Adsorption of Arsenic by Magnetically Modified Biochar from Mulberry Tree Stems
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Preparation of Mulberry Stem Materials
2.3. Characterization Methods
2.3.1. FTIR Analysis (FTIR Spectroscopy Testing and Baseline Correction)
2.3.2. X-Ray Diffraction Analysis (XRD Experimental Design and Data Acquisition)
2.3.3. Scanning Electron Microscopy (SEM Sample Preparation and Imaging Parameter Configuration)
2.4. Adsorption Experiment
2.4.1. Influence of Solution pH on Adsorption Efficiency
2.4.2. Influence of Co-Existing Ions on Adsorption Efficiency
2.4.3. Influence of Ionic Strength on Adsorption Efficiency
2.4.4. Adsorption Kinetics Experiments
Bangham Dynamics
Elovich Dynamics
3. Results and Discussion
3.1. Effect of Adsorption of As(V) on Fe-BC-500 at Different pH Values
3.2. Influence of Co-Existing Ions on As(V) Adsorption on Fe-BC-500
3.3. As(V) Adsorption on Fe-BC-500 at Different Ionic Strengths
3.4. Influence of Different Adsorption Times on Adsorption of As(V) on Fe-BC-500
3.5. Adsorption Kinetics Model
3.6. Adsorption Isotherm
3.7. Adsorption Thermodynamics
3.8. Analysis of Adsorption Mechanisms
3.8.1. FTIR Analysis(FTIR Chemical Bond Analysis)
3.8.2. X-Ray Diffraction Analysis(XRD Crystal Structure Characterisation)
3.8.3. Scanning Electron Microscopy(Surface Morphology Observation by SEM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, N.; Singh, P.; Bhatnagar, A.; Maiti, A. Arsenite oxidation and adsorptive arsenic removal from contaminated water: A review. Environ. Sci. Pollut. Res. Int. 2024, 31, 42574–42592. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.Q.; Zheng, J.R.; Fu, Y.; Wang, Z.R.; Yilmaz, E.; Cui, L. Slag-based stabilization/solidification of hazardous arsenic-bearing tailings as cemented paste backfill: Strength and arsenic immobilization assessment. Case Stud. Constr. Mater. 2024, 20, e03002. [Google Scholar] [CrossRef]
- Fei, J.; Wang, T.; Zhou, Y.; Wang, Z.; Min, X.; Ke, Y.; Hu, W.; Chai, L. Aromatic organoarsenic compounds (ADCs) occurrence and remediation methods. Chemosphere 2018, 207, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Watanabe, J.i.; Tani, Y.; Chang, J.; Miyata, N.; Naitou, H.; Seyama, H. As(III) oxidation kinetics of biogenic manganese oxides formed by Acremonium strictum strain KR21-2. Chem. Geol. 2013, 347, 227–232. [Google Scholar] [CrossRef]
- Perry, M.R.; Prajapati, V.K.; Menten, J.; Raab, A.; Feldmann, J.; Chakraborti, D.; Sundar, S.; Fairlamb, A.H.; Boelaert, M.; Picado, A. Arsenic Exposure and Outcomes of Antimonial Treatment in Visceral Leishmaniasis Patients in Bihar, India: A Retrospective Cohort Study. PLoS Neglected Trop. Dis. 2015, 9, e0003518. [Google Scholar] [CrossRef]
- Chen, Y.; Graziano, J.H.; Parvez, F.; Liu, M.; Slavkovich, V.; Kalra, T.; Argos, M.; Islam, T.; Ahmed, A.; Rakibuz-Zaman, M.; et al. Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: Prospective cohort study. BMJ-Br. Med. J. 2011, 342, d2431. [Google Scholar] [CrossRef]
- Chandra, A.; Shah, K.A. Chronic Arsenic Poisoning. N. Engl. J. Med. 2022, 387, 1414. [Google Scholar] [CrossRef]
- Alsamman, M.T.; Sotelo, S.; Sánchez, J.; Rivas, B.L. Arsenic oxidation and its subsequent removal from water: An overview. Sep. Purif. Technol. 2023, 309, 123055. [Google Scholar] [CrossRef]
