Epigenetic Alterations in PAH-Induced Childhood Asthma: An Intervention Using Sulforaphane
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Detection of Serum PAHs by Gas Chromatography–Mass Spectrometry
2.3. Animal Study
2.4. Histopathology
2.5. Immunity and Cytokines Analysis
2.6. Cell Culture
2.7. Methyl-RAD
2.8. Bisulfite Sequencing PCR (BSP)
2.9. Real-Time Quantitative PCR Analysis
2.10. CUT&RUN-qPCR Analysis
2.11. Statistical Analysis
3. Results
3.1. Interactions of PAH Exposure with DNA Methylation Increased the Risk of Childhood Asthma
3.2. PAH Exposure Exacerbated Asthma Phenotypes
3.3. PAH Exposure Induced Alterations in DNA Methylation Patterns in Offspring Lungs
3.4. SFN Intervention Reverses the BaP-Induced Epigenetic Changes
3.5. MMP9 DNA Methylation Acts as a Biomarker of BaP-Induced Epigenetic Changes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PAHs | polycyclic aromatic hydrocarbons |
SFN | sulforaphane |
OVA | ovalbumin |
BaP | benzo(a)pyrene |
TETs | ten-eleven translocation methylcytosine dioxygenases |
HMT | histone methyltransferase |
POPs | persistent organic pollutants |
HDAC | histone deacetylase |
DNMT | DNA methyltransferase |
Fla | fluoranthene |
Pyr | pyrene |
BaA | benz(a)anthracene |
Chr | chrysene |
BbF | benzo(b)fluoranthene |
BkF | benzo(k)fluoranthene |
INP | indeno(l,2,3-cd)pyrene |
DBA | dibenz(a,h)anthracene |
BgP | benzo(g,h,i)perylene |
EI | Electron Impact ionization |
LOD | limit of detection |
ND | not detected |
PND | postnatal day |
BALF | bronchoalveolar lavage fluid |
H&E | hematoxylin and eosin |
PAS | Periodic Acid–Schiff |
IgE | immunoglobulin E |
IL-4 | interleukin-4 |
ELISA | enzyme-linked immunosorbent assay |
WBC | white blood cell |
HBE | human bronchial epithelial cells |
HBSMCs | human bronchial smooth muscle cells |
DMSO | dimethyl sulfoxide |
Methyl-RAD | methylation-dependent restriction enzyme sequencing method |
DMSs | differentially methylated sites |
DMGs | differentially methylated genes |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
BSP | Bisulfite Sequencing PCR |
PCR | polymerase chain reaction |
CUT&RUN | cleavage under targets and release using nuclease |
OR | odds ratio |
Mmp9 | matrix metallopeptidase 9 |
LINE-1 | long interspersed nuclear element-1 |
IFN-γ | interferon-gamma |
IL-4 | interleukin-4 |
FoxP3 | forkhead box P3 |
MMP9 | matrix metallopeptidase 9 |
IL-17A | interleukin-17A |
ECM | extracellular matrix |
Dnmt1 | DNA methyltransferase 1 |
Dnmt3a | DNA methyltransferase 3A |
Dnmt3b | DNA methyltransferase 3B |
Tet1 | ten-eleven translocation 1 |
Tet2 | ten-eleven translocation 2 |
Tet3 | ten-eleven translocation 3 |
TGF-β | transforming growth factor beta 1 |
DNMT1 | DNA methyltransferase 1 |
DNMT3A | DNA methyltransferase 3A |
DNMT3B | DNA methyltransferase 3B |
TET1 | ten-eleven translocation 1 |
TET2 | ten-eleven translocation 2 |
TET3 | ten-eleven translocation 3 |
CGI | CpG island |
1-OHPyr | 1-hydroxypyrene |
ROS | reactive oxygen species |
AP-1 | activator protein-1 |
References
- Boström, C.E.; Gerde, P.; Hanberg, A.; Jernström, B.; Johansson, C.; Kyrklund, T.; Rannug, A.; Törnqvist, M.; Victorin, K.; Westerholm, R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect 2002, 110 (Suppl. 3), 451–488. [Google Scholar] [PubMed]
