Removal Efficiency and Mechanism for Cl− from Strongly Acidic Wastewater by VC-Assisted Cu2O: Comparison Between Synthesis Methods
Abstract
1. Introduction
2. Experimental Section
2.1. Reagents and Materials
2.2. Synthesis of Cu2O
2.3. Removal of Cl− Using Cu2O or VC-Assisted Cu2O
2.4. Analytical Methods
3. Results and Discussion
3.1. Removal of Cl− Under Different Parameters
3.2. Solid Products for the Removal of Cl− by COA and COB
3.3. VC-Improved Removal of Cl− by Cu2O
3.4. Treatment of the Actual Wastewater
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, M.; Wang, F.; Liu, Z.; Yi, X.; Chu, H.; Zhang, L.; Zhao, X.; Wang, C.; Wang, P.; Wang, J. Mining iron from stainless steel pickling wastewater to produce quasi-MIL-100(Fe) for boosted photocatalytic peroxymonosulfate activation. Nano Res. 2025, 18, 94907382. [Google Scholar]
- Köller, N.; Roedder, D.; Linnartz, C.J.; Enders, M.; Morell, F.; Altmeier, P.; Wessling, M. Recovery of nitrate and fluoride salts from stainless steel pickling wastewater with flow-electrode capacitive deionization. J. Hazard. Mater. Lett. 2025, 6, 100148. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Li, M.; Wang, N.; Liu, J.; Guo, H.; Li, B. Steel pickling rinse wastewater treatment by two-stage MABR system: Reactor performance, extracellular polymeric substances (EPS) and microbial community. Chemosphere 2022, 299, 134402. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Wang, Q.; Luo, Y.; Luo, Y.; Ren, W.; Shi, H.; Shao, P.; Luo, X. Sustainable and selective upgrade of Cu(II) to High-Value HKUST-1 from acidic electroplating wastewater. Chem. Eng. J. 2025, 507, 160303. [Google Scholar]
- Wang, L.; Li, J.; Zhong, G.; Li, J.; Lu, X.; Wang, S.; Tang, Y. Diatom biochar recovered Au(III) efficiently from both synthetic and real electroplating wastewaters. ACS EST Water 2023, 3, 1395–1405. [Google Scholar]
- Liang, D.; Ji, M.; Zhu, S.; Yu, C.; Wang, Z.; Liu, Y.; Khan, A.; Ri, K.; Yu, H.; Huo, M. A novel Fe recycling method from pickling wastewater producing a KFeS2 whisker for electroplating wastewater treatment. Environ. Sci. Water Res. Technol. 2021, 7, 622. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, Y.; Dong, X.; Ali, M.S.; Ali, S.; Jiang, Y.; Zheng, Y.; Yuan, Z. Calcium scaling control unlocks stable membrane distillation for desulfurization wastewater treatment. Chem. Eng. J. 2025, 524, 169226. [Google Scholar]
- Chen, H.; Yu, H.; Liang, D.; Yu, Z.; Lin, L.; Zhao, N.; Yang, L. Desulfurization wastewater evaporation for zero liquid discharge: Water and chloride balance in coal-fired power plants. J. Water Process Eng. 2025, 76, 108067. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H.; Zhan, L.; Zeng, S.; Wu, H.; Yang, L. Review of migration, transformation, and control of volatile components during desulfurization wastewater evaporation: Advances and perspectives. Energy Fuels 2023, 37, 15248–15266. [Google Scholar] [CrossRef]
- Qi, L.; Liu, K.; Wang, R.; Li, J.; Zhang, Y.; Chen, L. Removal of chlorine ions from desulfurization wastewater by modified fly ash hydrotalcite. ACS Omega 2020, 5, 31665–31672. [Google Scholar] [CrossRef]
