Immobilization of Cadmium by Fulvic Acid-Modified Palygorskite and Plant and Soil Metabolism Responses
Abstract
1. Introduction
2. Materials and Methods
2.1. Palygorskite (PAL) and Fulvic Acid-Modified Product (PAL-C)
2.2. Characterization of Soil Samples and Plant Cultures
2.3. Analytical Methods
2.4. Data Analysis
3. Results
3.1. Surface Area and Pore Size Distribution
3.2. XRD Spectra of Palygorskite and Modified Product
3.3. Infrared Spectra of Palygorskite, Modified Palygorskite, and Cd Adsorption Product
3.4. Cd Absorption by Palygorskite and Modified Product
3.5. Above-Ground Plant Biomass
3.6. Cd Availability in Soils
3.7. Concentrations of Cd in Plant Shoots
3.8. Plant Physiological Status Under Cd-Induced Stress
3.9. pH and Concentrations of Trace Elements in Soils
3.10. Soil Biochemical Activity in Cd-Induced Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mou, H.Y.; Chen, W.Q.; Xue, Z.; Li, Y.Z.; Ao, T.Q.; Sun, H. Effect of irrigation water system’s distribution on rice cadmium accumulation in large mild cadmium contaminated paddy field areas of Southwest China. Sci. Total Environ. 2020, 746, 141248. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.W.; Niu, Z.D.; Yu, J.D.; Li, Z.H.; Ma, J.Y. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 2021, 267, 129205. [Google Scholar] [CrossRef]
- Deng, X.; Wu, S.J.; Yang, Y.; Qin, Y.B.; Huang, Q.Y.; Wu, W.J.; Rong, X.M.; Zeng, Q.R. A rice-chicory rotation pattern ensures safe grain production and phytoremediation of cadmium-contaminated paddy fields: A four-year field experiment in southern China. Chemosphere 2023, 322, 138192. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, R.Q.; Zhao, C.; Wang, L.Q.; Lei, M.; Guo, G.H.; Shi, H.D.; Liao, X.Y.; Chen, T.B. Challenges and opportunities for improving the environmental quality of cadmium-contaminated soil in China. J. Hazard. Mater. 2023, 445, 130560. [Google Scholar] [CrossRef]
- Afzal, M.; Yu, M.; Tang, C.; Zhang, L.; Muhammad, N.; Zhao, H.; Feng, J.; Yu, L.; Xu, J. The negative impact of cadmium on nitrogen transformation processes in a paddy soil is greater under non-flooding than flooding conditions. Environ. Int. 2019, 129, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Matyjaszczyk, E.; Schumann, R. Cadmium contamination in food supplements containing white willow (Salix alba) bark. J. Consum. Prot. Food Saf. 2019, 14, 179–182. [Google Scholar] [CrossRef]
- Wang, P.; Chen, H.P.; Kopittke, P.M.; Zhao, F.J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ. Pollut. 2019, 249, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Zhang, S.; Song, J.; Brewer, R.; Gao, H. Cadmium uptake in radish (Raphanus sativus L.) and surficial contamination: Implications for food safety and local soil management. J. Soil Sediment 2019, 19, 3585–3596. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zheng, X.Y.; He, X.S.; Lü, Q.X.; Qian, X.; Xiao, Q.T.; Lin, R.Y. Effects of Pseudomonas TCd-1 on rice (Oryza sativa) cadmium uptake, rhizosphere soils enzyme activities and cadmium bioavailability under cadmium contamination. Ecotox. Inviron. Safe. 2021, 218, 112249. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.B.; Sun, G.H.; Xu, Y.M.; Liu, W.T.; Liang, X.F.; Wang, L. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils. J. Environ. Manag. 2016, 166, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Li, J.R.; Xu, Y.M. Influence of clay application and water management on ability of rice to resist cadmium stress. Environ. Eng. Sci. 2021, 38, 695–702. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.M.; Huang, Q.Q.; Liang, X.F.; Sun, Y.B.; Wang, L. Transcriptome and ultrastructural analysis revealed the mechanism of mercapto-palygorskite on reducing Cd content in wheat. J. Hazard. Mater. 2024, 463, 132890. [Google Scholar] [CrossRef]