- Wang, T.; Feng, W.; Kuang, D.; Deng, Q.; Zhang, W.; Wang, S.; He, M.; Zhang, X.; Wu, T.; Guo, H. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers. Environ. Res. 2015, 140, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Jia, C. Effects of profession on urinary PAH metabolite levels in the US population. Int. Arch. Occup. Environ. Health 2016, 89, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Trinidad, D.; Pittman, E.N.; Riley, E.A.; Sjodin, A.; Dills, R.L.; Paulsen, M.; Simpson, C.D. Urinary polycyclic aromatic hydrocarbon metabolites as biomarkers to woodsmoke exposure—Results from a controlled exposure study. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.H.; Lovinsky-Desir, S.; Perzanowski, M.; Liu, X.; Maher, C.; Gil, E.; Torrone, D.; Sjodin, A.; Li, Z.; Perera, F.P.; et al. Repeatedly high polycyclic aromatic hydrocarbon exposure and cockroach sensitization among inner-city children. Environ. Res. 2015, 140, 649–656. [Google Scholar] [CrossRef]
- Ghozal, M.; Kadawathagedara, M.; Delvert, R.; Adel-Patient, K.; Tafflet, M.; Annesi-Maesano, I.; Crépet, A.; Sirot, V.; Charles, M.A.; Heude, B.; et al. Prenatal dietary exposure to chemicals and allergy or respiratory diseases in children in the EDEN mother-child cohort. Environ. Int. 2023, 180, 108195. [Google Scholar] [CrossRef]
- Perera, F.; Tang, W.Y.; Herbstman, J.; Tang, D.; Levin, L.; Miller, R.; Ho, S.M. Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS ONE 2009, 4, e4488. [Google Scholar] [CrossRef]
- Miller, R.L.; Garfinkel, R.; Horton, M.; Camann, D.; Perera, F.P.; Whyatt, R.M.; Kinney, P.L. Polycyclic aromatic hydrocarbons, environmental tobacco smoke, and respiratory symptoms in an inner-city birth cohort. Chest 2004, 126, 1071–1078. [Google Scholar] [CrossRef]
- Rosa, M.J.; Jung, K.H.; Perzanowski, M.S.; Kelvin, E.A.; Darling, K.W.; Camann, D.E.; Chillrud, S.N.; Whyatt, R.M.; Kinney, P.L.; Perera, F.P.; et al. Prenatal exposure to polycyclic aromatic hydrocarbons, environmental tobacco smoke and asthma. Respir. Med. 2011, 105, 869–876. [Google Scholar] [CrossRef]
- Jedrychowski, W.; Galas, A.; Pac, A.; Flak, E.; Camman, D.; Rauh, V.; Perera, F. Prenatal ambient air exposure to polycyclic aromatic hydrocarbons and the occurrence of respiratory symptoms over the first year of life. Eur. J. Epidemiol. 2005, 20, 775–782. [Google Scholar] [CrossRef]
- Gale, S.L.; Noth, E.M.; Mann, J.; Balmes, J.; Hammond, S.K.; Tager, I.B. Polycyclic aromatic hydrocarbon exposure and wheeze in a cohort of children with asthma in Fresno, CA. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Sram, R.J.; Binkova, B.; Dostal, M.; Merkerova-Dostalova, M.; Libalova, H.; Milcova, A.; Rossner, P.; Rossnerova, A.; Schmuczerova, J.; Svecova, V.; et al. Health impact of air pollution to children. Int. J. Hyg. Environ. Health 2013, 216, 533–540. [Google Scholar] [CrossRef]
- Karimi, P.; Peters, K.O.; Bidad, K.; Strickland, P.T. Polycyclic aromatic hydrocarbons and childhood asthma. Eur. J. Epidemiol. 2015, 30, 91–101. [Google Scholar] [CrossRef]
- Baird, W.M.; Hooven, L.A.; Mahadevan, B. Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ. Mol. Mutagen. 2005, 45, 106–114. [Google Scholar] [CrossRef]
- Arif, I.; Adams, M.D.; Johnson, M.T. A meta-analysis of the carcinogenic effects of particulate matter and polycyclic aromatic hydrocarbons. Environ. Pollut. 2024, 351, 123941. [Google Scholar] [CrossRef]
