Environmental Occurrence, Influencing Factors, and Toxic Effects of 6PPD-Q
Abstract
1. Introduction
2. Environmental Fate of 6PPD-Q
2.1. Atmosphere
| Type of Sample | Sampling Sites | Sample Size | Concentration | Reference |
|---|---|---|---|---|
| Dust | Tokyo, Japan | 22 | 116 ng/g | [1] |
| Guangzhou, China | 59 | <LOD–277 ng/g | [4] | |
| Guangzhou, China | 60 | 4.02–2369 ng/g | [28] | |
| Beijing, China | 30 | -- | [29] | |
| Shanghai, China | -- | 19.1 ng/g | [30] | |
| Nanjing, China | -- | 168.1 ng/g | [30] | |
| Dust | Hangzhou, China | -- | 201.4 ng/g | [30] |
| Görlitz, Germany | 2 | 220–270 ng/g | [31] | |
| Guangzhou, China | 60 | 10.5–109 ng/g | [28] | |
| Hong Kong, China | 12 | 9.50–936 ng/g | [23] | |
| Sao Paulo, Brazil | -- | 1.75 pg/m3 | [32] | |
| Buenos Aires, Argentina | -- | 1.27 pg/m3 | [32] | |
| Bogota, Colombia | -- | 0.68 pg/m3 | [32] | |
| Sydney, Australia | -- | 0.17 pg/m3 | [32] | |
| Dust from electronic waste | South China | 45 | 87.1–2850 ng/g | [33] |
| PM2.5 | Guangzhou, China | 48 | 2.96–7250 pg/m3 | [3] |
| Taiyuan, China | 24 | 2.44–1780 pg/m3 | [3] | |
| Taiyuan, China | 24 | 1.1–84 pg/m3 | [34] | |
| Zhengzhou, China | 12 | 0.3–32 pg/m3 | [34] | |
| Shanghai, China | 8 | 0.3–39 pg/m3 | [34] | |
| Nanjing, China | 6 | 1.1–68 pg/m3 | [34] | |
| Hangzhou, China | 7 | 0.8–26 pg/m3 | [34] | |
| Guangzhou, China | 24 | 0.1–15 pg/m3 | [34] | |
| Particulate matter in the atmosphere | Guangzhou, China | 124 | 0.16–39.2 pg/m3 | [24] |
| Hong Kong, China | 18 | 0.54–13.8 pg/m3 | [23] |
2.2. Water
| Type of Sample | Sampling Sites | Sample Size | Concentration | Reference |
|---|---|---|---|---|
| Urban runoff | Hong Kong, China | 9 | 9.50–936 | [23] |
| Jiaojiang, China | -- | <LOD–21 | [39] | |
| Seattle, USA | 16 | 800–19,000 | [10] | |
| USA | 4 | 67–233 | [40] | |
| Rain | Saskatoon, Canada | 21 | 86–1400 | [13] |
| Surface water | Don River, Canada | 29 | 300–2300 | [22] |
| Don River, Canada | 21 | 110–540 | [38] | |
| Highland Creek, Canada | 21 | 210–720 | [38] | |
| Brisbane River, Australia | 32 | 0.38–88 | [21] | |
| Miller Creek, USA | 5 | 46–110 | [40] | |
| Snow and snowmelt | Saskatoon, Canada | 32 | 15–756 | [13] |
| WWTPs | Leipzig, Germany | 22 | 0–105 | [19] |
2.3. Sediment/Soil
3. Factors Influencing 6PPD-Q
3.1. Precipitation Patterns
3.2. Traffic Characteristics
3.3. Light
3.4. Particle Size of Particulate Matter
4. Toxic Effects
4.1. Bioaccumulation
4.2. Aquatic Life
4.2.1. Fish
| Species | Duration of Exposure | LC50 | References |
|---|---|---|---|
| Coho Salmon (>1 y) | 24 h | 95 ng/L | [87] |
| Coho Salmon (~3 weeks post swim-up) | 24 h | 41.0 ng/L | [82] |
| Chinook Salmon (~3 weeks post swim-up) | 24 h | >67.307 μg/L | [82] |
| Coho Salmon (189 d) | 12 h | 80.4 ng/L | [81] |
| Lake Trout (8 weeks post hatch) | 96 h | 0.50 μg/L | [90] |
| Rainbow Trout (~2 y) | 72 h | 1.00 μg/L | [82] |
| Rainbow Trout (fry) | 96 h | 0.47 μg/L | [91] |
| Brook Trout (~1 y) | 24 h | 0.59 μg/L | [83] |
| Zebrafish (larval) | 24 h | 308.67 μg/L | [88] |
| 96 h | 132.92 μg/L | [88] |
4.2.2. Invertebrates
4.2.3. Microalgae
4.3. Terrestrial Life
4.4. Human Exposure
5. Risk Control
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 6PPD | N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine |
| 6PPD-Q | N-(1,3-dimethylbutyl)-N′-phenyl-p-benzoquinone |
| TWPs | Tire wear particles |
| PPDs | p-Phenylenediamines |
| PPD-Qs | PPD-quinones |
| IPPD | N-isopropyl-N′-phenyl-p-phenylenediamine |
| 44PD | N,N′-di-sec-butyl-p-phenylenediamine |
| 77PD | N-(1,4-dimethylpentyl)-N′-phenyl-p-phenylenediamine |
| CPPD | N-cyclohexyl-N′-phenyl-p-phenylenediamine |
| DPPD | N,N′-diphenyl-p-phenylenediamine |
| DNPD | N,N′-di(2-naphthyl)-p-phenylenediamine |
| WWTPs | Wastewater treatment plants |
| QDI | N-1,3-dimethylbutyl-n-phenylquinone diamine |
References
