Herbicide Leaching in Soil with Different Properties: Perspectives from Commercial Formulations and Analytical Standards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Characterization
2.2. Experimental Design
2.3. Chemical Products
2.4. Preparation of Columns
2.5. Herbicide Application
2.6. Herbicide Extraction
2.6.1. Extraction Method Validation
2.6.2. Recovery Study
2.7. Chromatographic Conditions
2.8. Statistical Analyses
3. Results and Discussion
3.1. Leaching of Commercial Formulations and Diuron Analytical Standard
3.1.1. Red Latosol (LV)
3.1.2. Haplic Cambisol (CX)
3.1.3. Quartzarenic Neosol (RQ)
3.2. Leaching of Commercial Formulations and Hexazinone Analytical Standard
3.2.1. Red Latosol (LV)
3.2.2. Haplic Cambisol (CX)
3.2.3. Quartzarenic Neosol (RQ)
3.3. Leaching of Commercial Formulations and the Analytical Standard of Sulfometuron-Methyl
3.3.1. Red Latosol (LV)
3.3.2. Haplic Cambisol (CX)
3.3.3. Quartzarenic Neosol (RQ)
3.4. Implications of the Results on Weed Control, Potential Environmental Impact, and Future Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Passos, A.B.R.; Freitas, M.A.M.; Gonçalves, V.A.; Silva, G.S.; da Silva, A.A.; Queiroz, M.E.L.; Lima, C.F.; Silva, D.V. Leaching of sulfentrazone in soils of reforestation in Brazil. Environ. Earth Sci. 2015, 74, 1211–1215. [Google Scholar] [CrossRef]
- Souza, A.S.; Leal, J.F.L.; Langaro, A.C.; Carvalho, G.S.; de Pinho, C.F. Lixiviação e carryover para milho safrinha dos herbicidas imazapyr+ imazapic em solo sob diferentes condições hídricas. Rev. Caatinga 2020, 33, 287–298. [Google Scholar] [CrossRef]
- da Silva, C.C.; de Almeida, A.H.B.; de Freitas, D.V.; da Silva, F.D.; das Chagas, P.S.F.; Silva, D.V. Sorption, desorption, half-life and leaching of sulfometuron-methyl in different soil classes. Rev. Caatinga 2022, 35, 557–566. [Google Scholar] [CrossRef]
- Khan, M.A.; Brown, C.D. Influence of commercial formulation on leaching of four pesticides through soil. Sci. Total Environ. 2016, 573, 1573–1579. [Google Scholar] [CrossRef]
- Carneiro, G.D.O.P.; de Freitas Souza, M.; Lins, H.A.; das Chagas, P.S.F.; Silva, T.S.; da Silva Teófilo, T.M.; Pavão, Q.S.; Granjeiro, L.C.; Silva, D.V. Herbicide mixtures affect adsorption processes in soils under sugarcane cultivation. Geoderma 2020, 379, 114626. [Google Scholar] [CrossRef]
- Reis, F.C.D.; Tornisielo, V.L.; Martins, B.A.; Souza, A.J.D.; Andrade, P.A.M.D.; Andreote, F.D.; Silveira, R.F.; Victória Filho, R. Respiration induced by substrate and bacteria diversity after application of diuron, hexazinone, and sulfometuron-methyl alone and in mixture. J. Environ. Sci. Health Part B 2019, 54, 560–568. [Google Scholar] [CrossRef] [PubMed]
- AGROFIT. Sistema de Agrotóxicos Fitossanitários. Ministério da Agricultura, Pecuária e Abastecimento. 2023. Available online: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed on 12 May 2023).
- Silva, T.S.; De Freitas Souza, M.; Da Silva Teófilo, T.M.; Dos Santos, M.S.; Porto, M.A.F.; Souza, C.M.M.; Dos Santos, J.B.; Silva, D.V. Use of neural networks to estimate the sorption and desorption coefficients of herbicides: A case study of diuron, hexazinone, and sulfometuron-methyl in Brazil. Chemosphere 2019, 236, 124333. [Google Scholar] [CrossRef] [PubMed]
- Shaner, D.L. (Ed.) Herbicide Handbook, 10th ed.; Weed Science Society of America: Lawrence, KS, USA, 2014; 513p. [Google Scholar]
- Pesticide Properties Database PPDB, University of Hertfordshire. 2023. Available online: http://sitem.herts.ac.uk/aeru/footprint/index2.htm (accessed on 8 April 2023).
