Occurrence, Dominance, and Combined Use of Antibiotics in Aquaculture Ponds
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Design
2.2. Analytical Method (LC–MS/MS)
2.2.1. Chromatographic Conditions
2.2.2. Mass Spectrometric Conditions
2.3. Method Validation and Quality Control
2.4. Data Analysis
3. Results and Discussion
3.1. Method Development and Validation Results (Quality Control)
3.2. Occurrence and Concentrations of Antibiotics in Pond Water (August vs. October)
3.3. Dominant Antibiotics and Seasonal Variation
3.4. Co-Occurrence and Combined Use of Antibiotics (Correlation Analysis)
3.5. Differences in Antibiotic Profiles Between August and October (NMDS Analysis)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sapkota, A.; Sapkota, A.R.; Kucharski, M.; Burke, J.; McKenzie, S.; Walker, P.; Lawrence, R. Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environ. Int. 2008, 34, 1215–1226. [Google Scholar] [CrossRef]
- Clarke, J.L.; Waheed, M.T.; Lössl, A.G.; Martinussen, I.; Daniell, H. How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture? Plant Mol. Biol. 2013, 83, 33–40. [Google Scholar] [CrossRef]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef]
- Zhao, W.; Shen, H. A statistical analysis of China’s fisheries in the 12th five-year period. Aquac. Fish. 2016, 1, 41–49. [Google Scholar] [CrossRef]
- Han, D.; Shan, X.; Zhang, W.; Chen, Y.; Wang, Q.; Li, Z.; Zhang, G.; Xu, P.; Li, J.; Xie, S.; et al. A revisit to fishmeal usage and associated consequences in Chinese aquaculture. Rev. Aquac. 2018, 10, 493–507. [Google Scholar] [CrossRef]
- Bosma, R.H.; Verdegem, M.C.J. Sustainable aquaculture in ponds: Principles, practices and limits. Livest. Sci. 2011, 139, 58–68. [Google Scholar] [CrossRef]
- Gothwal, R.; Shashidhar, T. Antibiotic Pollution in the Environment: A Review. Clean–Soil Air Water 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef]
- Shah, S.Q.A.; Cabello, F.C.; L’Abée-Lund, T.M.; Tomova, A.; Godfrey, H.P.; Buschmann, A.H.; Sørum, H. Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites. Environ. Microbiol. 2014, 16, 1310–1320. [Google Scholar] [CrossRef]
- Chee-Sanford, J.C.; Aminov, R.I.; Krapac, I.J.; Garrigues-Jeanjean, N.; Mackie, R.I. Occurrence and Diversity of Tetracycline Resistance Genes in Lagoons and Groundwater Underlying Two Swine Production Facilities. Appl. Environ. Microbiol. 2001, 67, 1494–1502. [Google Scholar] [CrossRef]
- Adenaya, A.; Berger, M.; Brinkhoff, T.; Ribas-Ribas, M.; Wurl, O. Usage of antibiotics in aquaculture and the impact on coastal waters. Mar. Pollut. Bull. 2023, 188, 114645. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef]
- Hernando, M.D.; Mezcua, M.; Fernández-Alba, A.R.; Barceló, D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 2006, 69, 334–342. [Google Scholar] [CrossRef]
- Schär, F. Blockchain Forks: A Formal Classification Framework and Persistency Analysis. Singap. Econ. Rev. 2020, 1–11. [Google Scholar] [CrossRef]
- SCostanzo, D.; Murby, J.; Bates, J. Ecosystem response to antibiotics entering the aquatic environment. Mar. Pollut. Bull. 2005, 51, 218–223. [Google Scholar] [CrossRef]
- Kim, H.; Hong, Y.; Park, J.E.; Sharma, V.K.; Cho, S.I. Sulfonamides and tetracyclines in livestock wastewater. Chemosphere 2013, 91, 888–894. [Google Scholar] [CrossRef]