- Hiki, K.; Yamamoto, H. Concentration and leachability of N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine (6PPD) and its quinone transformation product (6PPD-Q) in road dust collected in Tokyo, Japan. Environ. Pollut. 2022, 302, 119082. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Wang, R.; Jiang, W.; Du, L.; Huang, H.; Zhang, L.; Ding, Y. Fresh tire wear particles from moving vehicles: Dispersion dynamics, exposure, and prevention strategy. Emerg. Contam. 2025, 11, 100503. [Google Scholar] [CrossRef]
- Wang, W.; Cao, G.D.; Zhang, J.; Chen, Y.Y.; Chen, Z.F.; Qi, Z.H.; Li, R.J.; Dong, C.; Cai, Z.W. Beyond substituted p-phenylenediamine antioxidants: Prevalence of their quinone derivatives in PM2.5. Environ. Sci. Technol. 2022, 56, 10629–10637. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Shi, Y.M.; Huang, J.L.; Deng, C.L.; Tang, S.Q.; Liu, X.T.; Chen, D. Occurrence of substituted p-phenylenediamine antioxidants in dusts. Environ. Sci. Technol. Lett. 2021, 8, 381–385. [Google Scholar] [CrossRef]
- Chen, X.L.; He, T.; Yang, X.L.; Gan, Y.J.; Qing, X.; Wang, J.; Huang, Y.M. Analysis, environmental occurrence, fate and potential toxicity of tire wear compounds 6PPD and 6PPD-quinone. J. Hazard. Mater. 2023, 452, 131245. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Ruan, J.; Yu, H.Y.; Wu, B.H.; Zhao, J.; Wang, H.B.; Chen, R.B.; Yang, Q.S.; Chen, J.F.; Sun, D. Environmental fate, toxicity, and mitigation of 6PPD and 6PPD-Quinone: Current understanding and future directions. Environ. Pollut. 2025, 375, 126352. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.; Zhao, Y.; Yue, Q.; Wang, Q.; Li, Z.Z.; Lin, W.J.; Han, L.X.; Wei, L.F. Chronic toxicity mechanisms of 6PPD and 6PPD-Quinone in zebrafish. Environ. Sci. Ecotechnol. 2025, 25, 100567. [Google Scholar] [CrossRef]
- Ihenetu, S.C.; Hao, Y.L.; Ma, J.; Li, J.H.; Li, G. Effects of biochar on tire wear particle-derived 6PPD, 6PPD-Q, and antimony levels and microbial community in soil. J. Hazard. Mater. 2025, 491, 137951. [Google Scholar] [CrossRef]
- Shi, J.Q.; Li, Y.; Wei, Q.; Zhu, X.; Cao, S.H.; Xie, W.Y.; Guo, Y.; Wei, J.; Li, Z.K.; Long, T. Interaction between 6PPD/6PPD-Q and natural Fe-Mn nodules: Performance and mechanism of adsorption and oxidative transformation. Environ. Int. 2025, 198, 109438. [Google Scholar] [CrossRef]
- Tian, Z.; Zhao, H.; Peter, K.T.; Gonzalez, M.; Wetzel, J.; Wu, C.; Hu, X.; Prat, J.; Mudrock, E.; Hettinger, R.; et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 2021, 371, 185–189. [Google Scholar] [CrossRef]
- Geng, N.B.; Hou, S.J.; Sun, S.; Cao, R.; Zhang, H.J.; Lu, X.B.; Zhang, S.S.; Chen, J.P.; Zhang, Y.H. A nationwide investigation of substituted p-phenylenediamines (PPDs) and PPD-quinones in the riverine waters of China. Environ. Sci. Technol. 2025, 59, 3183–3192. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, C.Z.; Ma, L.; Gao, T.T.; Wāng, Y. Environmental profiles, hazard identification, and toxicological hallmarks of emerging tire rubber-related contaminants 6PPD and 6PPD-quinone. Environ. Int. 2024, 187, 108677. [Google Scholar] [CrossRef]
- Challis, J.K.; Popick, H.; Prajapati, S.; Harder, P.; Giesy, J.P.; Mcphedran, K.; Brinkmann, M. Occurrences of tire rubber-derived contaminants in cold-climate urban runoff. Environ. Sci. Technol. Lett. 2021, 8, 961–967. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). Toxic Substances Control Act (TSCA) Chemical Substance Inventory. 2025. Available online: https://www.epa.gov/tsca-inventory (accessed on 15 August 2025).
- State of Washington. Expediting the Safer Products for Washington Process Regarding Motorized Vehicle Tires Containing 6PPD. SB 5931. 2024 Regular Session. Available online: https://legiscan.com/WA/text/SB5931/id/2867212 (accessed on 6 June 2025).
- California Department of Toxic Substances Control. Hazardous Waste Tracking System. 2024. Available online: https://www.ca.gov/departments/227/services/1205/ (accessed on 17 August 2025).
- HG/T 6061-2022; Evaluation Requirement for Tire Industry Green Factories. Ministry of Industry and Information Technology of the People’s Republic of China (MIIT): Beijing, China, 2022. Available online: https://www.codeofchina.com/search/default.html?page=1&keyword=Evaluation%20requirement%20for%20tire%20industry%20green%20factorie (accessed on 6 June 2025).
