; Rehan, M.; Alhakamy, N.A.A.; Klemeš, J.J. Nanobiochar reduces ammonia emission, increases nutrient mineralization from vermicompost, and improves maize productivity. J. Clean. Prod. 2023, 414, 137694. [Google Scholar] [CrossRef]
- Shah, G.M.; Amin, M.; Shahid, M.; Ahmad, I.; Khalid, S.; Abbas, G.; Imran, M.; Naeem, M.A.; Shahid, N. Toxicity of ZnO and Fe2O3 nano-agro-chemicals to soil microbial activities, nitrogen utilization, and associated human health risks. Environ. Sci. Eur. 2022, 34, 106. [Google Scholar] [CrossRef]
- Xu, Z.; Long, X.; Jia, Y.; Zhao, D.; Pan, X. Occurrence, transport, and toxicity of nanomaterials in soil ecosystems: A review. Environ. Chem. Lett. 2022, 20, 3943–3969. [Google Scholar] [CrossRef]
- Kamran, M.; Ali, H.; Saeed, M.F.; Bakhat, H.F.; Hassan, Z.; Tahir, M.; Abbas, G.; Naeem, M.A.; Rashid, M.I.; Shah, G.M. Unraveling the toxic effects of iron oxide nanoparticles on nitrogen cycling through manure-soil-plant continuum. Ecotoxicol. Environ. Saf. 2020, 205, 111099. [Google Scholar] [CrossRef]
- Shah, G.M.; Ali, H.; Ahmad, I.; Kamran, M.; Hammad, M.; Shah, G.A.; Bakhat, H.F.; Waqar, A.; Guo, J.; Dong, R.; et al. Nano agrochemical zinc oxide influences microbial activity, carbon, and nitrogen cycling of applied manures in the soil-plant system. Environ. Pollut. 2022, 293, 118559. [Google Scholar] [CrossRef] [PubMed]
- Aziz, Y.; Shah, G.A.; Rashid, M.I. ZnO nanoparticles and zeolite influence soil nutrient availability but do not affect herbage nitrogen uptake from biogas slurry. Chemosphere 2019, 216, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.I.; Shah, G.A.; Sadiq, M.; Amin, N.U.; Ali, A.M.; Ondrasek, G.; Shahzad, K. Nanobiochar and Copper Oxide Nanoparticles Mixture Synergistically Increases Soil Nutrient Availability and Improves Wheat Production. Plants 2023, 12, 1312. [Google Scholar] [CrossRef]
- Scott-Fordsmand, J.J.; Mariyadas, J.; Amorim, M.J.B. Soil type dependent toxicity of AgNM300K can be predicted by internal concentrations in earthworms. Chemosphere 2024, 364, 143079. [Google Scholar] [CrossRef] [PubMed]
- Shoults-Wilson, W.A.; Reinsch, B.C.; Tsyusko, O.V.; Bertsch, P.M.; Lowry, G.V.; Unrine, J.M. Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci. Soc. Am. J. 2011, 75, 365–377. [Google Scholar] [CrossRef]
- Yu, H.; Li, C.; Yan, J.; Ma, Y.; Zhou, X.; Yu, W.; Kan, H.; Meng, Q.; Xie, R.; Dong, P. A review on adsorption characteristics and influencing mechanism of heavy metals in farmland soil. RSC Adv. 2023, 13, 3505–3519. [Google Scholar] [CrossRef]
- Lahive, E.; Matzke, M.; Svendsen, C.; Spurgeon, D.; Pouran, H.; Zhang, H.; Lawlor, A.; Pereira, M.G.; Lofts, S. Soil properties influence the toxicity and availability of Zn from ZnO nanoparticles to earthworms. Environ. Pollut. 2023, 319, 120907. [Google Scholar] [CrossRef]