- Wang, J.; Geng, Y.; Hou, H.; Li, X. Iron–Manganese-Modified Hydrochar for Synergistic Stabilization of Antimony and Arsenic in Smelter-Impacted Soils. Toxics 2025, 13, 674. [Google Scholar] [CrossRef]
- Abejón, A.; Garea, A.; Irabien, A. Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption. Sep. Purif. Technol. 2015, 144, 46–53. [Google Scholar] [CrossRef]
- Zhang, W.; Han, S.; Zhang, D.; Yuan, S.; Jin, X.; Shan, B. Evaluation of water quality at national scale from 2011 to 2021: Advances and challenges. Sci. Total Environ. 2022, 849, 157803. [Google Scholar] [CrossRef]
- Jin, Y.; Zhu, W.; Li, J.; Cui, D.; Zhang, Z.; Sun, G.; Zhu, Y.; Yang, H.; Zhang, X. Arsenic pollution concerning surface water and sediment of Jie River: A pilot area where gold smelting enterprises are concentrated. Environ. Res. 2024, 249, 118384. [Google Scholar] [CrossRef]
- Warren, G.P.; Alloway, B.J.; Lepp, N.W.; Singh, B.; Bochereau, F.J.M.; Penny, C. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci. Total Environ. 2003, 311, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Leist, M.; Casey, R.J.; Caridi, D. The management of arsenic wastes: Problems and prospects. J. Hazard. Mater. 2000, 76, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Mikutta, C.; Mandaliev, P.N.; Mahler, N.; Kotsev, T.; Kretzschmar, R. Bioaccessibility of Arsenic in Mining-Impacted Circumneutral River Floodplain Soils. Environ. Sci. Technol. 2014, 48, 13468–13477. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Cao, W.; Li, X.; Ren, Y.; Lu, C.; Wang, Y.; Song, L.; Liu, Y.; Sun, X. Comparative study on genesis mechanism of high arsenic groundwater in typical alluvial plain of the Upper and lower Yellow River, China. Sci. Total Environ. 2024, 957, 177694. [Google Scholar] [CrossRef]
- Hu, B.; Li, J.; Liu, R.; Lei, G.; Wang, X.; Wang, L. Exposure to arsenic and other potentially toxic elements: Health risk assessment and source analysis in the Wuming Basin, Guangxi Province, China. Sci. Rep. 2024, 14, 2835. [Google Scholar] [CrossRef]
- Liu, Y.R.; van der Heijden, M.G.A.; Riedo, J.; Sanz-Lazaro, C.; Eldridge, D.J.; Bastida, F.; Moreno-Jimenez, E.; Zhou, X.-Q.; Hu, H.-W.; He, J.-Z.; et al. Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide. Nat. Commun. 2023, 14, 1706. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Wang, C.; Liu, J.-Z.; Gao, Z.-D.; Li, K.-M.; Tuo, X.-Y.; Zang, F. Pollution characteristics and probabilistic risk assessment of heavy metal (loid) s in agricultural soils across the Yellow River Basin, China. Ecol. Indic. 2024, 167, 112676. [Google Scholar] [CrossRef]
- Alonso, D.L.; Perez, R.; Okio, C.K.Y.A.; Castillo, E. Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurban paramo, Colombia. J. Environ. Manag. 2020, 264, 110478. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Siddique, M.A.B.; Khan, R.; Reza, A.H.M.S.; Khan, A.H.A.N.; Akbor, M.A.; Islam, M.S.; Hasan, A.B.; Hasan, M.I.; Bin Elius, I. Mechanism of arsenic enrichment and mobilization in groundwater from southeastern Bangladesh: Water quality and preliminary health risks assessment. Chemosphere 2022, 294, 133556. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Wu, J.; Li, W.; Zhang, Q.; Su, F.; Wang, Y. Groundwater Geochemistry and its Impacts on Groundwater Arsenic Enrichment, Variation, and Health Risks in Yongning County, Yinchuan Plain of Northwest China. Expo Health 2022, 14, 219–238. [Google Scholar] [CrossRef]