- Silva, T.S.; Arneson, N.J.; DeWerff, R.P.; Smith, D.H.; Silva, D.V.; Werle, R. Preemergence Herbicide Premixes Reduce the Risk of Soil Residual Weed Control Failure in Corn. Weed Technol. 2023, 37, 410–421. [Google Scholar] [CrossRef]
- Schuler, L.J.; Rand, G.M. Aquatic risk assessment of herbicides in freshwater ecosystems of south Florida. Arch. Environ. Contam. Toxicol. 2008, 54, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Földényi, R.; Tóth, Z.; Samu, G.; Érsek, C. Study of sorption of two sulfonylurea type of herbicides and their additives on soils and soil components. J. Environ. Sci. Health Part B 2013, 48, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Kah, M.; Weniger, A.K.; Hofmann, T. Impacts of (Nano) formulations on the Fate of an Insecticide in Soil and Consequences for Environmental Exposure Assessment. Environ. Sci. Technol. 2016, 50, 10960–10967. [Google Scholar] [CrossRef]
- Ertli, T.; Marton, A.; Földényi, R. Effect of pH and the role of organic matter in the adsorption of isoproturon on soils. Chemosphere 2004, 57, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Embrapa. Sistema Brasileiro de Classificação de Solos; Centro Nacional de Pesquisa de Solos: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solos, 3rd ed.; Embrapa Solos: Brasília, Brazil, 2017; 573p. [Google Scholar]
- Santos, E.; Pires, F.R.; Ferreira, A.D.; Egreja Filho, F.B.; Madalão, J.C.; Bonomo, R.; Rocha Junior, P.R.D. Phytoremediation and natural attenuation of sulfentrazone: Mineralogy influence of three highly weathered soils. Int. J. Phytoremediat. 2019, 21, 652–662. [Google Scholar] [CrossRef]
- Chen, P.Y. Table of Key Lines in X-ray Powder Diffraction Patterns of Minerals in Clays and Associated Rocks; Geological Survey Occasional Paper 21; Indiana Geological Survey Report: Bloomington, IN, USA, 1977; p. 67. [Google Scholar]
- OECD. Test No. 312: Leaching in Soil Columns; OECD Guidelines for the Testing of Chemicals, Section 3. 2004. Available online: https://archive.epa.gov/scipoly/sap/meetings/web/pdf/312_soil_column_leaching.pdf (accessed on 15 July 2019).
- Pang, N.; Wang, T.; Hu, J. Method validation and dissipation kinetics of four herbicides in maize and soil using QuEChERS sample preparation and liquid chromatography tandem mass spectrometry. Food Chem. 2016, 190, 793–800. [Google Scholar] [CrossRef]
- ANVISA. Agência Nacional de Vigilância Sanitária. Guia Para Tratamento Estatístico da Validação Analítica. 2017. Available online: http://portal.anvisa.gov.br/documents/10181/2721567/%281%29Guia+10+v1+Tratamento+estatistico+validacao+analitica.pdf/85b0e965-d72f-4b7c-bd2e-17de13af1976 (accessed on 14 July 2019).
