Chiral Analysis of Pesticides and Emerging Contaminants by Capillary Electrophoresis—Application to Toxicity Evaluation
Abstract
:1. Introduction
2. Chiral Analysis of Pesticides and Emerging Contaminants by CE
2.1. Insecticides
2.2. Herbicides
Analyte (Chemical family) | Applications | Sample Treatment | Separation Conditions | Analysis Time | LOD (Rs) | Ref. |
---|---|---|---|---|---|---|
Pesticides | ||||||
Insecticides | ||||||
Cis-Bifenthrin (Pyrethroid) | Enantiomeric analysis of commercial agrochemical formulations. | Dilution of the liquid commercial formulation in MeOH. | BGE: 100 mM borate buffer, pH 8.0 + 20 mM TM-β-CD + 100 mM SC + 2 M Urea Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 15 °C; V: +30 kV; Injection: 50 mbar × 2 s; Detection: UV 210 nm | 9.2 min | 4.8 mg L−1 (2.8) | [63] |
Tetramethrin (Pyrethroid) | Enantiomeric analysis of commercial agrochemical formulations. | Dilution of the commercial formulation in the buffer containing 2 M urea and 100 mM SDC. | BGE: 100 mM borate buffer, pH 8.0 + 15 mM HP-β-CD + 50 mM SDC Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 15 °C; V: +20 kV; Injection: 50 mbar × 2 s; Detection: UV 220 ± 4 nm | <12.5 min | Trans-tetramethrin: 1.30 mg L−1 (1.7) Cis-tetramethrin: 0.97 mg L−1 (1.3) | [20] |
1- Pyraclofos 2- Profenofos 3- Prothiofos 4- Sulprofos (Organophosphorus) | Individual chiral separation. Application in the enantiomeric analysis of soil. | Soil sample was grounded and dried at RT. A volume of 10 mL of MeOH was added to the enriched sample, which was left to stand for 1 h. After shaking for 10 min, the pesticides were extracted with 40 mL MeOH and 10 mg activated charcoal. Then, the mixture was shaken for 30 min, filtered, and extracted with 25 mL MeOH, which was evaporated until it reached 1 mL. | 1- BGE: 100 mM SDS + 50 mM SC + MeOH/ACN (4:1, v/v) 2- BGE: 50 mM SC + 20 mM γ-CD + MeOH/H2O/ACN (5:4:1, v/v/v) 3- BGE: 75 mM SC + 20 mM γ-CD + MeOH/H2O/ACN (5:4:1, v/v/v) 4- BGE: 50 mM SC + 10 mM γ-CD + MeOH/H2O/ACN (5:4:1, v/v/v) Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 25 °C; V: +30 kV; Injection: 0.5 psi × 5 s; Detection: UV 200 nm | 1- 28 min 2- 15 min 3- 22 min 4- 18 min | 1- n.d. a (>2.0) 2- n.d. (1.8) 3- n.d. (1.8) 4- n.d. (1.8) | [36] |
1- Malathion 2- Malaoxon 3- Isomalathion 4- Phenthoate 5- Isofenphos 6- Ruelene 7- Phenamiphos 8- Naled (Organophosphorus) | Individual chiral separation. Application in the enantiomeric analysis of malathion in tap water. | SPE with ISOLUTE disk (C8/ENV +) of the spiked sample. Elution with EtOAc (50:50, v/v), evaporation of the extract to dry it, and reconstitution of the residue in MeOH. | 1, 3, 4, 7- BGE: 25 mM Tris buffer, pH 7.0 + 20 mM CM-β-CD 8- BGE: 25 mM borate buffer, pH 9.0 + 10 mM CM-β-CD Capillary: 75 µm i.d. × 61.5 cm e.l. (1–4) and 50 µm i.d. × 65 cm e.l. (5); Ta: 25 °C; V: +24 kV; Injection: 50 mbar × 3 s; Detection: UV; 1- and 4- 230 nm; 2- and 3- 254 nm; 5- 214 nm | 1- <15 min 2- U b 3- 17 min 4- 11.8 min 5- U 6- U 7- 12 min 8- <8 min | 1- E1: 50 mg L−1 E2: 50 mg L−1 (1.4) 3- n.d. (E1, E2: 2.5 E3, E4: 1.1) 4- n.d. (2.0) 7- n.d. (0.6) 8- n.d. (>5.0) | [54] |
Sulfoxaflor (Sulfoximine) | Enantiomeric analysis of commercial agrochemical formulations. | Commercial formulation solutions were diluted in H2O, centrifugated, and filtered. | BGE: 100 mM borate buffer, pH 9.0 + 15 mM Succ-β-CD Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 15 °C; V: +20 kV; Injection: 50 mbar × 8 s; Detection: UV 205 ± 30 nm | 13.8 min | E1: 0.9 mg L−1 E2: 1.0 mg L−1 (E1/E2: 2.1) E3: 0.9 mg L−1; (E2/E3: 1.5) E4: 0.9 mg L−1 (E3/E4: 2.6) | [19] |