- He, X.; Li, P.; Ji, Y.; Wang, Y.; Su, Z.; Vetrimurugan, E. Groundwater Arsenic and Fluoride and Associated Arsenicosis and Fluorosis in China: Occurrence, Distribution and Management. Expo Health 2020, 12, 355–368. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Q.; Wang, H.; Gu, Q.; Zhang, Y. Genetic interpretation and health risk assessment of arsenic in Hetao Plain of inner Mongolia, China. Environ. Res. 2022, 208, 112680. [Google Scholar] [CrossRef]
- Acharya, A.; Jeppu, G.; Girish, C.R.; Prabhu, B.; Murty, V.R.; Martis, A.S.; Ramesh, S. Adsorption of arsenic and fluoride: Modeling of single and competitive adsorption systems. Heliyon 2024, 10, e31967. [Google Scholar] [CrossRef]
- Alka, S.; Shahir, S.; Ibrahim, N.; Ndejiko, M.J.; Vo, D.-V.N.; Abd Manan, F. Arsenic removal technologies and future trends: A mini review. J. Clean. Prod. 2021, 278, 123805. [Google Scholar] [CrossRef]
- Afroze, S.; Sen, T.K. A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water Air Soil Pollut. 2018, 229, 225. [Google Scholar] [CrossRef]
- Zhu, N.Y.; Yan, T.M.; Qiao, J.; Cao, H.L. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization. Chemosphere 2016, 164, 32–40. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, F.; Han, C.; Houda, C.; Hao, M.; Wang, Q. Research Progress on Adsorption of Arsenic from Water by Modified Biochar and Its Mechanism: A Review. Water 2022, 14, 1691. [Google Scholar] [CrossRef]
- Shen, Y.; Duan, R.; Qian, J.; Li, Q. Preparation of Highly Stable DUT-52 Materials and Adsorption of Dichromate Ions in Aqueous Solution. ACS Omega 2022, 7, 16414–16421. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation. Sci. Technol. Earthscan 2015, 25, 15801–15811. [Google Scholar]
- Carneiro, M.A.; Pintor, A.M.A.; Boaventura, R.A.R.; Botelho, C.M.S. Arsenic and antimony desorption in water treatment processes: Scaling up challenges with emerging adsorbents. Sci. Total Environ. 2024, 929, 172602. [Google Scholar] [CrossRef]
- IBI. Standardized Product Definition and Product Testing Guidelines for Biochar That is Used in Soil; International Biochar Initiative: Norfolk, VA, USA, 2012. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. Sci. Technol. 2009, 1, 1–12. [Google Scholar]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; van der Velde, I.D. Biochar Application to Soils. A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Cheng, N.; Wang, B.; Wu, P.; Lee, X.; Xing, Y.; Chen, M.; Gao, B. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environ. Pollut. 2021, 273, 116448. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, J.; Feng, Y.; Zhang, Z.; Tang, L.; Chen, H. Knowledge graph and development hotspots of biochar as an emerging aquatic antibiotic remediator: A scientometric exploration based on VOSviewer and CiteSpace. J. Environ. Mang. 2024, 360, 121165. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Liu, Y.; Li, W.; Pei, L.; Xu, S.; Sun, Y.; Liu, J.; Wang, F. Remediation Agents Drive Bacterial Community in a Cd-Contaminated Soil. Toxics 2023, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Liu, Y.-G.; Liu, S.-B.; Liu, H.-Y.; Zeng, G.-M.; Tan, X.-F.; Yang, C.-P.; Ding, Y.; Yan, Z.-L.; Cai, X.-X. Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar. Chem. Eng. J. 2017, 314, 223–231. [Google Scholar] [CrossRef]
