Phytotoxic Effects and Microbial Responses to Ciprofloxacin and Its Removal by Hydrilla verticillata
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Chemicals
2.2. Batch Experiments
2.2.1. Ecotoxicological Effects of CIP on H. verticillata
2.2.2. Biodegradation of CIP by H. verticillata
2.3. Assessment of Biochemical Component Changes in H. verticillata
2.4. Determination of CIP Concentrations and CIP Metabolites
2.4.1. CIP Quantification
2.4.2. Metabolite Identification
2.5. DNA Extraction and High Throughout Sequencing
2.6. Statistical Analyses
3. Results and Discussion
3.1. Effects of CIP the Growth of H. verticillate
3.2. Effects of CIP the Photosynthesis of H. verticillata
3.3. Effects of Oxidative Stress by CIP on H. verticillate
3.4. Biodegradation Efficiency and Pathway of CIP by H. verticillata
3.5. Effects of CIP on the Epiphytic Bacterial Communities of H. verticillata
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Browne, A.J.; Chipeta, M.G.; Haines-Woodhouse, G.; Kumaran, E.P.A.; Hamadani, B.H.K.; Zaraa, S.; Henry, N.J.; Deshpande, A.; Reiner, R.C.; Day, N.P.J.; et al. Global Antibiotic Consumption and Usage in Humans, 2000–18: A Spatial Modelling Study. Lancet Planet Health 2021, 5, e893–e904. [Google Scholar] [CrossRef]
- Klein, E.Y.; Impalli, I.; Poleon, S.; Denoel, P.; Cipriano, M.; Van Boeckel, T.P.; Pecetta, S.; Bloom, D.E.; Nandi, A. Global Trends in Antibiotic Consumption during 2016–2023 and Future Projections through 2030. Proc. Natl. Acad. Sci. USA 2024, 121, e2411919121. [Google Scholar] [CrossRef] [PubMed]
- Mulchandani, R.; Wang, Y.; Gilbert, M.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Food-Producing Animals: 2020 to 2030. PLOS Glob. Public Health 2023, 3, e0001305. [Google Scholar] [CrossRef] [PubMed]
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.; Sharma, V.K. Occurrence and Toxicity of Antibiotics in the Aquatic Environment: A Review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, H.; Wang, Y.; Li, Y.; Han, S.; Ren, J. Combined Toxicity Characteristics and Regulation of Residual Quinolone Antibiotics in Water Environment. Chemosphere 2021, 263, 128301. [Google Scholar] [CrossRef]
- Wan, L.; Wu, Y.; Zhang, Y.; Zhang, W. Toxicity, Biodegradation of Moxifloxacin and Gatifloxacin on Chlamydomonas Reinhardtii and Their Metabolic Fate. Ecotoxicol. Environ. Saf. 2022, 240, 113711. [Google Scholar] [CrossRef]
- Zhao, Z.; Qin, Z.; Xia, L.; Zhang, D.; Hussain, J. Dissipation Characteristics of Pyrene and Ecological Contribution of Submerged Macrophytes and Their Biofilms-Leaves in Constructed Wetland. Bioresour. Technol. 2018, 267, 158–166. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, X.; Li, Q.; Huang, S.; Wang, N.; Zhang, D.; Zhang, J.; Zheng, Z. Response of the Submerged Macrophytes Vallisneria natans to Snails at Different Densities. Ecotoxicol. Environ. Saf. 2020, 194, 110373. [Google Scholar] [CrossRef]
- Rocha, D.C.; Da Silva Rocha, C.; Tavares, D.S.; De Morais Calado, S.L.; Gomes, M.P. Veterinary Antibiotics and Plant Physiology: An Overview. Sci. Total Environ. 2021, 767, 144902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Y.; Liu, L. Effect of Submerged Macrophytes Vallisneria spiralis L. on Restoring the Sediment Contaminated by Enrofloxacin in Aquaculture Ponds. Ecol. Eng. 2019, 140, 105596. [Google Scholar] [CrossRef]