- Montano, L.; Baldini, G.M.; Piscopo, M.; Liguori, G.; Lombardi, R.; Ricciardi, M.; Esposito, G.; Pinto, G.; Fontanarosa, C.; Spinelli, M.; et al. Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. Toxics 2025, 13, 151. [Google Scholar] [CrossRef]
- Mallah, M.A.; Mallah, M.A.; Noreen, S.; Liu, Y.; Saeed, M.; Xi, H.; Ahmed, B.; Feng, F.; Mirjat, A.A.; Wang, W.; et al. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. Chemosphere 2022, 296, 133948. [Google Scholar] [CrossRef]
- Song, I.; Kim, E.-J.; Kim, I.-H.; Park, E.-M.; Lee, K.E.; Shin, J.-H.; Guengerich, F.P.; Choi, J.-Y. Biochemical characterization of eight genetic variants of human DNA polymerase κ involved in error-free bypass across bulky N2-guanyl DNA adducts. Chem. Res. Toxicol. 2014, 27, 919–930. [Google Scholar] [CrossRef]
- Herbstman, J.B.; Tang, D.; Zhu, D.; Qu, L.; Sjödin, A.; Li, Z.; Camann, D.; Perera, F.P. Prenatal exposure to polycyclic aromatic hydrocarbons, benzo[a]pyrene-DNA adducts, and genomic DNA methylation in cord blood. Environ. Health Perspect. 2012, 120, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Law, P.P.; Holland, M.L.; Blewitt, M. DNA methylation at the crossroads of gene and environment interactions. Essays Biochem. 2019, 63, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Cao, Y.; Qin, J.; Song, X.; Zhang, Q.; Shi, Y.; Cao, L. DNA methylation, its mediators and genome integrity. Int. J. Biol. Sci. 2015, 11, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Mazloumi, Z.; Farahzadi, R.; Rafat, A.; Asl, K.D.; Karimipour, M.; Montazer, M.; Movassaghpour, A.A.; Dehnad, A.; Charoudeh, H.N. Effect of aberrant DNA methylation on cancer stem cell properties. Exp. Mol. Pathol. 2022, 125, 104757. [Google Scholar] [CrossRef]
- Somineni, H.K.; Zhang, X.; Myers, J.M.; Kovacic, M.B.; Ulm, A.; Jurcak, N.; Ryan, P.H.; Hershey, G.; Ji, H. Ten-eleven translocation 1 (TET1) methylation is associated with childhood asthma and traffic-related air pollution. J. Allergy Clin. Immunol. 2016, 137, 797–805.e5. [Google Scholar] [CrossRef]
- Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L.; et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324, 930–935. [Google Scholar] [CrossRef]
- Wu, H.; D’aLessio, A.C.; Ito, S.; Xia, K.; Wang, Z.; Cui, K.; Zhao, K.; Sun, Y.E.; Zhang, Y. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 2011, 473, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Bao, Y.; Yan, T.; Huang, H.; Jiang, P.; Zhang, Z.; Li, L.; Wu, Q. PAH-induced metabolic changes related to inflammation in childhood asthma. Environ. Sci. Pollut. Res. Int. 2023, 30, 13739–13754. [Google Scholar] [CrossRef]
- Chou, P.J.; Peter, R.M.; Shannar, A.; Pan, Y.; Dave, P.D.M.P.; Xu, J.; Sarwar, M.S.; Kong, A.-N. Epigenetics of Dietary Phytochemicals in Cancer Prevention: Fact or Fiction. Cancer J. 2024, 30, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Li, S.; Hudlikar, R.; Wang, L.; Shannar, A.; Peter, R.; Chou, P.J.; Kuo, H.-C.D.; Liu, Z.; Kong, A.-N. Redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals. Free Radic. Biol. Med. 2022, 179, 328–336. [Google Scholar] [CrossRef]
- Vanduchova, A.; Anzenbacher, P.; Anzenbacherova, E. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. J. Med. Food 2019, 22, 121–126. [Google Scholar] [CrossRef]