- Shoukat, E.; Ahmed, M.Z.; Abideen, Z.; Azeem, M.; Ibrahim, M.; Gul, B.; Khan, M.A. Short and long term salinity induced differences in growth and tissue specific ion regulation of Phragmites karka. Flora 2020, 263, 151550–151559. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S.; Liu, Y.; Yang, M.; Zhou, X.; Abbas, G.; Wang, L.; Lu, J. Effects of chloride on corrosion scale compositions and heavy metal release in drinking water distribution systems. J. Hazard. Mater. 2024, 465, 133452. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, X.; Mu, X.; Liu, Z.; Lian, Z. Optimization of the co-precipitation process for the removal of high-concentration chloride ions from slag washing brine. Desalin. Water Treat. 2025, 323, 101360. [Google Scholar]
- Alhinaai, M.A.; Cassidy, D.P.; Reeves, D.M.; Kaczmarek, S.E.; Foster, M.; Jacobson, J.; Kieser, M.S. Chloride removal from stormwater and lakes impacted by road salt application: Experimental assessment of Friedel’s salt reactions. Environ. Sci. Technol. Lett. 2025, 12, 237–242. [Google Scholar] [CrossRef]
- Duan, L.; Yun, Q.; Jiang, G.; Teng, D.; Zhou, G.; Cao, Y. A review of chloride ions removal from high chloride industrial wastewater: Sources, hazards, and mechanisms. J. Environ. Manag. 2024, 353, 120184. [Google Scholar] [CrossRef]
- Dou, W.; Peng, X.; Kong, L.; Hu, X. A review on the removal of Cl(-I) with high concentration from industrial wastewater: Approaches and mechanisms. Sci. Total Environ. 2022, 824, 153909. [Google Scholar]
- Kim, G.; Park, S. Chloride removal of calcium aluminate-layered double hydroxide phases: A review. Int. J. Environ. Res. Public Health 2021, 18, 2797. [Google Scholar] [CrossRef]
- Deivayanai, V.C.; Karishma, S.; Thamarai, P.; Yaashikaa, P.R.; Saravanan, A. A comprehensive review on electrodeionization techniques for removal of toxic chloride from wastewater: Recent advances and challenges. Desalination 2024, 570, 117098. [Google Scholar]
- Zhao, X.; Zheng, Y.; Zhu, Q.; Cheng, M.; Zhang, Y.; Zhou, Z. Removal of chloride ions from aqueous phase as layered double hydroxides via uptake strategies: A critical review. Desalination 2025, 595, 118317. [Google Scholar]
- Ravi, S.; Kang, W.; Lee, H.; Park, Y.; Park, H.; Kim, I.; Kwon, Y. Improvement in acid resistance of polyimide membranes: A sustainable cross-linking approach via green-solvent-based Fenton reaction. Polymers 2023, 15, 15020264. [Google Scholar]
- Wu, H.; Zhang, J.; Chen, L.; Zhao, X.; Li, L.; Dai, Z. Phytic acid-functionalized polyacrylonitrile nanofibrous membranes via molecular self-assembly for efficient uranium extraction from highly acidic wastewater. Sep. Purif. Technol. 2025, 377, 134361. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, L.; Li, W.; Guo, H.; Gao, R.; Guan, Y.; Feng, L. Study on the process and mechanism of chloride ion adsorption by ultra-high lime aluminum method. Desalin. Water Treat. 2023, 312, 177–186. [Google Scholar] [CrossRef]
- Dou, W.; Hu, X.; Kong, L.; Peng, X. UV-improved removal of chloride ions from strongly acidic wastewater using Bi2O3: Efficiency enhancement and mechanisms. Environ. Sci. Technol. 2019, 53, 10371–10378. [Google Scholar] [CrossRef]