- Lin, X.; Lin, L.; Yao, Z.; Li, W.; Sun, L.; Zhang, D.; Luo, J.; Lin, W. An integrated quantitative and targeted proteomics reveals fitness mechanisms of Aeromonas hydrophila under oxytetracycline stress. J. Proteome Res. 2015, 14, 1515–1525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, X.; Cheng, D.; Liu, G.; Liang, B.; Cui, B.; Bai, J. Temporal–spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China. Sci. Total Environ. 2016, 569, 1350–1358. [Google Scholar] [CrossRef]
- Ding, H.; Wu, Y.; Zhang, W.; Zhong, J.; Lou, Q.; Yang, P.; Fang, Y. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China. Chemosphere 2017, 184, 137–147. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, Y.; Xu, H.; Zhang, H.; Yu, B.; Hao, L.; Liu, Z. Selective oxidation of glycerol to formic acid catalyzed by Ru(OH)4/r-GO in the presence of FeCl3. Appl. Catal. B 2014, 154–155, 267–273. [Google Scholar] [CrossRef]
- Jiang, S.; Shi, B.; Zhu, D.; Cheng, X.; Zhou, Z.; Xie, J.; Chen, Z.; Sun, L.; Zhang, Y.; Xie, Y.; et al. Cross-contamination and ecological risk assessment of antibiotics between rivers and surrounding open aquaculture ponds. Environ. Pollut. 2024, 344, 123404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wei, H.; Wang, C.; Cheng, Y.; Li, Y.; Wang, Z. Distribution and ecological risk assessment of antibiotics in different freshwater aquaculture ponds in a typical agricultural plain, China. Chemosphere 2024, 361, 142498. [Google Scholar] [CrossRef]
- Yuan, J.; Ni, M.; Liu, M.; Zheng, Y.; Gu, Z. Occurrence of antibiotics and antibiotic resistance genes in a typical estuary aquaculture region of Hangzhou Bay, China. Mar. Pollut. Bull. 2019, 138, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, X.; Yang, Y.; Wang, Z. Antibiotic and antibiotic resistance genes in freshwater aquaculture ponds in China: A meta-analysis and assessment. J. Clean. Prod. 2021, 329, 129719. [Google Scholar] [CrossRef]
- Dang, L.T.; Nguyen, L.H.T.; Pham, V.T.; Bui, H.T.T. Usage and knowledge of antibiotics of fish farmers in small-scale freshwater aquaculture in the Red River Delta, Vietnam. Aquac. Res. 2021, 52, 3580–3590. [Google Scholar] [CrossRef]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Rev. Aquac. 2020, 12, 640–663. [Google Scholar] [CrossRef]
- Yan, C.; Yang, Y.; Zhou, J.; Liu, M.; Nie, M.; Shi, H.; Gu, L. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment. Environ. Pollut. 2013, 175, 22–29. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 1998, 166, 181–212. [Google Scholar] [CrossRef]
- Watson, R.; Zeller, D.; Pauly, D. Primary productivity demands of global fishing fleets. Fish Fish. 2014, 15, 231–241. [Google Scholar] [CrossRef]
- Andrieu, M.; Rico, A.; Phu, T.M.; Huong, D.T.T.; Phuong, N.T.; Van den Brink, P.J. Ecological risk assessment of the antibiotic enrofloxacin applied to Pangasius catfish farms in the Mekong Delta, Vietnam. Chemosphere 2015, 119, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Y.; Nie, X.P.; Liu, W.Q.; Snoeijs, P.; Guan, C.; Tsui, M.T.K. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum. Ecotoxicol. Environ. Saf. 2011, 74, 1027–1035. [Google Scholar] [CrossRef]
