Nanomaterial-Enabled Environmental Remediation and Removal of Emerging Pollutants
Author Contributions
Data Availability Statement
Conflicts of Interest
List of Contributions
- Wongrerkdee, S.; Wongrerkdee, S.; Boonruang, C.; Sujinnapram, S. Enhanced Photocatalytic Degradation of Methylene Blue Using Ti-Doped ZnO Nanoparticles Synthesized by Rapid Combustion. Toxics 2023, 11, 33. https://doi.org/10.3390/toxics11010033
- Yi, Y.; Guan, Q.; Wang, W.; Jian, S.; Li, H.; Wu, L.; Zhang, H.; Jiang, C. Recyclable Carbon Cloth-Supported ZnO@Ag3PO4 Core–Shell Structure for Photocatalytic Degradation of Organic Dye. Toxics 2023, 11, 70. https://doi.org/10.3390/toxics11010070
- Ezzeddine, Z.; Batonneau-Gener, I.; Pouilloux, Y. Zinc Removal from Water via EDTA-Modified Mesoporous SBA-16 and SBA-15. Toxics 2023, 11, 205. https://doi.org/10.3390/toxics11030205
- Krobthong, S.; Rungsawang, T.; Wongrerkdee, S. Comparison of ZnO Nanoparticles Prepared by Precipitation and Combustion for UV and Sunlight-Driven Photocatalytic Degradation of Methylene Blue. Toxics 2023, 11, 266. https://doi.org/10.3390/toxics11030266
- Neelgund, G.M.; Jimenez, E.A.; Ray, R.L.; Kurkuri, M.D. Facilitated Adsorption of Mercury(II) and Chromium(VI) Ions over Functionalized Carbon Nanotubes. Toxics 2023, 11, 545. https://doi.org/10.3390/toxics11060545
- Krobthong, S.; Rungsawang, T.; Khaodara, N.; Kaewtrakulchai, N.; Manatura, K.; Sukiam, K.; Wathinputthiporn, D.; Wongrerkdee, S.; Boonruang, C.; Wongrerkdee, S. Sustainable Development of ZnO Nanostructure Doping with Water Hyacinth-Derived Activated Carbon for Visible-Light Photocatalysis. Toxics 2024, 12, 165. https://doi.org/10.3390/toxics12030165
- Lu, Z.; Wang, Z. Complete Photooxidation of Formaldehyde to CO2 via Ni-Dual-Atom Decorated Crystalline Triazine Frameworks: A DFT Study. Toxics 2024, 12, 242. https://doi.org/10.3390/toxics12040242
- Tu, W.; Cai, W. Selective Adsorption of Hazardous Substances from Wastewater by Hierarchical Oxide Composites: A Review. Toxics 2024, 12, 447. https://doi.org/10.3390/toxics12070447
- He, F.; Xu, L.; Wang, H.; Jiang, C. Recent Progress in Molecular Oxygen Activation by Iron-Based Materials: Prospects for Nano-Enabled In Situ Remediation of Organic-Contaminated Sites. Toxics 2024, 12, 773. https://doi.org/10.3390/toxics12110773
- Yu, S.; Wang, Z. Density Functional Theory Insight in Photocatalytic Degradation of Dichlorvos Using Covalent Triazine Frameworks Modified by Various Oxygen-Containing Acid Groups. Toxics 2024, 12, 928. https://doi.org/10.3390/toxics12120928
References
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Arp, H.P.H.; Gredelj, A.; Glüge, J.; Scheringer, M.; Cousins, I.T. The Global Threat from the Irreversible Accumulation of Trifluoroacetic Acid (TFA). Environ. Sci. Technol. 2024, 58, 19925–19935. [Google Scholar] [CrossRef]
- Qu, R.; Wang, J.X.; Li, X.J.; Zhang, Y.; Yin, T.L.; Yang, P. Per- and Polyfluoroalkyl Substances (PFAS) Affect Female Reproductive Health: Epidemiological Evidence and Underlying Mechanisms. Toxics 2024, 12, 678. [Google Scholar] [CrossRef]
- Boxall, A.B.A.; Brooks, B.W. Pharmaceuticals and Personal Care Products in the Environment: What Progress Has Been Made in Addressing the Big Research Questions? Environ. Toxicol. Chem. 2024, 43, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Meng, Y.; Liu, S.; Wei, L.; Huang, Q.H. Insights into organophosphate esters (OPEs) in aquatic ecosystems: Occurrence, environmental behavior, and ecological risk. Crit. Rev. Environ. Sci. Technol. 2024, 54, 641–675. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhao, J.; Xing, B.S. Environmental source, fate, and toxicity of microplastics. J. Hazard. Mater. 2021, 407, 124357. [Google Scholar] [CrossRef]
- Stroo, H.F.; Leeson, A.; Marqusee, J.A.; Johnson, P.C.; Ward, C.H.; Kavanaugh, M.C.; Sale, T.C.; Newell, C.J.; Pennell, K.D.; Lebrón, C.A.; et al. Chlorinated Ethene Source Remediation: Lessons Learned. Environ. Sci. Technol. 2012, 46, 6438–6447. [Google Scholar] [CrossRef]
- Wang, B.; Yu, G. Emerging contaminant control: From science to action. Front. Environ. Sci. Eng. 2022, 16, 81. [Google Scholar] [CrossRef]