- Zeng, G.; Si, M.; Dong, C.; Liao, Q.; He, F.; Johnson, V.E.; Arinzechi, C.; Yang, W.; Yang, Z. Adsorption behavior of lead, cadmium, and arsenic on manganese-modified biochar: Competition and promotion. Environ. Geochem. Health 2024, 46, 86. [Google Scholar] [CrossRef]
- Nguyen, N.-T.; Lin, A.-B.; Chang, C.-T.; Hong, G.-B. Bimetallic Zinc-Iron-Modified Sugarcane Bagasse Biochar for Simultaneous Adsorption of Arsenic and Oxytetracycline from Wastewater. Molecules 2025, 30, 572. [Google Scholar] [CrossRef]
- Gregory, S.J.; Anderson, C.W.N.; Arbestain, M.C.; McManus, M.T. Response of plant and soil microbes to biochar amendment of an arsenic-contaminated soil. Agric. Ecosyst. Environ. 2014, 191, 133–141. [Google Scholar] [CrossRef]
- Bano, A.; Aziz, M.K.; Mishra, R.; Dave, H.; Prasad, B.; Kumari, M.; Dubey, D.; Meili, L.; Shah, M.P.; Prasad, K.S. Response surface methodology-based optimisation of adsorption of diclofenac and treatment of pharmaceutical effluent using combined coagulation-adsorption onto nFe2O3 decorated water chestnut shells biochar. Environ. Sci. Pollut. Res. Int. 2024, 31, 55317–55335. [Google Scholar] [CrossRef] [PubMed]
- Huai, B.; Wu, Y.; Liang, C.; Tu, P.; Mei, T.; Guan, A.; Yao, Q.; Li, J.; Chen, J. Effects of calcium on cell wall metabolism enzymes and expression of related genes associated with peel creasing in Citrus fruits. PeerJ 2022, 10, e14574. [Google Scholar] [CrossRef]
- Ren, N.; Tang, Y.; Li, M. Mineral additive enhanced carbon retention and stabilization in sewage sludge-derived biochar. Process. Saf. Environ. Prot. 2018, 115, 70–78. [Google Scholar] [CrossRef]
- Zanolla, D.; Gigli, L.; Hasa, D.; Chierotti, M.R.; Arhangelskis, M.; Demitri, N.; Jones, W.; Voinovich, D.; Perissutti, B. Mechanochemical Synthesis and Physicochemical Characterization of Previously Unreported Praziquantel Solvates with 2-Pyrrolidone and Acetic Acid. Pharmaceutics 2021, 13, 1606. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yan, J.; Zhou, L.; Feng, L. ZnO Nanorods Grown on Rhombic ZnO Microrods for Enhanced Photocatalytic Activity. Nanomaterials 2022, 12, 3085. [Google Scholar] [CrossRef]
- Kumar, S.; Shukla, A.; Baul, P.P.; Mitra, A.; Halder, D. Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packaging Shelf 2018, 16, 178–184. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, X.; Chen, M.; Xie, Z.; Wang, J. Effects of Sulfide Input on Arsenate Bioreduction and Its Reduction Product Formation in Sulfidic Groundwater. Int. J. Environ. Res. Public Health 2022, 19, 16987. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, J.; Li, Y. Transforming tire-derived char into powerful arsenic adsorbents by mild modification. Sci. Rep. 2024, 14, 6. [Google Scholar] [CrossRef]
- Zhu, Y.N.; Wang, D.Q.; Zhang, X.H.; Qin, H.D. Adsorption Removal Of Methylene Blue from Aqueous Solution By Using Bamboo Charcoal. Fresenius Environ. Bull. 2009, 18, 369–376. [Google Scholar]
- He, J.; Hong, S.; Zhang, L.A.; Gan, F.X.; Ho, Y.S. Equilibrium and Thermodynamic Parameters of Adsorption of Methylene Blue Onto Rectorite. Fresenius Environ. Bull. 2010, 19, 2651–2656. [Google Scholar]