- Wang, Y.; Li, X.N.; Yang, H.; Wu, Y.; Pu, Q.K.; He, W.; Li, X.X. A review of tire wear particles: Occurrence, adverse effects, and control strategies. Ecotoxicol. Environ. Saf. 2024, 283, 116782. [Google Scholar] [CrossRef]
- Seiwert, B.; Nihemaiti, M.; Troussier, M.; Weyrauch, S.; Reemtsma, T. Abiotic oxidative transformation of 6-PPD and 6-PPD quinone from tires and occurrence of their products in snow from urban roads and in municipal wastewater. Water Res. 2022, 212, 118122. [Google Scholar] [CrossRef] [PubMed]
- Bohara, K.; Timilsina, A.; Adhikari, K.; Kafle, A.; Basyal, S.; Joshi, P.; Yadav, A.K. A mini review on 6PPD quinone: A new threat to aquaculture and fisheries. Environ. Pollut. 2024, 340, 122828. [Google Scholar] [CrossRef] [PubMed]
- Rauert, C.; Charlton, N.; Okoffo, E.D.; Stanton, R.S.; Agua, A.R.; Pirrung, M.C.; Thomas, K. Concentrations of tire additive chemicals and tire road wear particles in an Australian urban tributary. Environ. Sci. Technol. 2022, 56, 2421–2431. [Google Scholar] [CrossRef]
- Johannessen, C.; Helm, P.; Lashuk, B.; Yargeau, V.; Metcalfe, C.D. The tire wear compounds 6PPD-quinone and 1,3-diphenylguanidine in an urban watershed. Arch. Environ. Contam. Toxicol. 2022, 82, 171–179. [Google Scholar] [CrossRef]
- Cao, G.D.; Wang, W.; Zhang, J.; Wu, P.F.; Zhao, X.C.; Yang, Z.; Hu, D.; Cai, Z.W. New evidence of rubber-derived quinones in water, air, and soil. Environ. Sci. Technol. 2022, 56, 4142–4150. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Xu, T.T.; Ye, D.M.; Lin, Z.Z.; Wang, F.; Guo, Y. Widespread N-(1,3-Dimethylbutyl)-N’-phenyl-p-phenylenediamine Quinone in size-fractioned atmospheric particles and dust of different indoor environments. Environ. Sci. Technol. Lett. 2022, 9, 420–425. [Google Scholar] [CrossRef]
- Liang, Y.T.; Zhu, F.; Li, J.; Wan, X.; Ge, Y.L.; Liang, G.Y.; Zhou, Y.L. P-phenylenediamine antioxidants and their quinone derivatives: A review of their environmental occurrence, accessibility, potential toxicity, and human exposure. Sci. Total Environ. 2024, 948, 174449. [Google Scholar] [CrossRef]
- Di, S.S.; Liu, Z.Z.; Zhao, H.Y.; Li, Y.; Qi, P.P.; Wang, Z.W.; Xu, H.; Jin, Y.X.; Wang, X.Q. Chiral perspective evaluations: Enantioselective hydrolysis of 6PPD and 6PPD-quinone in water and enantioselective toxicity to Gobiocypris rarus and Oncorhynchus mykiss. Environ. Int. 2022, 166, 107374. [Google Scholar] [CrossRef]
- Ihenetu, S.C.; Xu, Q.; Khan, Z.H.; Kazmi, S.; Ding, J.; Sun, Q.; Li, G. Environmental fate of tire-rubber related pollutants 6PPD and 6PPD-Q: A review. Environ. Res. 2024, 258, 119492. [Google Scholar] [CrossRef]
- Deng, C.L.; Huang, J.L.; Qi, Y.Q.; Chen, D.; Huang, W. Distribution patterns of rubber tire-related chemicals with particle size in road and indoor parking lot dust. Sci. Total Environ. 2022, 844, 157144. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.Z.; Li, Y.L.; Lin, Y.F.; Ruan, T.; Jiang, G.B. Emerging aromatic secondary amine contaminants and related derivatives in various dust matrices in China. Ecotoxicol. Environ. Saf. 2019, 170, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Yan, L.; Wang, L.X.; Zhang, H.J.; Chen, J.P.; Geng, N.B. A nation-wide study for the occurrence of PPD antioxidants and 6PPD-quinone in road dusts of China. Sci. Total Environ. 2024, 922, 171393. [Google Scholar] [CrossRef] [PubMed]
- Klöckner, P.; Seiwert, B.; Weyrauch, S.; Escher, B.I.; Reemtsma, T.; Wagner, S. Comprehensive characterization of tire and road wear particles in highway tunnel road dust by use of size and density fractionation. Chemosphere 2021, 279, 130530. [Google Scholar] [CrossRef]
- Johannessen, C.; Saini, A.; Zhang, X.M.; Harner, T. Air monitoring of tire-derived chemicals in global megacities using passive samplers. Environ. Pollut. 2022, 314, 120206. [Google Scholar] [CrossRef]
- Liang, B.W.; Li, J.H.; Du, B.B.; Pan, Z.B.; Liu, L.Y.; Zeng, L.X. E-waste recycling emits large quantities of emerging aromatic amines and organophosphites: A poorly recognized source for another two classes of synthetic antioxidants. Environ. Sci. Technol. Lett. 2022, 9, 625–631. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Xu, C.H.; Zhang, W.F.; Qi, Z.H.; Song, Y.Y.; Zhu, L.; Dong, C.; Chen, J.M.; Cai, Z.W. p-Phenylenediamine antioxidants in PM2.5: The underestimated urban air pollutants. Environ. Sci. Technol. 2022, 56, 6914–6921. [Google Scholar] [CrossRef]
- Wang, Q.D.; Huo, H.; He, K.; Yao, Z.L.; Zhang, Q. Characterization of vehicle driving patterns and development of driving cycles in Chinese cities. Transp. Res. Part D Transp. Environ. 2008, 13, 289–297. [Google Scholar] [CrossRef]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)-A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef]
- Lane, R.F.; Smalling, K.L.; Bradley, P.M.; Greer, J.B.; Gordon, S.E.; Hansen, J.D.; Kolpin, D.W.; Spanjer, A.R.; Masoner, J.R. Tire-derived contaminants 6PPD and 6PPD-Q: Analysis, sample handling, and reconnaissance of United States stream exposures. Chemosphere 2024, 363, 142830. [Google Scholar] [CrossRef]