Herbicides | ||||||
Glufosinate (Phosphinate) | Enantiomeric analysis in river water. | The spiked sample was acidified and mixed with TiO2. SPE extraction (elution with NH3). Evaporation of the extract to dry it out and reconstitution in Na2CO3. Prior to CE analysis, in-capillary concentration using LVSS (–30 kV for 10.5–11 min) was determined. | Analyte derivatized with dansyl chloride. BGE: 2 mM phosphate buffer, pH 6.5 + 17 mM γ-CD Capillary: 50 µm i.d. × 69 cm e.l.; Ta: 25 °C; V: +30 kV; Injection: +30 kV × 17–18 min; Fluorescence detection: λexcitation at 327 nm and λemission at 557 nm | ≈35 min | 0.47 µg L−1 (2.5) | [40] |
Dichlorprop (Phenoxy acid) | Enantiomeric analysis of (a) commercial agrochemical formulations; (b) soils. Degradation study in soil. | (a) Commercial formulation was diluted in H2O. (b) Extract from spiked soil sample with ACN/H2O/AcOH (80:20:2, v/v/v) by UAE. Centrifugation, decantation, and LLE with DCM. Dried out with Na2SO4, washed with DCM, evaporated to dry it out, and reconstituted in ACN. | BGE: 50 mM acetate buffer, pH 4.7 + 25 mM TM-β-CD Capillary: 75 µm i.d. × 50 cm e.l.; Ta: 30 °C; V: +20 kV; Injection: hydrodynamic 30 nL × 5 s; Detection: UV 230 nm | 16.5 min | (a) 0.1 mg L−1 (b) 0.5 mg L−1 (2.0) | [52] |
Dichlorprop (Phenoxy acid) | Enantiomeric analysis and study of stereoselective degradation in soil. | Drying, sieving, spiking of the sample, and followed by incubation in the dark at 20–23 °C for 23 days. Daily extraction of a portion with MeOH, centrifugation, dilution of the supernatant with H2O, and adjustment to pH of 2.0. LLE with DCM, evaporation of the organic phase to dry it out, and reconstitution in MeOH. | Mobile phase: 4 mM TEA/AcOH in ACN/MeOH (9:1, v/v) CEC column: stationary phase of (+)-1-(4-aminobutyl)-(5R,8S,10R)-terguride; 100 µm i.d. × 25.5 cm e.l.; Ta: 25 °C; V: −15 kV; Injection: −2 kV × 3 s; Detection: UV 254 nm | <6 min | S-dichlorprop 0.46 ng R-dichlorprop 0.42 ng (1.8) | [34] |
1- Dichlorprop 2- Fenoprop (Phenoxy acids) | Simultaneous enantiomeric analysis in lake water. | SPE with C18 membrane disc of the spiked sample, elution with MeOH, and partial evaporation of the extract. | BGE: 100 mM phosphate buffer, pH 5.6 + 1 mM β-CD + 4 mM α-CD Capillary: 50 µm i.d. × 40 cm e.l.; Ta: 22 °C; V: +25 kV; Injection: pressure × 4 s; Detection: UV 200 nm | <7 min | 1- <1 µg L−1 (1.2) 2- <1 µg L−1 (1.4) | [55] |
1- Mecoprop 2- Fenoprop 3- Fluazifop 4- Haloxyfop (Phenoxy acids) | Stereoselective simultaneous analysis of acid herbicides in river water and groundwater. | SPE with C18H18 cartridges and elution with MeOH. L-B-phenyl lactic acid and 37% of NH3/MeOH (1:4) were added to the solution and concentrated under vacuum. Solvent was evaporated under a stream of He and redissolved in BR buffer (pH 5.0) containing MeOH (20%, v/v). WSs were spiked. | BGE: 75 mM BR buffer, pH 5.0 + 10 mM γ-CD + 8 mM VC Capillary: 50 µm i.d. × 33 cm e.l.; Injection: 34.47 kPa × 4 s; Ta: 25 °C; V: +15 kV; Detection: UV 205 nm | 13 min | 1 × 10−6 M (n.d.) | [37] |