- Liang, J.; Yu, Y.; Ge, D.; Li, X.; Xie, P.; Huang, S. Ferric nitrate-induced phase transformation of Bi2O3 with ion exchange property for enhanced chloride removal from high-salinity wastewater. Appl. Surf. Sci. 2024, 665, 160307. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, B.; Shao, S.; Shi, B.; Li, X.; Wang, C.; Chen, Y. Removal of chloride from waste acid using Bi2O3: Thermodynamics and dechlorination behavior. J. Water Process Eng. 2022, 49, 103048. [Google Scholar] [CrossRef]
- Dou, W.; Li, D.; Zou, X.; Wang, Z.; Song, Y.; Kong, L.; Hu, X. The removal of Cl− from acidic wastewater by Cu2+/VC: Through reduction & precipitation function. Desalination 2024, 580, 117543. [Google Scholar]
- Peng, X.; Dou, W.; Kong, L.; Hu, X.; Wang, X. Removal of chloride ions from strongly acidic wastewater using Cu(0)/Cu(II): Efficiency enhancement by UV irradiation and the mechanism for chloride ions removal. Environ. Sci. Technol. 2019, 53, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Ma, W.; Yu, J.; Ma, H.; Liang, C.; Fang, X.; Li, X. Preparation of Cu2O nanosheets via diaphragm glow discharge plasma for non-enzymatic glucose sensing in human urine. Electrochim. Acta 2025, 521, 145874. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Xu, L.; Pan, H.; Fan, D. Preparation and photocatalytic performance of hollow spherical TiO2/Cu2O composites. Nano 2023, 18, 2250090. [Google Scholar] [CrossRef]
- Li, D.; Lu, D.; Liu, J.; Kong, L.; Hu, X.; Wan, L.; Dou, W. Removal of Cl(-I) from zinc sulfate electrolyte by the porous Bi2O3 rich in OVs: Efficiency and mechanism. J. Water Process Eng. 2023, 53, 103899. [Google Scholar] [CrossRef]
- Dou, W.; Hu, X.; Kong, L.; Peng, X.; Wang, X. Removal of Cl(-I) from strongly acidic wastewater using NaBiO3: A process of simultaneous oxidation and precipitation. Desalination 2020, 491, 114566. [Google Scholar]
- Contaldo, U.; Santucci, P.; Vergnes, A.; Leone, P.; Becam, J.; Biaso, F.; Ilbert, M.; Ezraty, B.; Lojou, E.; Mazurenko, I. How the larger methionine-rich domain of CueO from Hafnia alvei enhances cuprous oxidation. JACS Au 2025, 5, 1833–1844. [Google Scholar] [CrossRef]
- Yoo, K.; Park, Y.; Choi, S.; Park, I. Improvement of copper metal leaching in sulfuric acid solution by simultaneous use of oxygen and cupric ions. Metals 2020, 10, 721. [Google Scholar] [CrossRef]
- Li, Y.; Dong, H.; Xiao, J.; Li, D.; Dong, J.; Huang, D.; Deng, J. Ascorbic acid-enhanced CuO/percarbonate oxidation: Insights into the pH-dependent mechanism. ACS EST Eng. 2023, 3, 798–810. [Google Scholar]
- Desnoyer, A.N.; Nicolay, A.; Ziegler, M.S.; Lakshmi, K.V.; Cundari, T.R.; Tilley, T.D. A dicopper nitrenoid by oxidation of a CuICuI core: Synthesis, electronic structure, and reactivity. J. Am. Chem. Soc. 2021, 143, 7135–7143. [Google Scholar] [PubMed]
- Dong, J.; Zhang, J.; Wang, S.; Chen, G.; Zhang, P.; Li, J.; Gao, F. Effect of surface morphology on the catalytic performance of CuCl for direct synthesis of trimethoxysilane. Colloids Surf. A 2025, 727, 138237. [Google Scholar] [CrossRef]