- Johannessen, C.; Helm, P.; Metcalfe, C.D. Detection of selected tire wear compounds in urban receiving waters. Environ. Pollut. 2021, 287, 117659. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Q.; Guo, R.Y.; Ren, F.F.; Jiang, S.T.; Jin, H.B. Occurrence and partitioning of p-phenylenediamine antioxidants and their quinone derivatives in water and sediment. Sci. Total Environ. 2024, 914, 170046. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.N.; Hu, X.M.; Tian, Z.Y.; Gonzalez, M.; Rideout, C.A.; Peter, K.T.; Dodd, M.C.; Kolodziej, E.P. Transformation products of tire rubber antioxidant 6PPD in heterogeneous gas-phase ozonation: Identification and environmental occurrence. Environ. Sci. Technol. 2023, 57, 5621–5632. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.M.; Zhao, H.; Tian, Z.Y.; Peter, K.T.; Dodd, M.C.; Kolodziej, E.P. Transformation product formation upon heterogeneous ozonation of the tire rubber antioxidant 6PPD (N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine). Environ. Sci. Technol. Lett. 2022, 9, 413–419. [Google Scholar] [CrossRef]
- Mitchell, C.J.; Jayakaran, A.D. Mitigating tire wear particles and tire additive chemicals in stormwater with permeable pavements. Sci. Total Environ. 2024, 908, 168236. [Google Scholar] [CrossRef]
- Li, C.G.; Zhang, Y.L.; Yin, S.Q.; Wang, Q.; Li, Y.Y.; Liu, Q.; Liu, L.Q.Q.; Luo, X.X.; Chen, L.Y.; Zheng, H.; et al. First insights into 6PPD-quinone formation from 6PPD photodegradation in water environment. J. Hazard. Mater. 2023, 459, 132127. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Yixi, L.; Kong, Q.Q.; Peng, J.L.; Pan, Y.H.; Qiu, J.L.; Yang, X. Sunlight-induced transformation of tire rubber antioxidant N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) to 6PPD-quinone in water. Environ. Sci. Technol. Lett. 2023, 10, 798–803. [Google Scholar] [CrossRef]
- Cao, H.M.; Bu, Q.W.; Li, Q.S.; Gao, X.H.; Xie, H.J.; Gong, W.W.; Wang, X.X.; Yang, L.; Tang, J.F. Development and applications of diffusive gradients in thin films for monitoring pharmaceuticals in surface waters. Environ. Pollut. 2022, 311, 119979. [Google Scholar] [CrossRef]
- Maurer, L.; Carmona, E.; Machate, O.; Schulze, T.; Krauss, M.; Brack, W. Contamination pattern and risk assessment of polar compounds in snow melt: An integrative proxy of road runoffs. Environ. Sci. Technol. 2023, 57, 4143–4152. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Huang, Z.; Liu, Y.H.; Hu, L.X.; He, L.Y.; Liu, Y.S.; Zhao, J.L.; Ying, G.G. Occurrence and risks of 23 tire additives and their transformation products in an urban water system. Environ. Int. 2023, 171, 107715. [Google Scholar] [CrossRef]
- Hua, X.; Wang, D.Y. Tire-rubber related pollutant 6-PPD quinone: A review of its transformation, environmental distribution, bioavailability, and toxicity. J. Hazard. Mater. 2023, 459, 132265. [Google Scholar] [CrossRef]
- Yu, W.Y.; Tang, S.Y.; Wong, J.W.C.; Luo, Z.J.; Li, Z.R.; Thai, P.K.; Zhu, M.H.; Yin, H.; Niu, J.F. Degradation and detoxification of 6PPD-quinone in water by ultraviolet-activated peroxymonosulfate: Mechanisms, byproducts, and impact on sediment microbial community. Water Res. 2024, 263, 122210. [Google Scholar] [CrossRef]
- Weyrauch, S.; Seiwert, B.; Voll, M.; Wagner, S.; Reemtsma, T. Accelerated aging of tire and road wear particles by elevated temperature, artificial sunlight and mechanical stress—A laboratory study on particle properties, extractables and leachables. Sci. Total Environ. 2023, 904, 166679. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Luo, L.; Wu, B.H.; He, J.X.; Wang, H.B.; Chen, R.R.; Ji, M.X.; Yang, Q.S.; Zeng, G.M.; Wu, W.; et al. Efficient catalytic degradation and detoxification of 6PPD-quinone by the multifunctional enzyme system of phanerochaete chrysosporium. J. Hazard. Mater. 2025, 494, 138634. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.N.; Wang, J.; Zheng, B.; Liu, Z.Z.; Zhao, H.Y.; Di, S.S.; Wang, Z.W.; Wang, X.Q.; Qi, P.P. Insights into the adsorption performance and mechanism of novel 3D bimetallic MOF nanosheets for the high-efficient removal of 6PPD and 6PPD-quinone. Sep. Purif. Technol. 2025, 354, 128904. [Google Scholar] [CrossRef]
- Zeng, L.X.; Li, Y.; Sun, Y.X.; Liu, L.Y.; Shen, M.J.; Du, B.B. Widespread occurrence and transport of p-phenylenediamines and their quinones in sediments across urban rivers, estuaries, coasts, and deep-sea regions. Environ. Sci. Technol. 2023, 57, 2393–2403. [Google Scholar] [CrossRef]
- Gwak, J.; Cha, J.; Lee, S.; Lee, J.; Kim, S.-H.; Lee, D.-H.; Lee, M.; Moon, H.-B.; Shin, K.-H.; Hong, S. Spatial distribution, compositional profiles, and potential ecological risks of rubber additives in sediments of Lake Sihwa, South Korea: Insights into industrial and road-derived toxic substances. ACS EST Water 2025, 5, 3953–3962. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Dai, C.X.; Chen, S.Y.; Hu, H.F.; Kang, R.Y.; Xu, X.J.; Huo, X. Spatiotemporal variation of 6PPD and 6PPDQ in dust and soil from e-waste recycling areas. Sci. Total Environ. 2024, 923, 171495. [Google Scholar] [CrossRef] [PubMed]
- Halama, J.J.; Mckane, R.B.; Barnhart, B.L.; Pettus, P.P.; Brookes, A.F.; Adams, A.K.; Gockel, C.K.; Djang, K.S.; Phan, V.; Chokshi, S.M.; et al. Watershed analysis of urban stormwater contaminant 6PPD-Quinone hotspots and stream concentrations using a process-based ecohydrological model. Front. Environ. Sci. 2024, 12, 1364673. [Google Scholar] [CrossRef] [PubMed]