- Guo, X.; Liu, M.; Zhong, H.; Li, P.; Zhang, C.; Wei, D.; Zhao, T. Responses of the Growth and Physiological Characteristics of Myriophyllum aquaticum to Coexisting Tetracyclines and Copper in Constructed Wetland Microcosms. Environ. Pollut. 2020, 261, 114204. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xu, H.; Xiao, W.; Lu, J.; Lu, D.; Chen, X.; Zheng, X.; Jeppesen, E.; Zhang, W.; Wang, L. Ecotoxicological Effects of Sulfonamide on and Its Removal by the Submerged Plant Vallisneria natans (Lour.) Hara. Water Res. 2020, 170, 115354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ge, Z.; Li, Y.; Huang, S.; Zhang, J.; Zheng, Z. Response of Submerged Macrophytes and Leaf Biofilms to Different Concentrations of Oxytetracycline and Sulfadiazine. Chemosphere 2022, 308, 136098. [Google Scholar] [CrossRef]
- Dai, Y.; Tang, H.; Chang, J.; Wu, Z.; Liang, W. What’s Better, Ceratophyllum demersum L. or Myriophyllum verticillatum L., Individual or Combined? Ecol. Eng. 2014, 70, 397–401. [Google Scholar] [CrossRef]
- Gomes, M.P.; Gonçalves, C.A.; De Brito, J.C.M.; Souza, A.M.; Da Silva Cruz, F.V.; Bicalho, E.M.; Figueredo, C.C.; Garcia, Q.S. Ciprofloxacin Induces Oxidative Stress in Duckweed (Lemna minor L.): Implications for Energy Metabolism and Antibiotic-Uptake Ability. J. Hazard. Mater. 2017, 328, 140–149. [Google Scholar] [CrossRef]
- Guo, X.; Liu, M.M.; Zhong, H.; Li, P.; Zhang, C.J.; Wei, D.; Zhao, T.K. Potential of Myriophyllum aquaticum for Phytoremediation of Water Contaminated with Tetracycline Antibiotics and Copper. J. Environ. Manag. 2020, 270, 110867. [Google Scholar] [CrossRef]
- Hoang, T.T.T.; Tu, L.T.C.; Le, N.P.; Dao, Q.P.; Trinh, P.H. Fate of Fluoroquinolone Antibiotics in Vietnamese Coastal Wetland Ecosystem. Wetl. Ecol. Manag. 2012, 20, 399–408. [Google Scholar] [CrossRef]
- Kitamura, R.S.A.; Brito, J.C.M.; Silva De Assis, H.C.; Gomes, M.P. Physiological Responses and Phytoremediation Capacity of Floating and Submerged Aquatic Macrophytes Exposed to Ciprofloxacin. Environ. Sci. Pollut. Res. 2023, 30, 622–639. [Google Scholar] [CrossRef]
- Löffler, P.; Escher, B.I.; Baduel, C.; Virta, M.P.; Lai, F.Y. Antimicrobial Transformation Products in the Aquatic Environment: Global Occurrence, Ecotoxicological Risks, and Potential of Antibiotic Resistance. Environ. Sci. Technol. 2023, 57, 9474–9494. [Google Scholar] [CrossRef]
- Shrivastava, M.; Srivastava, S. Application and Research Progress of Hydrilla verticillata in Ecological Restoration of Water Contaminated with Metals and Metalloids. Environ. Chall. 2021, 4, 100177. [Google Scholar] [CrossRef]
- Liu, X.; Lu, S.; Guo, W.; Xi, B.; Wang, W. Antibiotics in the Aquatic Environments: A Review of Lakes, China. Sci. Total Environ. 2018, 627, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.R.; Kay, P.; Brown, L.E. Global Synthesis and Critical Evaluation of Pharmaceutical Data Sets Collected from River Systems. Environ. Sci. Technol. 2013, 47, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Yu, X.; Wang, J.; Sui, Q. Is It the Appropriate Syringe Filter? The Loss of PPCPs during Filtration by Syringe Filter. Water Emerg. Contam. Nanoplastics 2022, 1, 7. [Google Scholar] [CrossRef]