- Chen, X.; Ding, Q.; Zeng, Z.; Wang, J.; He, S.; Liu, H.; Hua, Z. Extraction of high-purity copper from CuCl via molten salt electrolysis: Towards efficient copper recovery from waste printed circuit boards. Sep. Purif. Technol. 2025, 376, 133934. [Google Scholar] [CrossRef]
- Mosaferi, M.; Selles, P.; Miteva, T.; Ferté, A.; Carniato, S. Interpretation of shakeup mechanisms in copper L-shell photoelectron spectra. J. Phys. Chem. A 2022, 126, 4902–4914. [Google Scholar] [CrossRef]
- Dean, A.M.; Jafari, S.; Linford, M.R. Analysis of copper metal with a K-Alpha instrument from Thermo Scientific by XPS at 60 and 200 eV pass energy. Surf. Sci. Spectra 2023, 30, 24035. [Google Scholar]
- Wagner, C.D.; Joshi, A. The auger parameter, its utility and advantages: A review. J. Electron Spectrosc. Relat. Phenom. 1988, 47, 283–313. [Google Scholar] [CrossRef]
- Moretti, G.; Porta, P. Application of the auger parameter in the characterization of small copper particles supported on insulators. Surf. Sci. 1993, 287, 1076–1081. [Google Scholar] [CrossRef]
- Moretti, G.; Palma, A.; Paparazzo, E.; Satta, M. Auger parameter and Wagner plot studies of small copper clusters. Surf. Sci. 2016, 646, 298–305. [Google Scholar] [CrossRef]
- Frost, D.C.; Ishitani, A.; Mcdowell, C.A. X-ray photoelectron spectroscopy of copper compounds. Mol. Phys. 1972, 24, 861–877. [Google Scholar] [CrossRef]
Indicator | Concentration | ||
---|---|---|---|
A | B | C | |
Acid type | HCl | H2SO4 | HNO3 & HCl |
pH value | 1.31 | 0.03 | <0 |
[Cl−] | 2752 mg/L | 3846 mg/L | 13,570 mg/L |
[SO42−] | 1360 mg/L | 49,200 mg/L | / |
[F−] | / | 543 mg/L | / |
[NO3−] | / | / | 21,240 mg/L |
[Cu2+] | / | 67 mg/L | / |
[Fe3+] | 32 mg/L | / | 3846 |
[Al3+] | / | / | 1560 |
[Heavy metals] | / | 680 mg/L | / |
COD | 320 mg/L | / | / |
Indicator | A | B | C |
---|---|---|---|
Calculated Cu2O dosage (g) | 84 | 117 | 413 |
Actual Cu2O dosage (g) | 92 | 129 | 454 |
VC dosage (g) | 28 | 38 | 163 |
Reaction time (h) | 2 | ||
Residual concentration of Cl− (mg/L) | 189.6 | 78.3 | 393.7 |
Removal efficiency of Cl− | 93.1% | 98.0% | 97.1% |
Residual concentration of Cu2+ (mg/L) | 27.5 | 18.3 | 22.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Li, D.; Ma, J.; Yan, Z.; Liu, H.; Dou, W.; Hao, H. Removal Efficiency and Mechanism for Cl− from Strongly Acidic Wastewater by VC-Assisted Cu2O: Comparison Between Synthesis Methods. Toxics 2025, 13, 890. https://doi.org/10.3390/toxics13100890
Yu Y, Li D, Ma J, Yan Z, Liu H, Dou W, Hao H. Removal Efficiency and Mechanism for Cl− from Strongly Acidic Wastewater by VC-Assisted Cu2O: Comparison Between Synthesis Methods. Toxics. 2025; 13(10):890. https://doi.org/10.3390/toxics13100890
Chicago/Turabian StyleYu, Ying, Dong Li, Jialin Ma, Zhoujing Yan, Haoran Liu, Wenyue Dou, and Haotian Hao. 2025. "Removal Efficiency and Mechanism for Cl− from Strongly Acidic Wastewater by VC-Assisted Cu2O: Comparison Between Synthesis Methods" Toxics 13, no. 10: 890. https://doi.org/10.3390/toxics13100890
APA StyleYu, Y., Li, D., Ma, J., Yan, Z., Liu, H., Dou, W., & Hao, H. (2025). Removal Efficiency and Mechanism for Cl− from Strongly Acidic Wastewater by VC-Assisted Cu2O: Comparison Between Synthesis Methods. Toxics, 13(10), 890. https://doi.org/10.3390/toxics13100890