- Abbas, Q.; Yousaf, B.; Ali, M.U.; Munir, M.A.M.; El-Naggar, A.; Rinklebe, J.; Naushad, M. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Environ. Int. 2020, 138, 105646. [Google Scholar] [CrossRef]
- Dinesh, R.; Anandaraj, M.; Srinivasan, V.; Hamza, S. Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 2012, 173, 19–27. [Google Scholar] [CrossRef]
- Palza, H. Antimicrobial polymers with metal nanoparticles. Int. J. Mol. Sci. 2015, 16, 2099–2116. [Google Scholar] [CrossRef] [PubMed]
- Chai, H.; Yao, J.; Sun, J.; Zhang, C.; Liu, W.; Zhu, M.; Ceccanti, B. The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull. Environ. Contam. Toxicol. 2015, 94, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Lan, Z.; Hu, S.; Bai, Y. Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil Biol. Biochem. 2015, 89, 99–108. [Google Scholar] [CrossRef]
- Hossain, S.; Al-Solaimani, S.G.M.; Alghabari, F.; Shahzad, K.; Rashid, M.I. Enhancing maize yield through sustainable and eco-friendly practices: The impact of municipal organic waste compost and soil amendments. Cogent Food Agric. 2024, 10, 2307119. [Google Scholar] [CrossRef]
- Shah, G.M.; Rashid, M.; Shah, G.A.; Groot, J.; Lantinga, E. Mineralization and herbage recovery of animal manure nitrogen after application to various soil types. Plant Soil 2013, 365, 69–79. [Google Scholar] [CrossRef]
- Bengtsson, G.; Bengtson, P.; Katarina, M. Gross N mineralization, immobilization and nitrification rates as a function of microbial activity. In Proceedings of the 17th World Congress of Soil Science, Bangkok, Thailand, 14–21 August 2002. [Google Scholar]
- Nieder, R.; Benbi, D.K.; Scherer, H.W. Fixation and defixation of ammonium in soils: A review. Biol. Fertil. Soils 2011, 47, 1–14. [Google Scholar] [CrossRef]
- Hoogsteen, M.J.; Lantinga, E.A.; Bakker, E.J.; Groot, J.C.; Tittonell, P.A. Estimating soil organic carbon through loss on ignition: Effects of ignition conditions and structural water loss. Eur. J. Soil Sci. 2015, 66, 320–328. [Google Scholar] [CrossRef]
- Estefan, G. Methods of Soil, Plant, and Water Analysis: A Manual for the West Asia and North Africa region; International Center for Agricultural Research in the Dry Areas: Beirut, Lebanon, 2013. [Google Scholar]
- Yazdanpanah, N.; Pazira, E.; Neshat, A.; Mahmoodabadi, M.; Sinobas, L.R. Reclamation of calcareous saline sodic soil with different amendments (II): Impact on nitrogen, phosphorous and potassium redistribution and on microbial respiration. Agric. Water Manag. 2013, 120, 39–45. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, B.; Zhang, J.; Müller, C.; Cai, Z. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biol. Biochem. 2015, 91, 222–231. [Google Scholar] [CrossRef]