- Liang, X.F.; Han, J.; Xu, Y.M.; Wang, L.; Sun, Y.B.; Tan, X. Sorption of Cd2+ on mercapto and amino functionalized palygorskite. Appl. Surf. Sci. 2014, 322, 194–201. [Google Scholar] [CrossRef]
- Li, X.; Jia, R.; Lu, X.; Xu, Y.; Liang, X.; Shen, L.; Li, B.; Ma, C.; Wang, N.; Yao, C.; et al. The use of mercapto-modified palygorskite prevents the bioaccumulation of cadmium in wheat. J. Hazard. Mater. 2021, 417, 125917. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yang, H.; Wang, M.; Sun, L.; Xu, Y.; Sun, G.; Huang, Q.; Liang, X. Immobilization of soil Cd by sulfhydryl grafted palygorskite in wheat-rice rotation mode: A field-scale investigation. Sci. Total Environ. 2022, 826, 154156. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Xu, Y.; Huang, Q.; Sun, G.; Qin, X.; Wang, L. Effects of mercapto-palygorskite application on cadmium accumulation of soil aggregates at different depths in Cd-contaminated alkaline farmland. Environ. Res. 2023, 216, 114448. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.K. Analysis Methods of Soil Agricultural Chemistry, 2nd ed.; Chinese Agricultural Science Technology Press: Beijing, China, 2000. [Google Scholar]
- Guo, L.; Wang, C.; Feng, T.Y.; Shen, R.F. Short-term application of organic fertilization impacts phosphatase activity and phosphorus-mineralizing bacterial communities of bulk and rhizosphere soils of maize in acidic soil. Plant Soil 2023, 484, 95–113. [Google Scholar] [CrossRef]
- Qi, L.; Zhou, P.; Yang, L.; Gao, M. Effects of land reclamation on the physical, chemical, and microbial quantity and enzyme activity properties of degraded agricultural soils. J. Soil Sediment 2020, 20, 973–981. [Google Scholar] [CrossRef]
- Zhang, L.C.; Luo, L.; Zhang, S.Z. Integrated investigations on the adsorption mechanisms of fulvic and humic acids on three clay minerals. Colloid Surf. A 2012, 406, 84–90. [Google Scholar] [CrossRef]
- Zeng, Y.J.; Zhou, Z.J.; Zhao, Q.X. Mechanism study of the Smectite-OR-SH compound for reducing cadmium uptake by plants in contaminated soils. Environ. Sci. 2015, 36, 2314–2319. [Google Scholar] [CrossRef]
- El-Amier, Y.A.; Elhindi, K.M.; El-Hendawy, S.; Al-Rashed, S.; Abd-ElGawad, A.M. Antioxidant system and biomolecules alteration in Pisum sativum under heavy metal stress and possible alleviation by 5-aminolevulinic acid. Molecules 2019, 24, 4194. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.W.; Xu, L.L.; Chen, Y.; Ma, Q.Q.; Santhanam, R.K.; Xue, Z.H.; Gao, X.D.; Chen, H.X. Structural characterization of corn silk polysaccharides and its effect in H2O2 induced oxidative damage in L6 skeletal muscle cells. Carbohyd. Polym. 2019, 208, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Olaniran, A.O.; Balgobind, A.; Kumar, A.; Pillay, B. Treatment additives reduced arsenic and cadmium bioavailability and increased 1,2-dichloroethane biodegradation and microbial enzyme activities in co-contaminated soil. J. Soil Sediment 2017, 17, 2019–2029. [Google Scholar] [CrossRef]