- Lokesh, S.; Arunthavabalan, S.; Stanton, R.S.; Agua, A.R.; Pirrung, M.C.; Hajj, E.Y.; Hitti, E.; Yang, Y. Investigation of 6PPD-quinone in rubberized asphalt concrete mixtures. ACS Environ. Au 2023, 3, 336–341. [Google Scholar] [CrossRef]
- Cao, G.D.; Wang, W.; Zhang, J.; Wu, P.F.; Qiao, H.; Li, H.K.; Huang, G.F.; Yang, Z.; Cai, Z.W. Occurrence and fate of substituted p-phenylenediamine-derived quinones in Hong Kong wastewater treatment plants. Environ. Sci. Technol. 2023, 57, 15635–15643. [Google Scholar] [CrossRef]
- Shen, D.; Shi, Q.; Zhang, J.; Sy, N.D.; Yates, R.; Wang, W.; Gan, J. Transformations of 6PPD and 6PPD-quinone in soil under redox-driven conditions: Kinetics, product identification, and environmental implications. Environ. Int. 2025, 200, 109532. [Google Scholar] [CrossRef]
- Helm, P.A.; Raby, M.; Kleywegt, S.; Sorichetti, R.J.; Arabian, G.; Smith, D.; Howell, E.T.; Thibeau, J. Assessment of tire-additive transformation product 6PPD-quinone in urban-impacted watersheds. ACS EST Water 2024, 4, 1422–1432. [Google Scholar] [CrossRef]
- Liu, Y.H.; Mei, Y.X.; Liang, X.N.; Ge, Z.Y.; Huang, Z.; Zhang, H.Y.; Zhao, J.L.; Liu, A.; Shi, C.H.; Ying, G.G. Small-intensity rainfall triggers greater contamination of rubber-derived chemicals in road stormwater runoff from various functional areas in megalopolis cities. Environ. Sci. Technol. 2024, 58, 13056–13064. [Google Scholar] [CrossRef] [PubMed]
- Aarzoo; Nidhi; Samim, M. Palladium nanoparticles as emerging pollutants from motor vehicles: An in-depth review on distribution, uptake and toxicological effects in occupational and living environment. Sci. Total Environ. 2022, 823, 153787. [Google Scholar] [CrossRef]
- Bijina, V.; Jandas, P.J.; Joseph, S.; Gopu, J.; Abhitha, K.; John, H. Recent trends in industrial and academic developments of green tyre technology. Polym. Bull. 2023, 80, 8215–8244. [Google Scholar] [CrossRef]
- Ding, J.; Lv, M.; Zhu, D.; Leifheit, E.F.; Chen, Q.L.; Wang, Y.Q.; Chen, L.X.; Rillig, M.C.; Zhu, Y.G. Tire wear particles: An emerging threat to soil health. Crit. Rev. Environ. Sci. Technol. 2022, 53, 239–257. [Google Scholar] [CrossRef]
- Kole, P.J.; Löhr, A.J.; Van Belleghem, F.; Ragas, A.M.J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Beji, A.; Deboudt, K.; Khardi, S.; Muresan, B.; Lumière, L. Determinants of rear-of-wheel and tire-road wear particle emissions by light-duty vehicles using on-road and test track experiments. Atmos. Pollut. Res. 2021, 12, 278–291. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, T.Q.; Chen, Y.H.; Xu, J.M.; Gao, W.; Zhang, H.; Yao, Y.F. Effects of aerosols on the surface ozone generation via a study of the interaction of ozone and its precursors during the summer in Shanghai, China. Sci. Total Environ. 2019, 675, 235–246. [Google Scholar] [CrossRef]
- Fohet, L.; Andanson, J.M.; Charbouillot, T.; Malosse, L.; Leremboure, M.; Delor-Jestin, F.; Verney, V. Time-concentration profiles of tire particle additives and transformation products under natural and artificial aging. Sci. Total Environ. 2023, 859, 160150. [Google Scholar] [CrossRef] [PubMed]
- Beddows, D.C.S.; Harrison, R.M.; Gonet, T.; Maher, B.A.; Odling, N. Measurement of road traffic brake and tyre dust emissions using both particle composition and size distribution data. Environ. Pollut. 2023, 331, 121830. [Google Scholar] [CrossRef]
- Wi, E.; Park, E.; Shin, H.; Hong, J.; Jeong, S.; Kwon, J.-T.; Lee, H.; Lee, J.; Kim, Y. Overall distribution of tire-wear particles, nano-carbon black, and heavy metals in size-fractionated road dust collected from steel industrial complexes. Sci. Total Environ. 2023, 884, 163878. [Google Scholar] [CrossRef]
- Wang, W.; Huang, M.J.; Zheng, J.S.; Cheung, K.C.; Wong, M.H. Exposure assessment and distribution of polychlorinated biphenyls (PCBs) contained in indoor and outdoor dusts and the impacts of particle size and bioaccessibility. Sci. Total Environ. 2013, 463–464, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- El Mais, A.E.R.; D’Anna, B.; Drinovec, L.; Lambe, A.T.; Peng, Z.; Petit, J.-E.; Favez, O.; Aït-Aïssa, S.; Albinet, A. Insights into secondary organic aerosol formation from the day- and nighttime oxidation of polycyclic aromatic hydrocarbons and furans in an oxidation flow reactor. Atmos. Chem. Phys. 2023, 23, 15077–15096. [Google Scholar] [CrossRef]
- Jiang, N.; Hao, X.X.; Wang, Z.C.; Li, M.Z.; Zhang, D.; Cao, R.; Zhang, R.Q.; Zhang, H.J.; Chen, J.P.; Geng, N.B. p-Phenylenediamine antioxidants in PM2.5: New markers for traffic in positive matrix factorization source apportionment. J. Hazard. Mater. 2024, 476, 135122. [Google Scholar] [CrossRef]
- Harrison, R.M.; Yin, J.X. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci. Total Environ. 2000, 249, 85–101. [Google Scholar] [CrossRef]
- Castan, S.; Sherman, A.; Peng, R.T.; Zumstein, M.T.; Wanek, W.; Hüffer, T.; Hofmann, T. Uptake, metabolism, and accumulation of tire wear particle-derived compounds in lettuce. Environ. Sci. Technol. 2023, 57, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.W.; Li, C.S.; Zhang, B.J.; Wu, W.J.; Wang, J.L.; Zhu, J.H.; Liu, D.S.; Gao, R.M.; Ma, Y.Q.; Pang, S.; et al. Exploration of emerging environmental pollutants 6PPD and 6PPDQ in honey and fish samples. Food Chem. 2022, 396, 133640. [Google Scholar] [CrossRef]