- Hayri-Senel, T.; Kahraman, E.; Sezer, S.; Erdol-Aydin, N.; Nasun-Saygili, G. Photocatalytic Degradation of Ciprofloxacin from Water with Waste Polystyrene and TiO2 Composites. Heliyon 2024, 10, e25433. [Google Scholar] [CrossRef]
- Xu, Q.; Li, H.; Li, S.; Li, Z.; Chen, S.; Liang, Y.; Li, Y.; Li, J.; Yuan, M. Impact of Microplastics on Ciprofloxacin Adsorption Dynamics and Mechanisms in Soil. Toxics 2025, 13, 294. [Google Scholar] [CrossRef]
- Fan, P.; Liu, C.; Ke, Z.; Zhou, W.; Wu, Z. Growth and Physiological Responses in a Submerged Clonal Aquatic Plant and Multiple-Endpoint Assessment under Prolonged Exposure to Ciprofloxacin. Ecotoxicol. Environ. Saf. 2022, 239, 113690. [Google Scholar] [CrossRef]
- Arief, M.A.A.; Kim, H.; Kurniawan, H.; Nugroho, A.P.; Kim, T.; Cho, B.-K. Chlorophyll Fluorescence Imaging for Early Detection of Drought and Heat Stress in Strawberry Plants. Plants 2023, 12, 1387. [Google Scholar] [CrossRef]
- Wan, L.; Zhou, Y.; Huang, R.; Jiao, Y.; Gao, J. Toxicity of Moxifloxacin on the Growth, Photosynthesis, Antioxidant System, and Metabolism of Microcystis aeruginosa at Different Phosphorus Levels. Toxics 2024, 12, 611. [Google Scholar] [CrossRef]
- Pirie, A.; Mullins, M.G. Changes in Anthocyanin and Phenolics Content of Grapevine Leaf and Fruit Tissues Treated with Sucrose, Nitrate, and Abscisic Acid. Plant Physiol. 1976, 58, 468–472. [Google Scholar] [CrossRef]
- Yan, Y.; Pengmao, Y.; Xu, X.; Zhang, L.; Wang, G.; Jin, Q.; Chen, L. Migration of Antibiotic Ciprofloxacin during Phytoremediation of Contaminated Water and Identification of Transformation Products. Aquat. Toxicol. 2020, 219, 105374. [Google Scholar] [CrossRef] [PubMed]
- Panja, S.; Sarkar, D.; Li, K.; Datta, R. Uptake and Transformation of Ciprofloxacin by Vetiver Grass (Chrysopogon zizanioides). Int. Biodeterior. Biodegrad. 2019, 142, 200–210. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Cai, W.; Yang, M.; Zhong, X.; Guo, Z.; Shan, C. High-Throughput Sequencing-Based Analysis of Microbial Diversity in Rice Wine Koji from Different Areas. Curr. Microbiol. 2020, 77, 882–889. [Google Scholar] [CrossRef]
- Gomes, M.P.; Le Manac’h, S.G.; Hénault-Ethier, L.; Labrecque, M.; Lucotte, M.; Juneau, P. Glyphosate-Dependent Inhibition of Photosynthesis in Willow. Front. Plant Sci. 2017, 8, 207. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, W.; Yang, T.; Chen, Y.; Ni, W. Effects of Cadmium Stress on Leaf Chlorophyll Fluorescence and Photosynthesis of Elsholtzia argyi—A Cadmium Accumulating Plant. Int. J. Phytoremediation 2015, 17, 85–92. [Google Scholar] [CrossRef]
- Parida, A.; Das, A.B.; Das, P. NaCl Stress Causes Changes in Photosynthetic Pigments, Proteins, and Other Metabolic Components in the Leaves of a True Mangrove, Bruguiera parviflora, in Hydroponic Cultures. J. Plant Biol. 2002, 45, 28–36. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, S.; Wang, P.; Hou, J.; Qian, J.; Ao, Y.; Lu, J.; Li, L. Salicylic Acid Involved in the Regulation of Nutrient Elements Uptake and Oxidative Stress in Vallisneria natans (Lour.) Hara under Pb Stress. Chemosphere 2011, 84, 136–142. [Google Scholar] [CrossRef]
- Peng, J.; Guo, J.; Lei, Y.; Mo, J.; Sun, H.; Song, J. Integrative Analyses of Transcriptomics and Metabolomics in Raphidocelis subcapitata Treated with Clarithromycin. Chemosphere 2021, 266, 128933. [Google Scholar] [CrossRef]