- Roose-Amsaleg, C.; Laverman, A.M. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environ. Sci. Pollut. Res. 2016, 23, 4000–4012. [Google Scholar] [CrossRef]
- Antunes, P.; Campos, J.; Mourão, J.; Pereira, J.; Novais, C.; Peixe, L. Inflow water is a major source of trout farming contamination with Salmonella and multidrug resistant bacteria. Sci. Total Environ. 2018, 642, 1163–1171. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Qu, X.D.; Ma, X.P.; Xu, C.B.; Ding, S. Occurrence of antibiotics in aquatic plants and organisms from Qing River, Beijing. Res. Environ. Sci. 2014, 27, 139–146. [Google Scholar] [CrossRef]
- Robinson, A.A.; Belden, J.B.; Lydy, M.J. Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ. Toxicol. Chem. 2005, 24, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Sun, Y.; Zhang, T.; Ding, X.; Li, Y.; Wang, M.; Zeng, Z. Antibiotics, Antibiotic Resistance Genes, and Bacterial Community Composition in Fresh Water Aquaculture Environment in China. Microb. Ecol. 2015, 70, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Aydin, M.E.; Ulvi, A.; Kilic, H. Antibiotics in hospital effluents: Occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment. Environ. Sci. Pollut. Res. 2019, 26, 544–558. [Google Scholar] [CrossRef]
- Capone, D.G.; Weston, D.P.; Miller, V.; Shoemaker, C. Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 1996, 145, 55–75. [Google Scholar] [CrossRef]
- Zhang, R.; Kang, Y.; Zhang, R.; Han, M.; Zeng, W.; Wang, Y.; Yu, K.; Yang, Y. Occurrence, source, and the fate of antibiotics in mariculture ponds near the Maowei Sea, South China: Storm caused the increase of antibiotics usage. Sci. Total Environ. 2021, 752, 141882. [Google Scholar] [CrossRef]
- Su, H.; Xu, W.; Hu, X.; Xu, Y.; Wen, G.; Cao, Y. Spatiotemporal variations and source tracking of antibiotics in an ecological aquaculture farm in Southern China. Sci. Total Environ. 2021, 763, 143022. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Qi, M.; He, P.; Chen, X.; Li, Z.; Cheng, H. Occurrence and risk assessment of quinolones and sulfonamides in freshwater aquaculture ponds in Northeast Zhejiang, China. Sci. Total Environ. 2024, 953, 176066. [Google Scholar] [CrossRef]
- Cinner, J.E.; Huchery, C.; MacNeil, M.A.; Graham, N.A.J.; McClanahan, T.R.; Maina, J.; Maire, E.; Kittinger, J.N.; Hicks, C.C.; Mora, C.; et al. Bright spots among the world’s coral reefs. Nature 2016, 535, 416–419. [Google Scholar] [CrossRef] [PubMed]




| LC–MS/MS Conditions | Chromatographic Conditions | ||
|---|---|---|---|
| Parameter | Setting | Parameter | Setting |
| Instrument | Waters Xevo TQD | Column | ACQUITY UPLC BEH C18 (2.1 mm × 150 mm, 1.7 μm) |
| Ionization Mode | ESI (positive mode) | Injection Volume | 10 μL |
| Capillary (kV) | 1.5 | Flow Rate | 0.3 mL·min−1 |
| Cone (V) | 48 | Column Temperature | 40 °C |
| Desolvation Temp (°C) | 550 | Mobile Phase A | Water + 0.1% formic acid (FA) |
| Desolvation (L/h) | 800 | Mobile Phase B | Methanol + 0.1% formic acid (FA) |
| Cone (L/h) | 50 | Gradient Program | 0.0 min: 98% A → 0.5 min: 98% A → 8.0 min: 68% A → 10.0 min: 30% A → 12.0 min: 2% A → 14.0 min: 2% A → 14.5 min: 98% A → 17.0 min: 98% A |
| Source Temp (°C) | 550 | ||
| Collision Energy (eV) | 3 | ||
| LM Resolution 1 | 9.7 | ||
| HM Resolution 1 | 15 | Sample and Analyte Information | |