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Bartlett, M.S. The effect of standardization on a χ2 approximation in factor analysis. Biometrika 1951, 38, 337–344. [Google Scholar] [CrossRef]
- Team, R. Core. R: A Language and Environment for Statistical Computing, Version 3.6.3; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Liu, Y.; Xu, Z.; Wu, X.; Gui, W.; Zhu, G. Adsorption and desorption behavior of herbicide diuron on various Chinese cultivated soils. J. Hazard. Mater. 2010, 178, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Mendes, K.F.; Inoue, M.H.; Goulart, M.O.; Pimpinato, R.F.; Tornisielo, V.L. Leaching of a mixture of hexazinone, sulfometuron-methyl, and diuron applied to soils of contrasting textures. Water Air Soil Pollut. 2016, 227, 268. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, P.; Liu, D.; Bu, H.; Song, H.; Qin, Z.; He, H. Pyrolysis behaviors of organic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals. Appl. Clay Sci. 2018, 153, 205–216. [Google Scholar] [CrossRef]
- Cornejo, J.; Celis, R.; Pavlovic, I.; Ulibarri, M.A. Interactions of pesticides with clays and layered double hydroxides: A review. Clay Miner. 2008, 43, 155–175. [Google Scholar] [CrossRef]
- Nogueira Bandeira, J.; Pacheco Batista, L.; das Chagas, P.S.F.; Severo Silva, T.; Fernandes, B.C.C.; de Andrade, E.M.; Valadão Silva, D. Leaching of Herbicides in Soil under the Influence of Different Rainfall Intensities. Water Air Soil Pollut. 2022, 233, 188. [Google Scholar] [CrossRef]
- Reis, F.C.; Tornisielo, V.L.; Pimpinato, R.F.; Martind, B.A.; Victória Filho, R. Leaching of diuron, hexazinone, and sulfometuron-methyl applied alone and in mixture in soils with contrasting textures. J. Agric. Food Chem. 2017, 65, 2645–2650. [Google Scholar] [CrossRef] [PubMed]
- Prado, B.; Duwig, C.; Hidalgo, C.; Müller, K.; Mora, L.; Raymundo, E.; Etchevers, J.D. Transport, sorption and degradation of atrazine in two clay soils from Mexico: Andosol and Vertisol. Geoderma 2014, 232, 628–639. [Google Scholar] [CrossRef]
- Kumar, Y.B.; Singh, N.; Singh, S.B. Removal of herbicides mixture of atrazine, metribuzin, metolachlor and alachlor from water using granular carbon. Indian J. Chem. Technol. 2017, 24, 400–404. [Google Scholar]
- Zuo, X.; Zhao, H.; Zhao, X.; Zhang, T.; Guo, Y.; Wang, S.; Drake, S. Spatial pattern and heterogeneity of soil properties in sand dunes under grazing and restoration in Horqin Sandy Land, Northern China. Soil Tillage Res. 2008, 99, 202–212. [Google Scholar] [CrossRef]
- Dores, E.F.; De Souza, L.; Villa, R.D.; Pinto, A.A. Assessment of metolachlor and diuron leaching in a tropical soil using undisturbed soil columns under laboratory conditions. J. Environ. Sci. Health Part B 2013, 48, 114–121. [Google Scholar] [CrossRef]
- das Chagas, P.S.F.; De Freitas Souza, M.; Freitas, C.D.M.; De Mesquita, H.C.; Silva, T.S.; Dos Santos, J.B.; De Jesus Passos, A.B.R.; De Medeiros, R.C.A.; Silva, D.V. Increases in pH, Ca2+, and Mg2+ alter the retention of diuron in different soils. Catena 2020, 188, 104440. [Google Scholar] [CrossRef]
- Silva, A.A.; D’Antonio, L.; Vivian, R.; Oliveira, R.S., Jr. Comportamento de herbicidas no solo. In Aspectos da Biologia e Manejo Das Plantas Daninhas; Monquero, P.A., Ed.; RiMa: São Carlos, Brazil, 2014. [Google Scholar]