- Su, X.; Jiang, X.; Meng, L.; Dong, X.; Shen, Y.; Xin, Y.; Singhal, S.S. Anticancer Activity of Sulforaphane: The Epigenetic Mechanisms and the Nrf2 Signaling Pathway. Oxid. Med. Cell. Longev. 2018, 2018, 5438179. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Dashwood, R.H. Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals. Antioxidants 2020, 9, 865. [Google Scholar] [CrossRef]
- Kim, S.J.; Kang, S.-Y.; Shin, H.-H.; Choi, H.-S. Sulforaphane inhibits osteoclastogenesis by inhibiting nuclear factor-kappaB. Mol. Cells 2005, 20, 364–370. [Google Scholar] [CrossRef]
- Juengel, E.; Erb, H.H.; Haferkamp, A.; Rutz, J.; Chun, F.K.-H.; Blaheta, R.A. Relevance of the natural HDAC inhibitor sulforaphane as a chemopreventive agent in urologic tumors. Cancer Lett. 2018, 435, 121–126. [Google Scholar] [CrossRef]
- Meeran, S.M.; Patel, S.N.; Tollefsbol, T.O.; Freitag, M. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS ONE 2010, 5, e11457. [Google Scholar] [CrossRef]
- Asthma group of Chinese Throacic Society. Guidelines for bronchial asthma prevent and management(2020 edition) Asthma group of Chinese Throacic Society. Zhonghua Jie He He Hu Xi Za Zhi 2020, 43, 1023–1048. [Google Scholar]
- Hu, J.; Bao, Y.; Huang, H.; Zhang, Z.; Chen, F.; Li, L.; Wu, Q. The preliminary investigation of potential response biomarkers to PAHs exposure on childhood asthma. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 82–93. [Google Scholar] [CrossRef]
- World Health Organization, Geneva. Safety evaluation of certain contaminants in food. Prepared by the Sixty-fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). FAO Food Nutr. Pap. 2006, 82, 1–778. [Google Scholar]
- Liu, H.; Xu, C.; Jiang, Z.-Y.; Gu, A. Association of polycyclic aromatic hydrocarbons and asthma among children 6–19 years: NHANES 2001–2008 and NHANES 2011–2012. Respir. Med. 2016, 110, 20–27. [Google Scholar] [CrossRef]
- Loftus, C.T.; Szpiro, A.A.; Workman, T.; Wallace, E.R.; Hazlehurst, M.F.; Day, D.B.; Ni, Y.; Carroll, K.N.; Adgent, M.A.; Moore, P.E.; et al. Maternal exposure to urinary polycyclic aromatic hydrocarbons (PAH) in pregnancy and childhood asthma in a pooled multi-cohort study. Environ. Int. 2022, 170, 107494. [Google Scholar] [CrossRef]
- Shimada, T.; Fujii-Kuriyama, Y. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci. 2004, 95, 1–6. [Google Scholar] [CrossRef]
- Drwal, E.; Rak, A.; Gregoraszczuk, E.L. Review: Polycyclic aromatic hydrocarbons (PAHs)-Action on placental function and health risks in future life of newborns. Toxicology 2019, 411, 133–142. [Google Scholar] [CrossRef]
- Wishnok, J.S.; Tannenbaum, S.R.; Stillwell, W.G.; Glogowski, J.A.; Leaf, C.D. Urinary markers for exposures to alkylating or nitrosating agents. Environ. Health Perspect. 1993, 99, 155–159. [Google Scholar] [CrossRef]
- Mathers, J.C.; McKay, J.A. Epigenetics—Potential contribution to fetal programming. Adv. Exp. Med. Biol. 2009, 646, 119–123. [Google Scholar]
- Terry, M.B.; Delgado-Cruzata, L.; Vin-Raviv, N.; Wu, H.C.; Santella, R.M. DNA methylation in white blood cells: Association with risk factors in epidemiologic studies. Epigenetics 2011, 6, 828–837. [Google Scholar] [CrossRef]
- Zhang, F.F.; Cardarelli, R.; Carroll, J.; Fulda, K.G.; Kaur, M.; Gonzalez, K.; Vishwanatha, J.K.; Santella, R.M.; Morabia, A. Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics 2011, 6, 623–629. [Google Scholar] [CrossRef]