| Ion Energy 1 | 0.1 | Parameter | Setting |
| LM Resolution 2 | 8.7 | Analytes | Sulfonamides, Quinolones |
| HM Resolution 2 | 15 | Sample Volume | 400 mL water sample |
| Ion Energy 2 | 0.4 | Spiked Concentration | 0.003 μg/L–0.03 μg/L |
| Precursor ion scan | m/z 100–1000 | Recovery Rate | 68.5–81.0% |
| Product ion scan | m/z 50–800 | LOQ | 0.001–0.005 μg/L |
| Time | August | October | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Antibiotic | Detection Rate | Min (μg/L) | Max (μg/L) | Median (μg/L) | Mean (μg/L) | Detection Rate | Min (μg/L) | Max (μg/L) | Median (μg/L) | Mean (μg/L) |
| Ciprofloxacin | 17.5% | 0.011 | 0.456 | 0.027 | 0.091 | 7.5% | 0.005 | 0.016 | 0.011 | 0.011 |
| Pefloxacin | 27.5% | 0.018 | 0.106 | 0.042 | 0.044 | / | ||||
| Lomefloxacin | 0.0% | 0.0% | ||||||||
| Enrofloxacin | 52.5% | 0.203 | 2.360 | 0.319 | 0.645 | 57.5% | 0.008 | 0.257 | 0.013 | 0.034 |
| Ofloxacin | / | / | ||||||||
| Quinolones | 62.5% | 0.042 | 2.404 | 0.341 | 0.586 | 57.5% | 0.008 | 0.273 | 0.013 | 0.035 |
| Sulfathiazole | 10.0% | 0.012 | 0.103 | 0.024 | 0.041 | 12.5% | 0.019 | 0.142 | 0.057 | 0.068 |
| Sulfadiazine | 5.0% | 0.010 | 0.021 | 0.016 | 0.016 | 17.5% | 0.013 | 4.575 | 0.034 | 0.689 |
| Sulfamerazine | 2.5% | 0.011 | 0.011 | 0.011 | 0.011 | 10.0% | 0.012 | 0.041 | 0.021 | 0.023 |
| Sulfamethazine | 0.0% | 10.0% | 0.006 | 0.014 | 0.011 | 0.011 | ||||
| Sulfamethoxazole | 22.5% | 0.011 | 1.526 | 0.016 | 0.260 | 45.0% | 0.009 | 1.475 | 0.025 | 0.213 |
| Sulfadoxine | / | / | ||||||||
| Sulfafurazole | 2.5% | 0.016 | 0.016 | 0.016 | 0.016 | / | ||||
| Sulfaquinoxaline | 2.5% | 0.072 | 0.072 | 0.072 | 0.072 | / | ||||
| Sulfamonomethoxine | 12.5% | 0.010 | 0.044 | 0.035 | 0.030 | / | ||||
| Sulfadimethoxypyrimidine | / | / | ||||||||
| Sulfachloropyridazine | 2.5% | 0.012 | 0.012 | 0.012 | 0.012 | / | ||||
| Sulfamethizole | 2.5% | 0.011 | 0.011 | 0.011 | 0.011 | 15.0% | 0.010 | 0.061 | 0.027 | 0.028 |
| Sulfonamides | 35.0% | 0.010 | 1.629 | 0.017 | 0.249 | 57.5% | 0.006 | 5.104 | 0.034 | 0.607 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simbo, E.B.S.; Ma, Z.; Fang, L.; Morgan, S.; Sumana, S.L.; Maguru, M.C.; Chakanga, M.; Gondwe, H.; Bundu, A.T.; Qiu, L.; et al. Occurrence, Dominance, and Combined Use of Antibiotics in Aquaculture Ponds. Toxics 2025, 13, 892. https://doi.org/10.3390/toxics13100892
Simbo EBS, Ma Z, Fang L, Morgan S, Sumana SL, Maguru MC, Chakanga M, Gondwe H, Bundu AT, Qiu L, et al. Occurrence, Dominance, and Combined Use of Antibiotics in Aquaculture Ponds. Toxics. 2025; 13(10):892. https://doi.org/10.3390/toxics13100892
Chicago/Turabian StyleSimbo, Emmanuel Bob Samuel, Zhiyuan Ma, Longxiang Fang, Sampa Morgan, Sahr Lamin Sumana, Meshack Chubwa Maguru, Mbonyiwe Chakanga, Haggai Gondwe, Alpha Thaimu Bundu, Liping Qiu, and et al. 2025. "Occurrence, Dominance, and Combined Use of Antibiotics in Aquaculture Ponds" Toxics 13, no. 10: 892. https://doi.org/10.3390/toxics13100892
APA StyleSimbo, E. B. S., Ma, Z., Fang, L., Morgan, S., Sumana, S. L., Maguru, M. C., Chakanga, M., Gondwe, H., Bundu, A. T., Qiu, L., Song, C., & Meng, S. (2025). Occurrence, Dominance, and Combined Use of Antibiotics in Aquaculture Ponds. Toxics, 13(10), 892. https://doi.org/10.3390/toxics13100892