- Sabir, M.; Zia-ur-Rehman, M.; Hakeem, K.R.; Saifullah, U. Chapter 17—Phytoremediation of Metal-Contaminated Soils Using Organic Amendments: Prospects and Challenges. In Soil Remediation and Plants; Hakeem, K.R., Sabir, M., Öztürk, M., Mermut, A.R., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 503–523. [Google Scholar]
- Rahman, F.; Rahman, M.M.; Rahman, G.M.; Saleque, M.; Hossain, A.S.; Miah, M.G. Effect of organic and inorganic fertilizers and rice straw on carbon sequestration and soil fertility under a rice–rice cropping pattern. Carbon Manag. 2016, 7, 41–53. [Google Scholar] [CrossRef]
- He, S.; Feng, Y.; Gu, N.; Zhang, Y.; Lin, X. The effect of γ-Fe2O3 nanoparticles on Escherichia coli genome. Environ. Pollut. 2011, 159, 3468–3473. [Google Scholar] [CrossRef] [PubMed]
- Mimmo, T.; Del Buono, D.; Terzano, R.; Tomasi, N.; Vigani, G.; Crecchio, C.; Pinton, R.; Zocchi, G.; Cesco, S. Rhizospheric organic compounds in the soil–microorganism–plant system: Their role in iron availability. Eur. J. Soil Sci. 2014, 65, 629–642. [Google Scholar] [CrossRef]
- Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M.F.; Fiévet, F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006, 6, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Frenk, S.; Ben-Moshe, T.; Dror, I.; Berkowitz, B.; Minz, D. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS ONE 2013, 8, e84441. [Google Scholar] [CrossRef]
- Shemawar; Mahmood, A.; Hussain, S.; Mahmood, F.; Iqbal, M.; Shahid, M.; Ibrahim, M.; Ali, M.A.; Shahzad, T. Toxicity of biogenic zinc oxide nanoparticles to soil organic matter cycling and their interaction with rice-straw derived biochar. Sci. Rep. 2021, 11, 8429. [Google Scholar] [CrossRef] [PubMed]
- El-Kady, M.M.; Ansari, I.; Arora, C.; Rai, N.; Soni, S.; Verma, D.K.; Singh, P.; Mahmoud, A.E.D. Nanomaterials: A comprehensive review of applications, toxicity, impact, and fate to environment. J. Mol. Liq. 2023, 370, 121046. [Google Scholar] [CrossRef]
- Murugadoss, S.; Brassinne, F.; Sebaihi, N.; Petry, J.; Cokic, S.M.; Van Landuyt, K.L.; Godderis, L.; Mast, J.; Lison, D.; Hoet, P.H. Agglomeration of titanium dioxide nanoparticles increases toxicological responses in vitro and in vivo. Part. Fibre Toxicol. 2020, 17, 10. [Google Scholar] [CrossRef]
Parameters | Units | Clay Loam | Sandy Clay Loam | Sandy Loam |
---|---|---|---|---|
pHKCL 1:10 | - | 7.3 (±1.0) * | 7.3 (±0.18) | 7.1 (±0.90) |
ECKCL 1:10 Sand Silt Clay | dS m−1 % % % | 3.06 (±0.76) 40 (±2.16) 30 (±2.50) 30 (±9.82) | 2.86 (±0.29) 52 (±3.52) 28 (±5.72) 20 (±1.33) | 2.4 (±0.07) 60 (±6.33) 30 (±5.72) 10 (±0.02) |
Parameters | Units | FYM |
---|---|---|
Dry matter | (%) | 95.96 (±9.82) * |
Organic matter | (%) | 16.92 (±1.33) |