- Azadi, N.; Raiesi, F. Sugarcane bagasse biochar modulates metal and salinity stresses on microbial functions and enzyme activities in saline co-contaminated soils. Appl. Soil Ecol. 2021, 167, 104043. [Google Scholar] [CrossRef]
- Xu, Z.N.; Yang, Z.F.; Zhu, T.; Shu, W.J.; Geng, L.S. Ecological improvement of antimony and cadmium contaminated soil by earthworm Eisenia fetida: Soil enzyme and microorganism diversity. Chemosphere 2021, 273, 129496. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Liu, J.T.; Zhao, H.X.; Li, Q.; Zhang, H.; Zhao, M.X. Flaveria bidentis invasion modifies soil physicochemical properties and increases microorganism community diversity. J. Soil Sediment 2024, 24, 2437–2448. [Google Scholar] [CrossRef]
- Sun, Y.B.; Sun, G.H.; Xu, Y.M.; Wang, L.; Liang, X.F.; Lin, D.S. Assessment of sepiolite for immobilization of cadmium-contaminated soils. Geoderma 2013, 193–194, 149–155. [Google Scholar] [CrossRef]
- Valle, P.A.; Ayuso, E.Á.; Murciego, A.; Pellitero, E. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil. Geoderma 2016, 280, 57–66. [Google Scholar] [CrossRef]
- Yin, X.L.; Xu, Y.M.; Huang, R.; Huang, Q.Q.; Xie, Z.L.; Cai, Y.M.; Liang, X.F. Remediation mechanisms for Cd-contaminated soil using natural sepiolite at the field scale. Environ. Sci.—Proc. Imp. 2017, 19, 1563–1570. [Google Scholar] [CrossRef] [PubMed]
- Li, J.R.; Xu, Y.M. Effects of clay combined with moisture management on Cd immobilization and fertility index of polluted rice field. Ecotox. Environ. Saf. 2018, 158, 182–186. [Google Scholar] [CrossRef] [PubMed]
- He, L.Z.; Xu, Y.M.; Huang, Q.Q.; Liang, X.F. Immobilization of cadmium in neutral soil in a vegetable cultivation mode using thiolated palygorskite. Clean—Soil Air Water 2021, 49, 2000337. [Google Scholar] [CrossRef]
- Wu, Z.L.; Yin, X.B.; Bañuelos, G.S.; Lin, Z.Q.; Liu, Y.; Li, M.; Yuan, L.X. Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.). Front. Plant Sci. 2016, 7, 1875. [Google Scholar] [CrossRef] [PubMed]
- Moustakas, M.; Hanć, A.; Dobrikova, A.; Sperdouli, I.; Adamakis, I.S.; Apostolova, E. Spatial heterogeneity of cadmium effects on Salvia sclarea leaves revealed by chlorophyll fluorescence imaging analysis and laser ablation inductively coupled plasma mass spectrometry. Materials 2019, 12, 2953. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.C.; Wang, F.H.; Zhao, B.; Chen, Y.J. Photodegradation of ciprofloxacin hydrochloride in the aqueous solution under UV. Environ. Sci. 2016, 37, 198–207. [Google Scholar] [CrossRef]
Clay Dose (g/kg) | Malondialdehyde (μmol/g) | Chlorophyll (mg/kg) | Proline (nmol/g) | Soluble protein (nmol/mg) | ||||
---|---|---|---|---|---|---|---|---|
PAL | PAL−C | PAL | PAL−C | PAL | PAL−C | PAL | PAL−C | |
0 | 0.086 ± 0.006 a (a) | 0.091 ± 0.008 a (a) | 1.63 ± 0.11 c (a) | 1.57 ± 0.13 d (a) | 0.81 ± 0.06 d (a) | 0.78 ± 0.06 d (a) | 0.152 ± 0.02 d (a) | 0.159 ± 0.02 d (a) |
5 | 0.081 ± 0.007 a (a) | 0.078 ± 0.009 ab (a) | 1.79 ± 0.13 bc (a) | 1.68 ± 0.16 c (a) | 0.88 ± 0.05 cd (a) | 0.93 ± 0.08 c (a) | 0.166 ± 0.01 c (a) | 0.166 ± 0.03 c (a) |
10 | 0.069 ± 0.005 b (a) | 0.066 ± 0.007 b (a) | 1.86 ± 0.21 b (a) | 1.79 ± 0.13 b (a) | 0.93 ± 0.07 c (a) | 1.06 ± 0.11 b (a) | 0.169 ± 0.02 bc (a) | 0.169 ± 0.02 c (a) |