- Eggink, L.L.; LoBrutto, R.; Brune, D.C.; Brusslan, J.; Yamasato, A.; Tanaka, A.; Hoober, J.K. Synthesis of Chlorophyll b: Localization of Chlorophyllide Aoxygenase and Discovery of a Stable Radical in the Catalytic Subunit. BMC Plant Biol. 2004, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.; Yue, B.; Gao, T.; Yan, W.; Pan, G. Phytoremediation of Phenol by Hydrilla verticillata (L.f.) Royle and Associated Effects on Physiological Parameters. J. Hazard. Mater. 2020, 388, 121569. [Google Scholar] [CrossRef] [PubMed]
- Aderemi, A.O.; Novais, S.C.; Lemos, M.F.L.; Alves, L.M.; Hunter, C.; Pahl, O. Oxidative Stress Responses and Cellular Energy Allocation Changes in Microalgae Following Exposure to Widely Used Human Antibiotics. Aquat. Toxicol. 2018, 203, 130–139. [Google Scholar] [CrossRef]
- Naing, A.H.; Kim, C.K. Abiotic Stress-induced Anthocyanins in Plants: Their Role in Tolerance to Abiotic Stresses. Physiol. Plant. 2021, 172, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
- Tena, N.; Martín, J.; Asuero, A.G. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef]
- Rezaee, A.; Kosari-Nasab, M.; Movafeghi, A. Cellular Toxicity of Cefazolin Sodium to the Green Microalga Chlorella vulgaris: Evaluation of Biological Responses. Biologia 2023, 78, 3039–3048. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, X.; Shi, C.; Yan, W.; Zhang, L.; Wang, G. Ecotoxicological Effects and Accumulation of Ciprofloxacin in Eichhornia crassipes under Hydroponic Conditions. Environ. Sci. Pollut. Res. 2019, 26, 30348–30355. [Google Scholar] [CrossRef]
- Xu, Y.; Gu, Y.; Peng, L.; Wang, N.; Chen, S.; Liang, C.; Liu, Y.; Ni, B.-J. Unravelling Ciprofloxacin Removal in a Nitrifying Moving Bed Biofilm Reactor: Biodegradation Mechanisms and Pathways. Chemosphere 2023, 320, 138099. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, T.G.; Henriques, D.M.; König, A.; Martins, A.F.; Kümmerer, K. Photo-Degradation of the Antimicrobial Ciprofloxacin at High pH: Identification and Biodegradability Assessment of the Primary by-Products. Chemosphere 2009, 76, 487–493. [Google Scholar] [CrossRef]
- Wetzstein, H.-G.; Stadler, M.; Tichy, H.-V.; Dalhoff, A.; Karl, W. Degradation of Ciprofloxacin by Basidiomycetes and Identification of Metabolites Generated by the Brown Rot Fungus Gloeophyllum Striatum. Appl. Environ. Microbiol. 1999, 65, 1556–1563. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Lian, K.; Liu, C. Effects of Chronic Exposure of Antibiotics on Microbial Community Structure and Functions in Hyporheic Zone Sediments. J. Hazard. Mater. 2021, 416, 126141. [Google Scholar] [CrossRef]
- Li, D.; Qi, R.; Yang, M.; Zhang, Y.; Yu, T. Bacterial Community Characteristics under Long-Term Antibiotic Selection Pressures. Water Res. 2011, 45, 6063–6073. [Google Scholar] [CrossRef] [PubMed]
- Drlica, K.; Malik, M. Fluoroquinolones: Action and Resistance. Curr. Top. Med. Chem. 2003, 3, 249–282. [Google Scholar] [CrossRef]
- Piddock, L.J.V. Multidrug-Resistance Efflux Pumps ? Not Just for Resistance. Nat. Rev. Microbiol. 2006, 4, 629–636. [Google Scholar] [CrossRef]
- Ohore, O.E.; Zhang, S.; Guo, S.; Addo, F.G.; Manirakiza, B.; Zhang, W. Ciprofloxacin Increased Abundance of Antibiotic Resistance Genes and Shaped Microbial Community in Epiphytic Biofilm on Vallisneria spiralis in Mesocosmic Wetland. Bioresour. Technol. 2021, 323, 124574. [Google Scholar] [CrossRef]