1- Fenoprop 2- Mecoprop 3- Dichlorprop 4- 4-CPPA 5- 3-CPPA 6- 2-PPA (Phenoxy acids) | Simultaneous enantiomeric analysis in water samples. | WS1 and WS3 were stored for one month and WS2 for three months at 4 °C and then they were filtered. SPE with Oasis HLB and C18 cartridges and elution with MeOH. The extract was evaporated to dry it out and reconstituted in 500 µL of MeOH/H2O (10:90, v/v). | BGE: 50 mM phosphate buffer, pH 7.0 + 7 mM HP-β-CD + 20 mM TM-β-CD Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 15 °C; V: +25 kV; Injection: 50 mbar × 10 s; Detection: UV 4- and 6- 194 nm, 2-, 3-, and 5- 200 nm, and 1- 210 nm | 11 min | 1- 0.7 mg L−1 (1.2) 2- 0.8 mg L−1 (2.7) 3- 1 mg L−1 (2.0) 4- 1.2 mg L−1 (1.7) 5- E1: 0.9 E2: 0.8 mg L−1 (1.2) 6- E1: 1.5 E2: 1.4 mg L−1 (1.6) | [60] |
a) 1- 2-phenoxyprop 2- Dichlorprop 3- Fenoprop 4- Fluazifop 5- Haloxyfop 6- Diclofop (Phenoxy acids) b) 1- Mecoprop 2- Flamprop 3- Fenoxaprop (Phenoxy acids) | Two simultaneous enantiomeric separations of mixtures (a) and (b). Enantiomeric analysis of haloxyfop in soil. | Soil sample was spiked with the commercial herbicide formulation of haloxyfop, followed by hydrolysis. LLE with DCM of the acid hydrolyzate mixed with 1M MeOH/HCl (9:1, v/v) and H2O. Partial evaporation of the organic extract. | BGE: 75 mM BR buffer, pH 5.0 + 6 mM VC Capillary: 50 µm i.d. × 33 cm e.l.; Ta: 25 °C; V: +20 kV; Injection: 34.5 kPa × 2 s; Detection: UV 210 nm | (a) 8.4 min (b) 8.0 min | (a) 1- n.d. (2.4) 2- n.d. (3.2) 3- n.d. (4.5) 4- n.d. (1.4) 5- 0.19 mg L−1 (3.7) 6- n.d. (3.6) (b) 1- n.d. (4.3) 2- n.d. (0.7) 3- n.d. (2.0) | [38] |
Metolachlor and its metabolites ESA and OXA (Chloroacetinalides) | Enantiomeric analysis and degradation study of metolachlor in water and soil samples. | WS: SPE with C18 cartridge of the spiked sample. Elution of metolachlor with EtOAc (analysis by LC-MS) and of OXA and ESA with MeOH (analysis by CE-UV). Evaporation and reconstitution in MeOH/H2O (50:50, v/v). Soil sample: Degradation studies by accelerated extraction with iPrOH SPE of the extract as in the previous section. | BGE: 75 mM borate buffer, pH 9.0 + γ-CD (2.5%, w/v) + MeOH (20%, v/v) Capillary: 75 µm i.d. × 50 cm l.e.; Ta: 15 °C; V: +30 kV; Injection: 0.5 psi × 10 s; Detection: UV | 24 min | 5 µg L−1 (n.d.) | [41] |
Imazaquin (Imidazolinone) | Enantiomeric analysis and degradation study in soil. | Soil sample was mixed with NaOH, shacked, and centrifuged, and the supernatant was decanted. The extract was acidified (pH 2.8) and centrifuged, and the supernatant was decanted and mixed with DCM by shaking. The DCM extract was centrifuged (to eliminate emulsion and settle any fine particulates). The DCM layers were combined, dried, and then concentrated to near dryness. Then they were redissolved in phosphate buffer (pH 10.1). | BGE: 50 mM phosphate buffer, pH 10.1 + 30 mM HP-β-CD Capillary: 75 µm i.d. × 50 cm e.l.; Injection: 0.5 psi × 8 s; Ta: 15 °C; +20 kV; Detection: UV 214 nm | 14 min | 9.7 × 10−4–9.8 × 10−4 mg kg−1 (1.37) | [42] |
1- Carfentrazone-ethyl 2- Carfentrazone (Triazoles) | (a) Enantiomeric analysis of carfentrazone-ethyl in a commercial herbicide formulation. (b) Enantiomeric analysis and degradation studies of both compounds in sand and soil samples. | (a) Dilution of commercial formulation in MeOH. (b) Spiked sand and soil samples were shaken, incubated for 0, 1, 3, 4, and 7 days, extracted with acetate buffer (pH of 5.0), and centrifuged, and supernatants were collected. | BGE: 25 mM acetate buffer, pH 5.0 + captisol (2.5%, w/v) Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 30 °C; V: −30 kV; Injection: 50 mbar × 10 s; Detection: UV 245 ± 4 nm | 6.8 min | Carfentrazone-ethyl: E1: 0.4 mg L−1 E2: 0.4 mg L−1 (5.1) Carfentrazone: E1: 0.3 mg L−1 E2: 0.3 mg L−1 (5.0) | [43] |