- Zhou, X.; Liu, X.; Qi, F.; Shi, H.; Zhang, Y.; Ma, P. Efficient preparation of P-doped carbon with ultra-high mesoporous ratio from furfural residue for dye removal. Sep. Purif. Technol. 2022, 292, 120954. [Google Scholar] [CrossRef]
- Mushahary, N.; Sarkar, A.; Das, B.; Rokhum, S.L.; Basumatary, S. A facile and green synthesis of corn cob-based graphene oxide and its modification with corn cob-K2CO3 for efficient removal of methylene blue dye: Adsorption mechanism, isotherm, and kinetic studies. J. Indian Chem. Soc. 2024, 101, 101409. [Google Scholar] [CrossRef]
- Qiu, J.; Cui, K.; Wu, P.; Chen, G.; Wang, Y.; Liu, D.; Jiang, S.; Wang, G. The adsorption characteristics and mechanism of montmorillonite with different layer charge density for alkyl ammonium with different carbon chain length. New J. Chem. 2021, 45, 10331–10339. [Google Scholar] [CrossRef]
- Nayak, A.K.; Pal, A. Development and validation of an adsorption kinetic model at solid-liquid interface using normalized Gudermannian function. J. Mol. Liq. 2019, 276, 67–77. [Google Scholar] [CrossRef]
- Devrajani, S.K.; Ahmed, Z.; Qambrani, N.A.; Kanwal, S.; Sundaram, U.M.; Mubarak, N.M. Mechanism of arsenic removal using brown seaweed derived impregnated with iron oxide biochar for batch and column studies. Sci. Rep. 2024, 14, 18102. [Google Scholar] [CrossRef]
- Xu, Y.H.; Nakajima, T.; Ohki, A. Adsorption and removal of arsenic(V) from drinking water by aluminum-loaded Shirasu-zeolite. J. Hazard. Mater. 2002, 92, 275–287. [Google Scholar] [CrossRef]
- Kundu, S.; Gupta, A.K. Investigations on the adsorption efficiency of iron oxide coated cement (IOCC) towards As(V)-kinetics, equilibrium and thermodynamic studies. Colloids Surf. A-Physicochem. Eng. Asp. 2006, 273, 121–128. [Google Scholar] [CrossRef]
- Pan, Y.-F.; Chiou, C.T.; Lin, T.-F. Adsorption of arsenic(V) by iron-oxide-coated diatomite (IOCD). Environ. Sci. Pollut. Res. 2010, 17, 1401–1410. [Google Scholar] [CrossRef]
- Babaeivelni, K.; Khodadoust, A.P.; Bogdan, D. Adsorption and removal of arsenic (V) using crystalline manganese (II,III) oxide: Kinetics, equilibrium, effect of pH and ionic strength. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2014, 49, 1462–1473. [Google Scholar] [CrossRef]
- Islam, M.; Mishra, P.C.; Patel, R. Arsenate removal from aqueous solution by cellulose-carbonated hydroxyapatite nanocomposites. J. Hazard. Mater. 2011, 189, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Huang, H.-G.; Jin, X.-Y.; Lu, X.-Q.; Chen, Z.-L. Synthesis, characterization and kinetic of a surfactant-modified bentonite used to remove As(III) and As(V) from aqueous solution. J. Hazard. Mater. 2011, 185, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Lipton, A.; Christobel, J. Evaluation of macroalgal biomass for removal of heavy metal Arsenic (As) from aqueous solution. Int. J. Appl. Innov. Eng. Manag. 2015, 4, 94–104. [Google Scholar]
- Torres, M.F.; Gonzalez, J.M.; Rojas, M.R.; Muller, A.J.; Saez, A.E.; Lof, D.; Schillen, K. Effect of ionic strength on the rheological behavior of aqueous cetyltrimethylammonium p-toluene sulfonate solutions. J. Colloid Interface Sci. 2007, 307, 221–228. [Google Scholar] [CrossRef]
- Baig, S.A.; Zhu, J.; Muhammad, N.; Sheng, T.; Xu, X. Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions. Biomass Bioenergy 2014, 71, 299–310. [Google Scholar] [CrossRef]