- Fang, J.C.; Wang, X.X.; Cao, G.D.; Wang, F.Y.; Ru, Y.; Wang, B.L.; Zhang, Y.H.; Zhang, D.D.; Yan, J.; Xu, J.; et al. 6PPD-quinone exposure induces neuronal mitochondrial dysfunction to exacerbate Lewy neurites formation induced by α-synuclein preformed fibrils seeding. J. Hazard. Mater. 2024, 465, 133312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, G.D.; Wang, W.; Qiao, H.; Chen, Y.; Wang, X.X.; Wang, F.Y.; Liu, W.L.; Cai, Z.W. Stable isotope-assisted mass spectrometry reveals in vivo distribution, metabolism, and excretion of tire rubber-derived 6PPD-quinone in mice. Sci. Total Environ. 2024, 912, 169291. [Google Scholar] [CrossRef] [PubMed]
- He, W.M.; Gu, A.H.; Wang, D.Y. Four-week repeated exposure to tire-derived 6-PPD quinone causes multiple organ injury in male BALB/c mice. Sci. Total Environ. 2023, 894, 164842. [Google Scholar] [CrossRef]
- Zhao, H.N.; Thomas, S.P.; Zylka, M.J.; Dorrestein, P.C.; Hu, W.X. Urine excretion, organ distribution, and placental transfer of 6PPD and 6PPD-quinone in mice and potential developmental toxicity through nuclear receptor pathways. Environ. Sci. Technol. 2023, 57, 13429–13438. [Google Scholar] [CrossRef]
- Greer, J.B.; Dalsky, E.M.; Lane, R.F.; Hansen, J.D. Establishing an in vitro model to assess the toxicity of 6PPD-quinone and other tire wear transformation products. Environ. Sci. Technol. Lett. 2023, 10, 533–537. [Google Scholar] [CrossRef]
- Lo, B.P.; Marlatt, V.L.; Liao, X.J.; Reger, S.; Gallilee, C.; Ross, A.R.S.; Brown, T.M. Acute toxicity of 6PPD-quinone to early life stage juvenile chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon. Environ. Toxicol. Chem. 2023, 42, 815–822. [Google Scholar] [CrossRef]
- Brinkmann, M.; Montgomery, D.; Selinger, S.; Miller, J.G.P.; Stock, E.; Alcaraz, A.J.; Challis, J.K.; Weber, L.; Janz, D.; Hecker, M.; et al. Acute toxicity of the tire rubber-derived chemical 6PPD-quinone to four fishes of commercial, cultural, and ecological importance. Environ. Sci. Technol. Lett. 2022, 9, 333–338. [Google Scholar] [CrossRef]
- Foldvik, A.; Kryuchkov, F.; Sandodden, R.; Uhlig, S. Acute toxicity testing of the tire rubber-derived chemical 6PPD-quinone on Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Environ. Toxicol. Chem. 2022, 41, 3041–3045. [Google Scholar] [CrossRef]
- Greer, J.B.; Dalsky, E.M.; Lane, R.F.; Hansen, J.D. Tire-derived transformation product 6PPD-quinone induces mortality and transcriptionally disrupts vascular permeability pathways in developing coho salmon. Environ. Sci. Technol. 2023, 57, 10940–10950. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.X.; Liu, W.T.; Feng, J.F.; Gao, N.; Liu, J.Z.; Shi, R.Y.; Zeb, A.; Wang, J.L.; Wang, Q.; Yin, C.; et al. Polystyrene microplastics alter the toxicity of 6PPD to zebrafish (Danio rerio) larvae. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2026, 299, 110356. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.Y.; Gonzalez, M.; Rideout, C.A.; Zhao, H.N.; Hu, X.M.; Wetzel, J.; Mudrock, E.; James, C.A.; Mcintyre, J.K.; Kolodziej, E.P. 6PPD-Quinone: Revised toxicity assessment and quantification with a commercial standard. Environ. Sci. Technol. Lett. 2022, 9, 140–146. [Google Scholar] [CrossRef]
- Varshney, S.; Gora, A.H.; Siriyappagouder, P.; Kiron, V.; Olsvik, P.A. Toxicological effects of 6PPD and 6PPD quinone in zebrafish larvae. J. Hazard. Mater. 2022, 424, 127623. [Google Scholar] [CrossRef]
- Varshney, S.; O’connor, O.L.; Gora, A.H.; Rehman, S.; Kiron, V.; Siriyappagouder, P.; Dahle, D.; Kögel, T.; Ornsrud, R.; Olsvik, P.A. Mixture toxicity of 6PPD-quinone and polystyrene nanoplastics in zebrafish. Environ. Pollut. 2024, 348, 123835. [Google Scholar] [CrossRef]
- Roberts, C.; Lin, J.; Kohlman, E.; Jain, N.; Amekor, M.; Alcaraz, A.J.; Hogan, N.; Hecker, M.; Brinkmann, M. Acute and subchronic toxicity of 6PPD-quinone to early life stage lake trout (Salvelinus namaycush). Environ. Sci. Technol. 2025, 59, 791–797. [Google Scholar] [CrossRef]
- Roberts, C.; Kohlman, E.; Jain, N.; Amekor, M.; Alcaraz, A.J.; Hogan, N.; Brinkmann, M.; Hecker, M. Subchronic and acute toxicity of 6PPD-quinone to early life stage Rainbow Trout (Oncorhynchus mykiss). Environ. Sci. Technol. 2025, 59, 6771–6777. [Google Scholar] [CrossRef]
- Shi, C.; Wu, F.; Zhao, Z.; Ye, T.; Luo, X.; Wu, Y.; Liu, Z.; Zhang, H. Effects of environmental concentrations of 6PPD and its quinone metabolite on the growth and reproduction of freshwater cladoceran. Sci. Total Environ. 2024, 948, 175018. [Google Scholar] [CrossRef]
- Zhuang, Z.; Wang, Y.; Zhang, Z.; Zhang, W.; Ding, J.; Weng, Z.; Chen, X.; Hu, F. Trade-off strategy under stress: Growth, reproduction, and antioxidant defense in Daphnia magna exposed to 6PPD-Q. J. Hazard. Mater. 2025, 496, 139337. [Google Scholar] [CrossRef]
- Calle, L.; Du-Carrée, J.L.; Martínez, I.; Sarih, S.; Montero, D.; Gómez, M.; Almeda, R. Toxicity of tire rubber-derived pollutants 6PPD-quinone and 4-tert-octylphenol on marine plankton. J. Hazard. Mater. 2025, 484, 136694. [Google Scholar] [CrossRef]
- Hiki, K.; Asahina, K.; Kato, K.; Yamagishi, T.; Omagari, R.; Iwasaki, Y.; Watanabe, H.; Yamamoto, H. Acute toxicity of a tire rubber-derived chemical, 6PPD quinone, to freshwater fish and crustacean species. Environ. Sci. Technol. Lett. 2021, 8, 779–784. [Google Scholar] [CrossRef]