- Niedzwiecki, M.M.; Hall, M.N.; Liu, X.; Oka, J.; Harper, K.N.; Slavkovich, V.; Ilievski, V.; Levy, D.; van Geen, A.; Mey, J.L.; et al. A dose-response study of arsenic exposure and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults. Environ. Health Perspect 2013, 121, 1306–1312. [Google Scholar] [CrossRef]
- Zhang, J.; Aishan, N.; Zheng, Z.; Ju, S.; He, Q.; Meng, Q.; Lin, X.; Lang, J.; Zhou, J.; Chen, Y.; et al. TET-mediated 5hmC in breast cancer: Mechanism and clinical potential. Epigenetics 2025, 20, 2473250. [Google Scholar] [CrossRef]
- Burleson, J.D.; Siniard, D.; Yadagiri, V.K.; Chen, X.; Weirauch, M.T.; Ruff, B.P.; Brandt, E.B.; Hershey, G.K.K.; Ji, H. TET1 contributes to allergic airway inflammation and regulates interferon and aryl hydrocarbon receptor signaling pathways in bronchial epithelial cells. Sci. Rep. 2019, 9, 7361. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, Y.-Q. Role of reactive oxygen species in regulating epigenetic modifications. Cell. Signal. 2025, 125, 111502. [Google Scholar] [CrossRef]
- Duca, R.C.; Grova, N.; Ghosh, M.; Do, J.-M.; Hoet, P.H.M.; Vanoirbeek, J.A.J.; Appenzeller, B.M.R.; Godderis, L. Exposure to Polycyclic Aromatic Hydrocarbons Leads to Non-monotonic Modulation of DNA and RNA (hydroxy)methylation in a Rat Model. Sci. Rep. 2018, 8, 10577. [Google Scholar] [CrossRef]
- Vandenbroucke, R.; Dejonckheere, E.; Libert, C. A therapeutic role for matrix metalloproteinase inhibitors in lung diseases? Eur. Respir. J. 2011, 38, 1200–1214. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, L.; He, W.; Yang, J.; Geng, C.; Chen, Y.; Liu, T.; Chen, H.; Li, Y. Benzo[a]pyrene promotes gastric cancer cell proliferation and metastasis likely through the Aryl hydrocarbon receptor and ERK-dependent induction of MMP9 and c-myc. Int. J. Oncol. 2016, 49, 2055–2063. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, L.; Li, J.; Li, L.; Wang, H.; Yang, H. Involvement of p38 MAPK pathway in benzo(a)pyrene-induced human hepatoma cell migration and invasion. Environ. Sci. Pollut. Res. Int. 2019, 26, 35838–35845. [Google Scholar] [CrossRef]
- Gao, M.; Li, H.; Dang, F.; Chen, L.; Liu, X.; Gao, J. Induction of proliferative and mutagenic activity by benzo(a)pyrene in PC-3 cells via JAK2/STAT3 pathway. Mutat. Res. 2020, 821, 111720. [Google Scholar] [CrossRef]
- Zou, F.; Zhang, J.; Xiang, G.; Jiao, H.; Gao, H. Association of Matrix Metalloproteinase 9 (MMP-9) Polymorphisms with Asthma Risk: A Meta-Analysis. Can. Respir. J. 2019, 2019, 9260495. [Google Scholar] [CrossRef]
- Chicoine, É.; Estève, P.-O.; Robledo, O.; Van Themsche, C.; Potworowski, E.F.; St-Pierre, Y. Evidence for the role of promoter methylation in the regulation of MMP-9 gene expression. Biochem. Biophys. Res. Commun. 2002, 297, 765–772. [Google Scholar] [CrossRef]
- Kulis, M.; Heath, S.; Bibikova, M.; Queirós, A.C.; Navarro, A.; Clot, G.; Martínez-Trillos, A.; Castellano, G.; Brun-Heath, I.; Pinyol, M.; et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 2012, 44, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Jurkowska, R.Z. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol. Ther. 2024, 264, 108732. [Google Scholar] [CrossRef] [PubMed]
- Pandolfo, A.; Gagliardo, R.P.; Lazzara, V.; Perri, A.; Malizia, V.; Ferrante, G.; Licari, A.; La Grutta, S.; Albano, G.D. Unmasking Pediatric Asthma: Epigenetic Fingerprints and Markers of Respiratory Infections. Int. J. Mol. Sci. 2025, 26, 7629. [Google Scholar] [CrossRef]