- Ahmad, I.; Ghaffar, A.; Zakir, A.; Khan, Z.U.; Saeed, M.F.; Rasool, A.; Jamal, A.; Mihoub, A.; Marzeddu, S.; Boni, M.R. Activated Biochar Is an Effective Technique for Arsenic Removal from Contaminated Drinking Water in Pakistan. Sustainability 2022, 14, 14523. [Google Scholar] [CrossRef]
- Benis, K.Z.; Soltan, J.; McPhedran, K.N. Electrochemically modified adsorbents for treatment of aqueous arsenic: Pore diffusion in modified biomass vs. biochar. Chem. Eng. J. 2021, 423, 130061. [Google Scholar] [CrossRef]
- Parlayici, S.; Bahadir, M.; Pehlivan, E. Nanoporous carbonaceous materials (biochar and activated carbon): Recent progress and potential applications for arsenic removal. J. Dispers. Sci. Technol. 2024, 46, 2369881. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, H.; Tang, X.; Kuang, D.H.; Zhou, J.L.; Yang, F.Y. Performance and Mechanism of As(III/V) Removal from Aqueous Solution by Fe3O4-Sunflower Straw Biochar. Toxics 2022, 10, 534. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, G.H.; Zhang, P.; Shen, J.; Wang, S.G.; Li, Y.P. Development of iron-based biochar for enhancing nitrate adsorption: Effects of specific surface area, electrostatic force, and functional groups. Sci. Total Environ. 2023, 856, 159037. [Google Scholar] [CrossRef]
- Li, X.B.; Niu, F.; Tan, J.; Liu, G.H.; Qi, T.G.; Peng, Z.H.; Zhou, Q.S. Removal of S2- ion from sodium aluminate solutions with sodium ferrite. Trans. Nonferrous Met. Soc. China 2016, 26, 1419–1424. [Google Scholar] [CrossRef]








| Kinetic Equation | Rate Constant | Qe (mg/L) |
|---|---|---|
| Pseudo first order kinetics | K1 = 0.02 | 0.166 |
| Pseudo second order kinetics | K2 = 2.00 | 5.00 |
| Bangham kinetics | K3 = 0.02 | 1.84 |
| Elovich kinetics | K4 = 0.12 | - |
| Langmuir Equation | Freundlich Equation | |||||
|---|---|---|---|---|---|---|
| Temperature | R2 | KL | Qe | KF | 1/n | R2 |
| 25 °C | 0.981 | 2.18 | 18.9 | 8.45 | 0.298 | 0.246 |
| 35 °C | 0.998 | 5.29 | 18.5 | 10.1 | 0.322 | 0.422 |
| 45 °C | 0.987 | 3.68 | 23.0 | 9.67 | 0.178 | 0.144 |
| T (K) | KL (L/mg) | △G° (kJ/mol) | △S° [kJ/(mol·k)] | △H (kJ/mol) |
|---|---|---|---|---|
| 298 | 2.18 | −1.931 | 0.0757 | 20.1011 |
| 308 | 5.29 | −4.266 | ||
| 318 | 3.68 | −3.445 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Yang, J.; Zhang, J.; Pan, J.; Yan, L.; Dong, K.; Wang, D.; Song, Y.; Liang, M. Adsorption of Arsenic by Magnetically Modified Biochar from Mulberry Tree Stems. Toxics 2025, 13, 951. https://doi.org/10.3390/toxics13110951
Hu S, Yang J, Zhang J, Pan J, Yan L, Dong K, Wang D, Song Y, Liang M. Adsorption of Arsenic by Magnetically Modified Biochar from Mulberry Tree Stems. Toxics. 2025; 13(11):951. https://doi.org/10.3390/toxics13110951
Chicago/Turabian StyleHu, Sheng, Jiayu Yang, Jingnan Zhang, Jing Pan, Liling Yan, Kun Dong, Dunqiu Wang, Ying Song, and Meina Liang. 2025. "Adsorption of Arsenic by Magnetically Modified Biochar from Mulberry Tree Stems" Toxics 13, no. 11: 951. https://doi.org/10.3390/toxics13110951
APA StyleHu, S., Yang, J., Zhang, J., Pan, J., Yan, L., Dong, K., Wang, D., Song, Y., & Liang, M. (2025). Adsorption of Arsenic by Magnetically Modified Biochar from Mulberry Tree Stems. Toxics, 13(11), 951. https://doi.org/10.3390/toxics13110951