Fungicides | ||||||
1- Triadimefon 2- Triadimenol (Triazoles) | Simultaneous enantiomeric analysis and soil biotransformation studies of triadimefon in triadimenol. | H2O was added to the spiked sample which was incubated at 35 °C for 20 days. Subsequently, LLE with acetone; centrifugation and dilution (1:5, v/v) of the supernatant with H2O; SPE preconcentration with ODS-6 cartridge; elution with acetone; evaporation of the extract to dry it out; and reconstitution in buffer. | BGE:—mM phosphate buffer, pH 3.0 + S-β-CD (2%, w/v) Capillary: 50 µm i.d. × 53 cm e.l.; Ta:—°C; V: −20 kV; Injection:—; Detection: UV 220 nm | <30 min | n.d. (n.d.) | [44] |
1- Propiconazole 2- Tebuconazole 3- Fenbuconazole (Triazoles) | Simultaneous enantiomeric separation and determination in grapes. | Grape samples were chopped and homogenized. Portions of sample were spiked and homogenized with MeOH and H2O by sonication. Filtered and passed under vacuum through a C18 cartridge. Fungicides were eluted with DCM and concentrated to dry them out. Then, they were reconstituted with buffer solution (without micellar phase). | BGE: 25 mM phosphate buffer, pH 3.0 + 30 mM HP-γ-CD + 50 mM SDS + MeOH/ACN (2:1, v/v) Capillary: 50 µm i.d. × 56 cm e.l.; Injection: sweeping, 50 mbar × 120 s; Ta: 20 °C; V: −25 kV; Detection: UV 200 nm | ≈17 min | 1- 0.1 mg L−1 (>1.5) 2- 0.1 mg L−1 (>1.5) 3- 0.09 mg L−1 (>1.5) | [45] |
Propiconazole (1- major enantiomers and 2- minor enantiomers) (Triazole) | Enantiomeric analysis and degradation study in two soil–water slurries. | Sample spiking, centrifugation, and filtration. | BGE: 25 mM phosphate buffer, pH 7.0 + 30 mM HP-γ-CD + 75 mM SDS + MeOH (10%, v/v) + ACN (5%, v/v) Capillary: 75 µm i.d. × 50 cm e.l.; T: 23 °C; V: +30 kV; Injection: hydrodynamic × 6.5 s; Detection: UV 190 nm | 11.9 min | 1- 0.75 mg L−1 2- 0.09 mg L−1 (2.0) | [78] |
1- Prothioconazole 2- Prothioconazole-desthio (Triazoles) | (a) Enantiomeric analysis of prothioconazole in commercial agrochemical formulations. (b) Simultaneous enantiomeric analysis of prothioconazole and prothioconazole-desthio and degradation studies in sand and soil samples. | (a) Dilution of the agrochemical formulation in MeOH. (b) Sand and soil samples were spiked with compound racemates, shaken, incubated for 0 and 18 h or 3 and 7 days, extracted with H2O, and centrifuged, and the supernatants were collected. | (a) BGE: 100 mM borate buffer, pH 9.0 + 5 mM TM-β-CD Capillary: 50 µm i.d. × 50 cm e.l; Ta: 15 °C; V: +30 kV; Injection: 50 mbar × 10 s; Detection: UV 205 ± 4 nm (b) BGE: 75 mM borate buffer, pH 9.0 + 10 mM S-γ-CD Capillary: 50 µm i.d. × 50 cm e.l; Ta: 20 °C; V: +30 kV; Injection: 50 mbar × 6 s; Detection: UV 205 ± 4 nm | (a) 4.5 min (b) 5.5 min | (a) Prothioconazole 0.7 mg L−1 (2.8) (b) Prothioconazole 0.9 mg L−1 (1.9) Prothioconazole-desthio 1.3 mg L−1 (8.2) | [46] |
Imazalil (Imidazol) | Enantiomeric analysis of imazalil in orange. | Extraction with ACN under basic conditions. The extract was purified by SPE with Sep-Pak plus PS-2 cartridge. | BGE: 50 mM phosphate buffer, pH 3.0 + 4 mM HP-α-CD + 5 mM ammonium dihydrogenphosphate Capillary: 75 µm i.d. × 56 cm e.l.; Ta: 20 °C; V: +25 kV; Injection: 50 mbar × 2 s; Detection: UV 200 nm | ≈14.2 min | 0.1 mg L−1 (≈6) | [48] |