- dos Santos, L.O.G.; de Freitas Souza, M.; das Chagas, P.S.F.; da Teófilo, T.M.S.; Formiga, M.A.P.; Cássia Araújo de Medeiros, R.; Silva, D.V. Multivariate analysis and multiple linear regression as a tool to estimate the behavior of hexazinone in Brazilian soils. Environ. Monit. Assess. 2019, 191, 1–11. [Google Scholar] [CrossRef]
- da Silva, C.C.; de Freitas Souza, M.; de Jesus Passos, A.B.R.; Silva, T.S.; da Silva Borges, M.P.; dos Santos, M.S.; Silva, D.V. Risk of environmental contamination due to the hexazinone application in agricultural soils in northeastern Brazil. Geoderma Reg. 2022, 28, e00481. [Google Scholar] [CrossRef]
- Cederlund, H.; Börjesson, E. Hot foam for weed control—Do alkyl polyglucoside surfactants used as foaming agents affect the mobility of organic contaminants in soil? J. Hazard. Mater. 2016, 314, 312–317. [Google Scholar] [CrossRef] [PubMed]
- El-Nahhal, Y.; Hamdona, N. Adsorption, leaching and phytotoxicity of some herbicides as single and mixtures to some crops. J. Assoc. Arab. Univ. Basic Appl. Sci. 2017, 22, 17–25. [Google Scholar] [CrossRef]
- Pose-Juan, E.; Rial-Otero, R.; Paradelo, M.; López-Periago, J.E. Influence of the adjuvants in a commercial formulation of the fungicide “Switch” on the adsorption of their active ingredients: Cyprodinil and fludioxonil, on soils devoted to vineyard. J. Hazard. Mater. 2011, 193, 288–295. [Google Scholar] [CrossRef]
- Oukali-Haouchine, O.; Barriuso, E.; Mayata, Y.; Moussaoui, K.M. Factors affecting metribuzin retention in Algerian soils and assessment of the risks of contamination. Environ. Monit. Assess. 2013, 185, 4107–4115. [Google Scholar] [CrossRef] [PubMed]
- Azcarate, M.P.; Montoya, J.C.; Koskinen, W.C. Sorption, desorption and leaching potential of sulfonylurea herbicides in Argentinean soils. J. Environ. Sci. Health Part B 2015, 50, 229–237. [Google Scholar] [CrossRef]
- Thevenot, M.; Dousset, S. Compost effect on diuron retention and transport in structured vineyard soils. Pedosphere 2015, 25, 25–36. [Google Scholar] [CrossRef]
- das Chagas, P.S.F.; de Freitas Souza, M.; Dombroski, J.L.D.; de Oliveira Junior, R.S.; de Sousa Nunes, G.H.; Pereira, G.A.M.; Silva, T.S.; Passos, A.B.R.; dos Santos, J.B.; Silva, D.V. Multivariate analysis reveals significant diuron-related changes in the soil composition of different Brazilian regions. Sci. Rep. 2019, 9, 7900. [Google Scholar] [CrossRef] [PubMed]
- Jhala, A.J.; Singh, M. Leaching of indaziflam compared with residual herbicides commonly used in Florida citrus. Weed Technol. 2012, 26, 602–607. [Google Scholar] [CrossRef]
- Inoue, M.H.; Mendes, K.F.; Goulart, M.O.; Mertens, T.B.; de Souza, O.C.; Zubko, M.A. Leaching potential and residual effect of diuron+ hexazinone+ sulfometuron-methyl in soils of contrasting textures. Amazon. J. Agric. Environ. Sci. 2015, 58, 418–426. [Google Scholar]
- Derr, J.; Robertson, L.; Watson, E. Leaching behavior of two pendimethalin formulations in a soilless growing medium. Weed Sci. 2015, 63, 555–560. [Google Scholar] [CrossRef]
- Hall, K.E.; Ray, C.; Ki, S.J.; Spokas, K.A.; Koskinen, W.C. Pesticide sorption and leaching potential on three Hawaiian soils. J. Environ. Manag. 2015, 159, 227–234. [Google Scholar] [CrossRef]
- Carpio, M.J.; Rodríguez-Cruz, M.S.; García-Delgado, C.; Sánchez-Martín, M.J.; Marín-Benito, J.M. Mobility monitoring of two herbicides in amended soils: A field study for modeling applications. J. Environ. Manag. 2020, 260, 110161. [Google Scholar] [CrossRef] [PubMed]
Attributes | Soils | ||