- Liu, W.Y.; Zhang, J.L.; Liu, H.; Guo, X.N.; Zhang, X.Y.; Yao, X.L.; Cao, Z.G.; Zhang, T.T. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environ. Int. 2021, 146, 106277. [Google Scholar] [CrossRef]
- Lu, F.; Astruc, D. Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coordin. Chem. Rev. 2020, 408, 213180. [Google Scholar] [CrossRef]
- Wen, M.C.; Li, G.Y.; Liu, H.L.; Chen, J.Y.; An, T.C.; Yamashita, H. Metal-organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: Recent progress and challenges. Environ. Sci-Nano 2019, 6, 1006–1025. [Google Scholar] [CrossRef]
- Auffan, M.; Rose, J.; Proux, O.; Borschneck, D.; Masion, A.; Chaurand, P.; Hazemann, J.L.; Chaneac, C.; Jolivet, J.P.; Wiesner, M.R.; et al. Enhanced adsorption of arsenic onto maghemites nanoparticles: As(III) as a probe of the surface structure and heterogeneity. Langmuir 2008, 24, 3215–3222. [Google Scholar] [CrossRef]
- Auffan, M.; Rose, J.; Bottero, J.Y.; Lowry, G.V.; Jolivet, J.P.; Wiesner, M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.R.; Epsztein, R.; Lin, S.H.; Qu, J.H.; Sun, M. Ion-Ion Selectivity of Synthetic Membranes with Confined Nanostructures. ACS Nano 2024, 18, 21633–21650. [Google Scholar] [CrossRef]
- Jin, X.; Wu, D.D.; Liu, C.; Huang, S.H.; Zhou, Z.Y.; Wu, H.; Chen, X.R.; Huang, M.Y.; Zhou, S.D.; Gu, C. Facet effect of hematite on the hydrolysis of phthalate esters under ambient humidity conditions. Nat. Commun. 2022, 13, 6125. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Duan, X.G.; Xie, Y.B.; Sun, H.Q.; Wang, S.B. Nanocarbon-Based Catalytic Ozonation for Aqueous Oxidation: Engineering Defects for Active Sites and Tunable Reaction Pathways. ACS Catal. 2020, 10, 13383–13414. [Google Scholar] [CrossRef]
- Zhang, T.; Lowry, G.V.; Capiro, N.L.; Chen, J.M.; Chen, W.; Chen, Y.S.; Dionysiou, D.D.; Elliott, D.W.; Ghoshal, S.; Hofmann, T.; et al. In situ remediation of subsurface contamination: Opportunities and challenges for nanotechnology and advanced materials. Environ. Sci-Nano 2019, 6, 1283–1302. [Google Scholar] [CrossRef]
- Fu, H.B.; Xu, T.G.; Zhu, S.B.; Zhu, Y.F. Photocorrosion Inhibition and Enhancement of Photocatalytic Activity for ZnO via Hybridization with C60. Environ. Sci. Technol. 2008, 42, 8064–8069. [Google Scholar] [CrossRef]
- Fanourakis, S.K.; Peña-Bahamonde, J.; Rodrigues, D.F. Inorganic salts and organic matter effects on nanorod, nanowire, and nanoplate MoO3 aggregation, dissolution, and photocatalysis. Environ. Sci-Nano 2020, 7, 3794–3804. [Google Scholar] [CrossRef]
- Wu, S.; Peng, J.; Lee, S.L.J.; Niu, X.; Jiang, Y.; Lin, S. Let the two sides of the same coin meet-Environmental health and safety-oriented development of functional nanomaterials for environmental remediations. Eco-Environ. Health 2024, 3, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Dangayach, R.; Jeong, N.; Demirel, E.; Uzal, N.; Fung, V.; Chen, Y.S. Machine Learning-Aided Inverse Design and Discovery of Novel Polymeric Materials for Membrane Separation. Environ. Sci. Technol. 2024, 59, 993–1012. [Google Scholar] [CrossRef] [PubMed]
- Mou, T.Y.; Pillai, H.S.; Wang, S.W.; Wan, M.Y.; Han, X.; Schweitzer, N.M.; Che, F.L.; Xin, H.L. Bridging the complexity gap in computational heterogeneous catalysis with machine learning. Nat. Catal. 2023, 6, 122–136. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Liu, S.; Phenrat, T.; Sui, Q. Nanomaterial-Enabled Environmental Remediation and Removal of Emerging Pollutants. Toxics 2025, 13, 810. https://doi.org/10.3390/toxics13100810
Jiang C, Liu S, Phenrat T, Sui Q. Nanomaterial-Enabled Environmental Remediation and Removal of Emerging Pollutants. Toxics. 2025; 13(10):810. https://doi.org/10.3390/toxics13100810
Chicago/Turabian StyleJiang, Chuanjia, Shengwei Liu, Tanapon Phenrat, and Qian Sui. 2025. "Nanomaterial-Enabled Environmental Remediation and Removal of Emerging Pollutants" Toxics 13, no. 10: 810. https://doi.org/10.3390/toxics13100810
APA StyleJiang, C., Liu, S., Phenrat, T., & Sui, Q. (2025). Nanomaterial-Enabled Environmental Remediation and Removal of Emerging Pollutants. Toxics, 13(10), 810. https://doi.org/10.3390/toxics13100810