15 | 0.062 ± 0.006 b (a) | 0.063 ± 0.006 b (a) | 1.88 ± 0.17 b (a) | 1.81 ± 0.21 b (a) | 1.02 ± 0.11 b (a) | 1.08 ± 0.13 b (a) | 0.173 ± 0.02 b (a) | 0.178 ± 0.02 b (a) |
20 | 0.055 ± 0.006 c (a) | 0.053 ± 0.005 c (a) | 1.95 ± 0.22 ab (a) | 1.92 ± 0.18 a (a) | 1.08 ± 0.09 b (a) | 1.19 ± 0.09 ab (a) | 0.196 ± 0.02 a (a) | 0.183 ± 0.01 ab (a) |
30 | 0.049 ± 0.005 c (a) | 0.042 ± 0.003 d (a) | 2.03 ± 0.19 a (a) | 1.93 ± 0.16 a (a) | 1.19 ± 0.12 a (a) | 1.28 ± 0.13 a (a) | 0.198 ± 0.03 a (a) | 0.191 ± 0.03 a (a) |
Clay Dose (g/kg) | pH | Available Cu (mg/kg) | Available Zn (mg/kg) | |||
---|---|---|---|---|---|---|
PAL | PAL−C | PAL | PAL−C | PAL | PAL−C | |
0 | 6.22 ± 0.11 d (a) | 6.21 ± 0.13 d (a) | 21.8 ± 0.91 a (a) | 21.3 ± 0.86 a (a) | 56.3 ± 2.21 a (a) | 57.1 ± 1.86 a (a) |
5 | 6.34 ± 0.12 cd (a) | 6.31 ± 0.11 c (a) | 18.8 ± 0.83 b (b) | 19.7 ± 0.77 b (a) | 52.1 ± 2.06 b (a) | 53.8 ± 1.91 b (a) |
10 | 6.48 ± 0.07 c (a) | 6.44 ± 0.06 bc (a) | 17.7 ± 0.72 c (b) | 18.9 ± 0.66 c (a) | 48.2 ± 2.08 c (a) | 49.9 ± 2.11 c (a) |
15 | 6.63 ± 0.11 b (a) | 6.53 ± 0.12 b (a) | 17.9 ± 0.68 c (b) | 18.8 ± 0.61 c (a) | 47.7 ± 1.61 c (a) | 46.1 ± 1.38 d (a) |
20 | 6.72 ± 0.09 ab (a) | 6.59 ± 0.07 ab (b) | 15.2 ± 0.66 d (a) | 15.5 ± 0.69 d (a) | 45.1 ± 1.33 d (a) | 45.7 ± 1.66 d (a) |
30 | 6.89 ± 0.13 a (a) | 6.73 ± 0.08 a (b) | 14.4 ± 0.52 e (b) | 15.1 ± 0.51 d (a) | 44.6 ± 1.82 d (a) | 41.9 ± 1.91 e (b) |
Clay Dose (g/kg) | Bacteria (107 CFU/g) | Fungi (105 CFU/g) | Dehydrogenase (mg TPF/g/h) | Cellulase (μmol Glucose/g/h) | ||||
---|---|---|---|---|---|---|---|---|
PAL | PAL−C | PAL | PAL−C | PAL | PAL−C | PAL | PAL−C | |
0 | 1.21 ± 0.11 e (a) | 1.27 ± 0.09 f (a) | 2.87 ± 0.23 d (a) | 2.75 ± 0.18 c (a) | 16.8 ± 0.93 e (a) | 16.2 ± 0.81 d (a) | 0.015 ± 0.01 f (a) | 0.013 ± 0.01 f (a) |
5 | 1.44 ± 0.08 d (a) | 1.41 ± 0.11 e (a) | 3.51 ± 0.33 bc (a) | 3.58 ± 0.31 b (a) | 33.8 ± 1.82 bc (a) | 34.7 ± 1.66 bc (a) | 0.086 ± 0.01 e (a) | 0.095 ± 0.01 e (a) |
10 | 1.77 ± 0.13 c (a) | 1.83 ± 0.08 d (a) | 4.37 ± 0.38 a (a) | 4.31 ± 0.33 a (a) | 51.2 ± 2.61 a (a) | 49.6 ± 2.38 a (a) | 0.141 ± 0.01 d (a) | 0.143 ± 0.01 d (a) |
15 | 2.03 ± 0.09 b (a) | 2.15 ± 0.13 c (a) | 4.11 ± 0.35 ab (a) | 4.26 ± 0.26 a (a) | 37.2 ± 1.35 b (a) | 38.8 ± 1.21 b (a) | 0.163 ± 0.02 c (a) | 0.179 ± 0.02 c (a) |
20 | 2.37 ± 0.16 ab (b) | 2.58 ± 0.14 b (a) | 3.87 ± 0.31 b (b) | 4.03 ± 0.28 ab (a) | 30.8 ± 1.56 c (a) | 29.3 ± 1.47 c (a) | 0.252 ± 0.03 b (a) | 0.281 ± 0.04 b (a) |
30 | 2.79 ± 0.21 a (b) | 3.11 ± 0.23 a (a) | 3.21 ± 0.26 c (b) | 3.63 ± 0.30 b (a) | 25.9 ± 1.41 d (a) | 26.7 ± 1.19 cd (a) | 0.268 ± 0.03 a (b) | 0.311 ± 0.04 a (a) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Xu, Y. Immobilization of Cadmium by Fulvic Acid-Modified Palygorskite and Plant and Soil Metabolism Responses. Toxics 2025, 13, 68. https://doi.org/10.3390/toxics13020068
Li J, Xu Y. Immobilization of Cadmium by Fulvic Acid-Modified Palygorskite and Plant and Soil Metabolism Responses. Toxics. 2025; 13(2):68. https://doi.org/10.3390/toxics13020068
Chicago/Turabian StyleLi, Jianrui, and Yingming Xu. 2025. "Immobilization of Cadmium by Fulvic Acid-Modified Palygorskite and Plant and Soil Metabolism Responses" Toxics 13, no. 2: 68. https://doi.org/10.3390/toxics13020068
APA StyleLi, J., & Xu, Y. (2025). Immobilization of Cadmium by Fulvic Acid-Modified Palygorskite and Plant and Soil Metabolism Responses. Toxics, 13(2), 68. https://doi.org/10.3390/toxics13020068