- Cytryn, E. The Soil Resistome: The Anthropogenic, the Native, and the Unknown. Soil Biol. Biochem. 2013, 63, 18–23. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q.; Jiang, Y.; Li, M.; Xia, S. Temperature-Induced Difference in Microbial Characterizations Accounts for the Fluctuation of Sequencing Batch Biofilm Reactor Performance. Biodegradation 2021, 32, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Kirby, J.T.; Sader, H.S.; Walsh, T.R.; Jones, R.N. Antimicrobial Susceptibility and Epidemiology of a Worldwide Collection of Chryseobacterium Spp.: Report from the SENTRY Antimicrobial Surveillance Program (1997–2001). J. Clin. Microbiol. 2004, 42, 445–448. [Google Scholar] [CrossRef]
- Singleton, D.R.; Lee, J.; Dickey, A.N.; Stroud, A.; Scholl, E.H.; Wright, F.A.; Aitken, M.D. Polyphasic Characterization of Four Soil-Derived Phenanthrene-Degrading Acidovorax Strains and Proposal of Acidovorax carolinensis Sp. Nov. Syst. Appl. Microbiol. 2018, 41, 460–472. [Google Scholar] [CrossRef]
- Yan, L.; Yan, N.; Gao, X.-Y.; Liu, Y.; Liu, Z.-P. Degradation of Amoxicillin by Newly Isolated Bosea sp. Ads-6. Sci. Total Environ. 2022, 828, 154411. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Van Der Heijden, M.G.A.; Dodds, B.K.; Nguyen, T.B.; Spooren, J.; Valzano-Held, A.; Cosme, M.; Berendsen, R.L. A Tripartite Bacterial-Fungal-Plant Symbiosis in the Mycorrhiza-Shaped Microbiome Drives Plant Growth and Mycorrhization. Microbiome 2024, 12, 13. [Google Scholar] [CrossRef]
- Zhao, L.; Pan, J.; Ding, Y.; Cai, S.; Cai, T.; Chen, L.; Ji, X.-M. Coupling Continuous Poly(3-Hydroxybutyrate) Synthesis with Piperazine-Contained Wastewater Treatment: Fermentation Performance and Microbial Contamination Deciphering. Int. J. Biol. Macromol. 2023, 226, 1523–1532. [Google Scholar] [CrossRef]
Compounds | Molecular Formula | Exact Mass | Retention Time | Experimental [M + H]+ | Error (ppm) | Proposed Structure |
---|---|---|---|---|---|---|
CIP | C17H18FN3O3 | 331.1332 | 4.46 | 332.1405 | −0.079 | |
C306 | C15H16FN3O3 | 305.1176 | 4.20 | 306.1253 | 0.013 | |
C263 | C13H11FN2O3 | 262.0754 | 5.76 | 263.0827 | 0.202 | |
C248 | C13H10FNO3 | 247.0645 | 5.73 | 248.0718 | 0.250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Huang, R.; Wan, L.; Li, G.; Xu, Z.; Guo, J. Phytotoxic Effects and Microbial Responses to Ciprofloxacin and Its Removal by Hydrilla verticillata. Toxics 2025, 13, 882. https://doi.org/10.3390/toxics13100882
Lu L, Huang R, Wan L, Li G, Xu Z, Guo J. Phytotoxic Effects and Microbial Responses to Ciprofloxacin and Its Removal by Hydrilla verticillata. Toxics. 2025; 13(10):882. https://doi.org/10.3390/toxics13100882
Chicago/Turabian StyleLu, Linzhi, Rong Huang, Liang Wan, Guijia Li, Zhenhao Xu, and Jiahao Guo. 2025. "Phytotoxic Effects and Microbial Responses to Ciprofloxacin and Its Removal by Hydrilla verticillata" Toxics 13, no. 10: 882. https://doi.org/10.3390/toxics13100882
APA StyleLu, L., Huang, R., Wan, L., Li, G., Xu, Z., & Guo, J. (2025). Phytotoxic Effects and Microbial Responses to Ciprofloxacin and Its Removal by Hydrilla verticillata. Toxics, 13(10), 882. https://doi.org/10.3390/toxics13100882