- Alaskhar Alhamwe, B.; Khalaila, R.; Wolf, J.; Von Bülow, V.; Harb, H.; Alhamdan, F.; Hii, C.S.; Prescott, S.L.; Ferrante, A.; Renz, H.; et al. Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy Asthma Clin. Immunol. 2018, 14, 39. [Google Scholar] [CrossRef]
- Skvortsova, K.; Masle-Farquhar, E.; Luu, P.-L.; Song, J.Z.; Qu, W.; Zotenko, E.; Gould, C.M.; Du, Q.; Peters, T.J.; Colino-Sanguino, Y.; et al. DNA Hypermethylation Encroachment at CpG Island Borders in Cancer Is Predisposed by H3K4 Monomethylation Patterns. Cancer Cell 2019, 35, 297–314.e8. [Google Scholar] [CrossRef]
- Edrei, Y.; Levy, R.; Kaye, D.; Marom, A.; Radlwimmer, B.; Hellman, A. Methylation-directed regulatory networks determine enhancing and silencing of mutation disease driver genes and explain inter-patient expression variation. Genome Biol. 2023, 24, 264. [Google Scholar] [CrossRef]
- Potaczek, D.P.; Alashkar Alhamwe, B.; Miethe, S.; Garn, H. Epigenetic Mechanisms in Allergy Development and Prevention. Handb. Exp. Pharmacol. 2022, 268, 331–357. [Google Scholar]
- Alashkar Alhamwe, B.; Meulenbroek, L.A.P.M.; Veening-Griffioen, D.H.; Wehkamp, T.M.D.; Alhamdan, F.; Miethe, S.; Harb, H.; Hogenkamp, A.; Knippels, L.M.J.; Von Strandmann, E.P.; et al. Decreased Histone Acetylation Levels at Th1 and Regulatory Loci after Induction of Food Allergy. Nutrients 2020, 12, 3193. [Google Scholar] [CrossRef]
- Bakrim, S.; El Omari, N.; El Yaagoubi, O.M.; Khalid, A.; Abdalla, A.N.; Hamza, S.M.A.; Ibrahim, S.E.; Atifi, F.; Zaid, Y.; Bouyahya, A.; et al. Epi-nutrients for cancer prevention: Molecular mechanisms and emerging insights. Cell Biol. Toxicol. 2025, 41, 116. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Khoi, P.N.; Yin, H.; Sah, D.K.; Kim, N.-H.; Lian, S.; Jung, Y.-D. Sulforaphane Suppresses the Nicotine-Induced Expression of the Matrix Metalloproteinase-9 via Inhibiting ROS-Mediated AP-1 and NF-kappaB Signaling in Human Gastric Cancer Cells. Int. J. Mol. Sci. 2022, 23, 5172. [Google Scholar] [CrossRef] [PubMed]
- Vrânceanu, M.; Galimberti, D.; Banc, R.; Dragoş, O.; Cozma-Petruţ, A.; Hegheş, S.-C.; Voştinaru, O.; Cuciureanu, M.; Stroia, C.M.; Miere, D.; et al. The Anticancer Potential of Plant-Derived Nutraceuticals via the Modulation of Gene Expression. Plants 2022, 11, 2524. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.; Li, Y.; Tollefsbol, T.O. The Effects of Combinatorial Genistein and Sulforaphane in Breast Tumor Inhibition: Role in Epigenetic Regulation. Int. J. Mol. Sci. 2018, 19, 1754. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Xu, X.; Hui, J.; Bao, Y.; Cao, S.; Wu, Q. Epigenetic Alterations in PAH-Induced Childhood Asthma: An Intervention Using Sulforaphane. Toxics 2025, 13, 809. https://doi.org/10.3390/toxics13100809
Jiang X, Xu X, Hui J, Bao Y, Cao S, Wu Q. Epigenetic Alterations in PAH-Induced Childhood Asthma: An Intervention Using Sulforaphane. Toxics. 2025; 13(10):809. https://doi.org/10.3390/toxics13100809
Chicago/Turabian StyleJiang, Xinyao, Xinfeng Xu, Jinyan Hui, Yuling Bao, Shuyuan Cao, and Qian Wu. 2025. "Epigenetic Alterations in PAH-Induced Childhood Asthma: An Intervention Using Sulforaphane" Toxics 13, no. 10: 809. https://doi.org/10.3390/toxics13100809
APA StyleJiang, X., Xu, X., Hui, J., Bao, Y., Cao, S., & Wu, Q. (2025). Epigenetic Alterations in PAH-Induced Childhood Asthma: An Intervention Using Sulforaphane. Toxics, 13(10), 809. https://doi.org/10.3390/toxics13100809