pHH2O 1:5 | - | 8.2 (±0.10) |
ECH2O 1:5 | (dS m−1) | 4.2 (±0.09) |
Total C | (%) | 19.80 (±0.12) |
N total | (%) | 1.23 (±0.10) |
N min | (%) | 0.34 (±0.17) |
C:N ratio | - | 16.09 |
Treatments | pH | EC dS m−1 | OM (%) | TOC (%) |
---|---|---|---|---|
Clay Loam | ||||
0 | 7.4 ± 0.18 ab | 0.32 ± 0.02 f | 1.7 ± 0.4 abcde | 0.97 abcdef |
ZnONPs | 7.2 ± 0.06 abc | 0.70 ± 0.01 cd | 1.5 ± 0.3 abcdef | 0.89 abcdef |
FeONPs | 7.2 ± 0.24 abc | 0.69 ± 0.00 cd | 2.1 ± 0.1 abcdef | 1.20 abcdef |
FYM | 6.9 ± 0.06 abcd | 0.88 ± 0.01 ab | 3.1 ± 0.5 ab | 1.78 ab |
FYM+ZnONPs | 7 ± 0.03 abcd | 0.54 ± 0.01 e | 2.7 ± 0.4 abc | 1.59 abc |
FYM+FeONPs | 7 ± 0.12 abcd | 0.55 ± 0.02 e | 3.3 ± 0.2 a | 1.93 a |
Sandy Clay Loam | ||||
0 | 6.6 ± 0.09 cd | 0.37 ± 0.01 f | 2.3 ± 0.9 abcdef | 1.31 abcde |
ZnONPs | 6.8 ± 0.09 abcd | 0.78 ± 0.02 bc | 2.0 ± 0.2 abcdef | 1.16 abcdef |
FeONPs | 6.4 ± 0.20 d | 0.69 ± 0.00 cd | 2.3 ± 0.3 abcde | 1.31 abcde |
FYM | 6.5 ± 0.23 cd | 0.93 ± 0.01 a | 2.4 ± 0.1 abcd | 1.39 abcd |
FYM+ZnONPs | 6.7 ± 0.09 cd | 0.58 ± 0.01 de | 3.0 ± 0.2 ab | 1.74 ab |
FYM+FeONPs | 6.7 ± 0.07 bcd | 0.61 ± 0.01 de | 3.2 ± 0.6 ab | 1.86 ab |
Sandy Loam | ||||
0 | 6.6 ± 0.09 abcd | 0.2 ± 0.01 f | 0.6 ± 0.1 def | 0.35 def |
ZnONPs | 6.8 ± 0.09 a | 0.79 ± 0.00 cd | 0.3 ± 0.1 f | 0.19 f |
FeONPs | 6.4 ± 0.20 cd | 0.88 ± 0.09 ab | 0.5 ± 0.2 ef | 0.27 ef |
FYM | 6.5 ± 0.23 abcd | 0.97 ± 0.01 a | 2 ± 0.1 abcdef | 1.16 abcdef |
FYM+ZnONPs | 6.7 ± 0.09 cd | 0.58 ± 0.01 de | 1.1 ± 0.3 cdef | 0.62 cdef |
FYM+FeONPs | 6.7 ± 0.07 a | 0.66 ± 0.01 cde | 1.4 ± 0.2 bcdef | 0.81 bcdef |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, G.M.; Shabbir, Z.; Rabbani, F.; Rashid, M.I.; Bakhat, H.F.; Naeem, M.A.; Abbas, G.; Shah, G.A.; Shahid, N. Soil Texture Mediates the Toxicity of ZnO and Fe3O4 Nanoparticles to Microbial Activity. Toxics 2025, 13, 84. https://doi.org/10.3390/toxics13020084
Shah GM, Shabbir Z, Rabbani F, Rashid MI, Bakhat HF, Naeem MA, Abbas G, Shah GA, Shahid N. Soil Texture Mediates the Toxicity of ZnO and Fe3O4 Nanoparticles to Microbial Activity. Toxics. 2025; 13(2):84. https://doi.org/10.3390/toxics13020084
Chicago/Turabian StyleShah, Ghulam Mustafa, Zunaira Shabbir, Faiz Rabbani, Muhammad Imtiaz Rashid, Hafiz Faiq Bakhat, Muhammad Asif Naeem, Ghulam Abbas, Ghulam Abbas Shah, and Naeem Shahid. 2025. "Soil Texture Mediates the Toxicity of ZnO and Fe3O4 Nanoparticles to Microbial Activity" Toxics 13, no. 2: 84. https://doi.org/10.3390/toxics13020084
APA StyleShah, G. M., Shabbir, Z., Rabbani, F., Rashid, M. I., Bakhat, H. F., Naeem, M. A., Abbas, G., Shah, G. A., & Shahid, N. (2025). Soil Texture Mediates the Toxicity of ZnO and Fe3O4 Nanoparticles to Microbial Activity. Toxics, 13(2), 84. https://doi.org/10.3390/toxics13020084