---|---|---|---|
LV | CX | RQ | |
Texture | Sandy loam | Sandy clay | Loamy sand |
Sand (g kg−1) | 810.00 | 500.00 | 840.00 |
Silt (g kg−1) | 50.00 | 150.00 | 100.00 |
Clay (g kg−1) | 140.00 | 350.00 | 60.00 |
pH (water) | 4.70 | 7.60 | 4.90 |
OM (g kg−1) | 9.24 | 14.06 | 12.05 |
P (mg dm−3) | 5.10 | 4.50 | 4.30 |
K (mg dm−3) | 55.50 | 574.50 | 95.20 |
Ca2+ (cmolc dm−3) | 1.10 | 11.70 | 1.40 |
Mg2+ (cmolc dm−3) | 0.20 | 1.00 | 0.50 |
Al3+ (cmolc dm−3) | 0.10 | 0.00 | 0.15 |
H + Al (cmolc dm−3) | 1.65 | 0.00 | 1.65 |
CEC (cmolc dm−3) | 3.16 | 14.29 | 3.99 |
V (%) | 48.00 | 100.00 | 50.00 |
m (%) | 6.00 | 0.00 | 6.00 |
Herbicide | Linearity | Matrix Effect | Repeatability | LOD | LOQ | |
---|---|---|---|---|---|---|
Interval µg kg−1 | R2 | (%) | RSD (%) | µg kg−1 | µg kg−1 | |
Diuron | 0.5–50 | 0.9998 | 13.38 | 1.74–6.67 | 0.91 | 2.76 |
Hexazinone | 0.5–50 | 0.9980 | 5.57 | 1.22–3.69 | 1.28 | 3.91 |
Sulfometuron-methyl | 0.5–50 | 0.9996 | −3.59 | 1.46–5.50 | 0.81 | 2.46 |
Herbicide | Concentration | |||||
---|---|---|---|---|---|---|
1 µg kg−1 | 10 µg kg−1 | 100 µg kg−1 | ||||
Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | |
Diuron | 109.87 | 3.25 | 100.33 | 2.28 | 106.16 | 6.36 |
Hexazinone | 106.32 | 2.48 | 94.69 | 7.31 | 96.78 | 3.64 |
Sulfometuron-methyl | 81.37 | 1.24 | 87.01 | 7.59 | 84.15 | 3.05 |
Herbicide | Retention Time (min−1) | Quantification | Confirmation | ||||
---|---|---|---|---|---|---|---|
MRM a Transition m/z | DP b (V) | CE c (V) | MRM a Transition m/z | DP b (V) | CE c (V) | ||
Diuron | 2.51 | 233.0 ˃ 72.0 | 28 | 19 | 233.0 ˃ 160.0 | 29 | 25 |
Hexazinone | 2.10 | 253.1 ˃ 70.3 | 29 | 54 | 253.1 ˃ 170.5 | 16 | 30 |
Sulfometuron-metyl | 2.18 | 365 ˃ 150.0 | 28 | 17 | 365.0 ˃ 106.8 | 19 | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Medeiros, R.d.C.A.; Silva, T.S.; Teófilo, T.M.d.S.; da Silva, F.D.; Souza, M.d.F.; Passos, A.B.R.d.J.; Fernandes, B.C.C.; Lins, H.A.; Chagas, P.S.F.d.; Souza, C.M.M.; et al. Herbicide Leaching in Soil with Different Properties: Perspectives from Commercial Formulations and Analytical Standards. Toxics 2024, 12, 199. https://doi.org/10.3390/toxics12030199
de Medeiros RdCA, Silva TS, Teófilo TMdS, da Silva FD, Souza MdF, Passos ABRdJ, Fernandes BCC, Lins HA, Chagas PSFd, Souza CMM, et al. Herbicide Leaching in Soil with Different Properties: Perspectives from Commercial Formulations and Analytical Standards. Toxics. 2024; 12(3):199. https://doi.org/10.3390/toxics12030199
Chicago/Turabian Stylede Medeiros, Rita de Cássia Araújo, Tatiane Severo Silva, Taliane Maria da Silva Teófilo, Francisca Daniele da Silva, Matheus de Freitas Souza, Ana Beatriz Rocha de Jesus Passos, Bruno Caio Chaves Fernandes, Hamurábi Anizio Lins, Paulo Sergio Fernandes das Chagas, Carolina Malala Martins Souza, and et al. 2024. "Herbicide Leaching in Soil with Different Properties: Perspectives from Commercial Formulations and Analytical Standards" Toxics 12, no. 3: 199. https://doi.org/10.3390/toxics12030199
APA Stylede Medeiros, R. d. C. A., Silva, T. S., Teófilo, T. M. d. S., da Silva, F. D., Souza, M. d. F., Passos, A. B. R. d. J., Fernandes, B. C. C., Lins, H. A., Chagas, P. S. F. d., Souza, C. M. M., Holanda, I. S. A., & Silva, D. V. (2024). Herbicide Leaching in Soil with Different Properties: Perspectives from Commercial Formulations and Analytical Standards. Toxics, 12(3), 199. https://doi.org/10.3390/toxics12030199