- Yan, X.P.; Kiki, C.; Xu, Z.J.; Manzi, H.P.; Rashid, A.; Chen, T.Y.; Sun, Q. Comparative growth inhibition of 6PPD and 6PPD-Q on microalgae Selenastrum capricornutum, with insights into 6PPD-induced phototoxicity and oxidative stress. Sci. Total Environ. 2024, 957, 177627. [Google Scholar] [CrossRef]
- Liu, J.; Yu, M.; Shi, R.; Ge, Y.; Li, J.; Zeb, A.; Cheng, Z.; Liu, W. Comparative toxic effect of tire wear particle-derived compounds 6PPD and 6PPD-quinone to Chlorella vulgaris. Sci. Total Environ. 2024, 951, 175592. [Google Scholar] [CrossRef]
- Zhou, H.H.; Wu, Z.; Wang, X.; Jiang, L.J.; Sun, H.; Li, H.; Yan, Z.Y.; Wang, Y.; Yao, X.H.; Zhang, C.F.; et al. 6PPD-quinone exposure induces oxidative damage and physiological disruption in Eisenia fetida: An integrated analysis of phenotypes, multi-omics, and intestinal microbiota. J. Hazard. Mater. 2025, 493, 138334. [Google Scholar] [CrossRef]
- Wang, Y.X.; Hua, X.; Wang, D.Y. Exposure to 6-PPD quinone enhances lipid accumulation through activating metabolic sensors of SBP-1 and MDT-15 in Caenorhabditis elegans. Environ. Pollut. 2023, 333, 121937. [Google Scholar] [CrossRef]
- Liu, H.L.; Tan, X.C.; Wu, Y.; Li, X.N.; Hu, Z.Y.; Lei, S.H.; Fan, W.D.; Wang, Z.Y. Long-term exposure to 6-PPD quinone at environmentally relevant concentrations causes neurotoxicity by affecting dopaminergic, serotonergic, glutamatergic, and GABAergic neuronal systems in Caenorhabditis elegans. Sci. Total Environ. 2024, 922, 171291. [Google Scholar] [CrossRef]
- Hua, X.; Feng, X.; Liang, G.Y.; Chao, J.; Wang, D.Y. Exposure to 6-PPD Quinone at environmentally relevant concentrations causes abnormal locomotion behaviors and neurodegeneration in Caenorhabditis elegans. Environ. Sci. Technol. 2023, 57, 4940–4950. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Wang, D.Y. Disruption of dopamine metabolism by exposure to 6-PPD quinone in Caenorhabditis elegans. Environ. Pollut. 2023, 337, 122649. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Feng, X.; Liang, G.Y.; Chao, J.; Wang, D.Y. Long-term exposure to 6-PPD quinone reduces reproductive capacity by enhancing germline apoptosis associated with activation of both DNA damage and cell corpse engulfment in Caenorhabditis elegans. J. Hazard. Mater. 2023, 454, 131495. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Bian, Q.; Wang, D.Y. Exposure to 6-PPD quinone causes ferroptosis activation associated with induction of reproductive toxicity in Caenorhabditis elegans. J. Hazard. Mater. 2024, 471, 134356. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wu, J.W.; Wang, D.Y. 6-PPD quinone causes lipid accumulation across multiple generations differentially affected by metabolic sensors and components of COMPASS complex in Caenorhabditis elegans. Environ. Pollut. 2025, 366, 125539. [Google Scholar] [CrossRef]
- Xu, Q.; Wu, W.; Xiao, Z.F.; Sun, X.; Ma, J.; Ding, J.; Zhu, Z.; Li, G. Responses of soil and collembolan (Folsomia candida) gut microbiomes to 6PPD-Q pollution. Sci. Total Environ. 2023, 900, 165810. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Guo, R.Y.; Jiang, S.T.; Wu, P.F.; Jin, H.B. Occurrence of p-phenylenediamine antioxidants (PPDs) and PPDs-derived quinones in indoor dust. Sci. Total Environ. 2024, 912, 169325. [Google Scholar] [CrossRef]
- Ginsberg, G.; Hattis, D.; Sonawane, B. Incorporating pharmacokinetic differences between children and adults in assessing children’s risks to environmental toxicants. Toxicol. Appl. Pharmacol. 2004, 198, 164–183. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, G.; Slikker, W., Jr.; Bruckner, J.; Sonawane, B. Incorporating children’s toxicokinetics into a risk framework. Environ. Health Perspect. 2004, 112, 272–283. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Xu, X.J.; Qian, Z.Y.; Zhong, Q.; Wang, Q.H.; Hylkema, M.N.; Snieder, H.; Huo, X. Association between 6PPD-quinone exposure and BMI, influenza, and diarrhea in children. Environ. Res. 2024, 247, 118201. [Google Scholar] [CrossRef] [PubMed]
- Song, S.M.; Gao, Y.X.; Feng, S.; Cheng, Z.P.; Huang, H.B.; Xue, J.C.; Zhang, T.; Sun, H.W. Widespread occurrence of two typical N, N′-substituted p-phenylenediamines and their quinones in humans: Association with oxidative stress and liver damage. J. Hazard. Mater. 2024, 468, 133835. [Google Scholar] [CrossRef]
- Chen, H.F.; Jin, H.B.; Ren, F.F.; Guo, R.Y.; Zhu, J.Q.; Huang, K.Y. Enantioselectivity in human urinary excretion of N-(1,3-dimethylbutyl)-N’-phenyl-1,4-benzenediamine (6PPD) and 6PPD-quinone. Environ. Pollut. 2025, 378, 126489. [Google Scholar] [CrossRef] [PubMed]
- Du, B.B.; Liang, B.W.; Li, Y.; Shen, M.J.; Liu, L.Y.; Zeng, L.X. First report on the occurrence of N-(1,3-Dimethylbutyl)-N’-phenyl-p-phenylenediamine (6PPD) and 6PPD-quinone as pervasive pollutants in human urine from South China. Environ. Sci. Technol. Lett. 2022, 9, 1056–1062. [Google Scholar] [CrossRef]
- Liu, C.Y.; Zhao, X.C.; Guo, L.Q.; Yu, Q.L.; Zhang, W.F.; Peng, Z.J.; Gao, Y.; Gong, X.Y.; Li, P.H.; Jiao, H.; et al. Emerging N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and 6PPD quinone in paired human plasma and urine from Tianjin, China: Preliminary assessment with demographic factors. J. Hazard. Mater. 2024, 476, 134818. [Google Scholar] [CrossRef]
- Fang, L.Y.; Fang, C.L.; Di, S.S.; Yu, Y.D.; Wang, C.H.; Wang, X.Q.; Jin, Y.X. Oral exposure to tire rubber-derived contaminant 6PPD and 6PPD-quinone induce hepatotoxicity in mice. Sci. Total Environ. 2023, 869, 161836. [Google Scholar] [CrossRef]
- Zhang, S.H.; Cheng, Z.P.; Cao, Y.H.; He, F.X.; Zhao, L.C.; Baqar, M.; Zhu, H.K.; Zhang, T.; Sun, H.W. Aromatic amine antioxidants (AAs) and p-phenylenediamines-quinones (PPD-Qs) in e-waste recycling industry park: Occupational exposure and liver X receptors (LXRs) disruption potential. Environ. Int. 2024, 186, 108609. [Google Scholar] [CrossRef]
- Guo, Z.J.; Cheng, Z.P.; Zhang, S.H.; Zhu, H.K.; Zhao, L.C.; Baqar, M.; Wang, L.; Sun, H.W. Unexpected exposure risks to emerging aromatic amine antioxidants and p-phenylenediamine quinones to residents: Evidence from external and internal exposure as well as hepatotoxicity evaluation. Environ. Health. 2024, 2, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Y.; Koenig, J.L. FTIR imaging of oxidation of polyisoprene-2. the role of N-phenyl-N′-dimethyl-butyl-p-phenylenediamine antioxidant. Polym. Degrad. Stab. 2003, 81, 377–385. [Google Scholar] [CrossRef]
- Rossomme, E.; Hart-Cooper, W.M.; Orts, W.J.; Mcmahan, C.M.; Head-Gordon, M. Computational studies of rubber ozonation explain the effectiveness of 6PPD as an antidegradant and the mechanism of its quinone formation. Environ. Sci. Technol. 2023, 57, 5216–5230. [Google Scholar] [CrossRef]
- Guo, K.; Yan, L.J.; He, Y.F.; Li, H.Y.; Lam, S.S.; Peng, W.X.; Sonne, C. Phytoremediation as a potential technique for vehicle hazardous pollutants around highways. Environ. Pollut. 2023, 322, 121130. [Google Scholar] [CrossRef]
- Prigioniero, A.; Zuzolo, D.; Niinemets, U.; Postiglione, A.; Mercurio, M.; Izzo, F.; Trifuoggi, M.; Toscanesi, M.; Scarano, P.; Tartaglia, M.; et al. Particulate matter and polycyclic aromatic hydrocarbon uptake in relation to leaf surface functional traits in Mediterranean evergreens: Potentials for air phytoremediation. J. Hazard. Mater. 2022, 435, 129029. [Google Scholar] [CrossRef] [PubMed]
- Prigionieroa, A.; Postiglionea, A.; Zuzoloa, D.; Niinemetsb, Ü.; Tartagliaa, M.; Scaranoa, P.; Mercurioa, M.; Germinarioa, C.; Izzoc, F.; Trifuoggid, M.; et al. Leaf surface functional traits influence particulate matter and polycyclic aromatic hydrocarbons air pollution mitigation: Insights from Mediterranean urban forests. J. Clean. Prod. 2023, 413, 138158. [Google Scholar] [CrossRef]
- Li, X.N.; Wang, X.W.; Ren, C.T.; Palansooriya, K.N.; Wang, Z.Y.; Chang, S.X. Microplastic pollution: Phytotoxicity, environmental risks, and phytoremediation strategies. Crit. Rev. Environ. Sci. Technol. 2024, 54, 486–507. [Google Scholar] [CrossRef]
- Cho, M.C.; Jo, Y.G.; Son, J.A.; Kim, I.; Oh, C.; Yook, S.J. Deposition characteristics of soot and tire-wear particles on urban tree leaves. J. Aerosol Sci. 2021, 155, 105768. [Google Scholar] [CrossRef]
- Baensch-Baltruschat, B.; Kocher, B.; Kochleus, C.; Stock, F.; Reifferscheid, G. Tyre and road wear particles—A calculation of generation, transport and release to water and soil with special regard to German roads. Sci. Total Environ. 2021, 752, 141939. [Google Scholar] [CrossRef]
- Rødland, E.S.; Lind, O.C.; Reid, M.J.; Heier, L.S.; Okoffo, E.D.; Rauert, C.; Thomas, K.V.; Meland, S. Occurrence of tire and road wear particles in urban and peri-urban snowbanks, and their potential environmental implications. Sci. Total Environ. 2022, 824, 153785. [Google Scholar] [CrossRef] [PubMed]
- Järlskog, I.; Strömvall, A.M.; Magnusson, K.; Gustafsson, M.; Polukarova, M.; Galfi, H.; Aronsson, M.; Andersson-Sköld, Y. Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater. Sci. Total Environ. 2020, 729, 138950. [Google Scholar] [CrossRef] [PubMed]
- Järlskog, I.; Strömvall, A.M.; Magnusson, K.; Galfi, H.; Björklund, K.; Polukarova, M.; Garção, R.; Markiewicz, A.; Aronsson, M.; Gustafsson, M.; et al. Traffic-related microplastic particles, metals, and organic pollutants in an urban area under reconstruction. Sci. Total Environ. 2021, 774, 145503. [Google Scholar] [CrossRef]
- Mengistu, D.; Coutris, C.; Paus, K.A.H.; Heistad, A. Concentrations and retention efficiency of tire wear particles from road runoff in bioretention cells. Water 2022, 14, 3233. [Google Scholar] [CrossRef]
- Rodgers, T.F.M.; Wang, Y.R.; Humes, C.; Jeronimo, M.; Johannessen, C.; Spraakman, S.; Giang, A.; Scholes, R.C. Bioretention cells provide a 10-fold reduction in 6PPD-quinone mass loadings to receiving waters: Evidence from a field experiment and modeling. Environ. Sci. Technol. Lett. 2023, 10, 582–588. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, T.; Liang, Y.; Liu, Y.; Liu, J.; Wang, X. Environmental Occurrence, Influencing Factors, and Toxic Effects of 6PPD-Q. Toxics 2025, 13, 906. https://doi.org/10.3390/toxics13110906
Yin T, Liang Y, Liu Y, Liu J, Wang X. Environmental Occurrence, Influencing Factors, and Toxic Effects of 6PPD-Q. Toxics. 2025; 13(11):906. https://doi.org/10.3390/toxics13110906
Chicago/Turabian StyleYin, Tengwen, Ying Liang, Yanju Liu, Jia Liu, and Xuedong Wang. 2025. "Environmental Occurrence, Influencing Factors, and Toxic Effects of 6PPD-Q" Toxics 13, no. 11: 906. https://doi.org/10.3390/toxics13110906
APA StyleYin, T., Liang, Y., Liu, Y., Liu, J., & Wang, X. (2025). Environmental Occurrence, Influencing Factors, and Toxic Effects of 6PPD-Q. Toxics, 13(11), 906. https://doi.org/10.3390/toxics13110906