Imazalil (Imidazol) | Enantiomeric analysis and study of degradation of racemate in soils. | The samples were spiked, extracted with MeOH, and centrifuged, and the supernatant was partially evaporated and diluted (1:10, v/v) in buffer. | BGE: 50 mM phosphate buffer, pH 3.0 + 5 mM β-CD Capillary: 75 µm i.d. × 40 cm e.l.; Ta: 20 °C; V: +25 kV; Injection: 0.5 psi × 5 s; Detection: UV 214 nm | 9.5 min | (−)- 0.24 mg L−1 (+)- 0.26 mg L−1 (4.0) | [47] |
Vinclozolin (Dicarboxamide) | Enantiomeric analysis in wine samples. | SPE with Sep-Pak plus PS-2 cartridges, elution with ACN and evaporation of the extract. Redissolved in ACN. The extract was injected onto an RSpak DE-613 column with a mobile phase of ACN (62%, v/v). The fraction containing vinclozolin was combined and diluted with H2O. Sample dilution and passed through a Sep-Pak Plus PS-2 cartridge. The resulting residue was redissolved in ACN (20%, v/v). | BGE: 5 mM borate buffer, pH 8.5 + 50 mM γ-CD + 100 mM SDS + 20 mM phosphate Capillary: 75 µm i.d. × 56 cm e.l.; Ta: 20 °C; V: +20 kV; Detection: UV 203 nm | ≈18.5 min | n.d. (>2) | [56] |
1- Metalaxyl 2- Benalaxyl (Acylamines) | Individual enantiomeric separation. Application in the chiral analysis in solid and liquid commercial agrochemical samples. | Solid samples: Dissolution in MeOH. Liquid samples: Dilution in MeOH or BGE/H2O (50:50, v/v). | 1- BGE: 50 mM MES buffer, pH 6.5 + 15 mM Succ-γ-CD + 2 M Urea 2- BGE: 50 mM MES buffer, pH 6.5 + 5 mM Succ-β-CD + 2 M Urea Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 15 °C; V: +30 kV, Injection: 25 mbar × 3 s; Detection: UV 210 nm | 1- 11.5 min 2- 7.5 min | 1- 4.2 mg L−1 (3.1) 2- 5.6 mg L−1 (15.0) | [64] |
Nematicides | ||||||
1- Fenamiphos and their metabolites (2- fenamiphos sulfone, 3- fenamiphos sulfoxide) (Organophosphorus) | Simultaneous enantiomeric analysis in soil. | Drying, crushing, sieving, and spiking of the sample. (1) PLE at 100 °C, 1500 psi for 5 min with EtOH, EtOAc, or heptane (individually or in mixtures) and dried sample with Na2SO4. (2) SPE: extraction with MeOH and centrifugation. Subsequently, evaporation to dry it out and reconstitution in 5 mM AcOH/NH3 buffer (pH of 5.0)-MeOH (15%, v/v). | BGE: 50 mM ammonium acetate, pH 5.0 + 25 mM CM-β-CD + 10 mM HP-α-CD + MeOH (5%, v/v) Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 25 °C; V: +25 kV; Injection: 0.5 psi × 5 s; Detection: UV 214 nm | 46 min | 1- E1: 4.64 mg kg−1 E2: 4.66 mg kg−1 (1.7) 2- E1: 0.62 mg kg−1 E2: 0.51 mg kg−1 E3: 0.55 mg kg−1 E4: 0.61 mg kg−1 (≈1.5) 3- E1: 0.89 mg kg−1 E2: 0.81 mg kg−1 (2.0) | [49] |
Mixtures of different pesticides | ||||||
1- Ruelene (Organophosphorus insecticide) 2- Dichlorprop (Phenoxy acid herbicide) | Individual enantiomeric analysis and soil degradation studies. | Incubation of the spiked sample with racemates at 25 °C for 6 months. | 1- BGE: 20 mM tetraborate buffer, pH 8.5 + 40 mM HP-β-CD + 100 mM SDS + ACN (20%, v/v) 2- BGE: 25 mM tetraborate buffer, pH 8.5 + 25 mM TM-β-CD Capillary: -; Ta: -; V: 1- +20 kV and 2- +15 kV; Injection: -; Detection: UV, 1- 200 nm, 2- 230 nm | n.d. | n.d. (n.d.) | [50] |
1- Ruelene (Organophosphorus insecticide) 2- Dichlorprop (Phenoxy acid herbicide) 3- Bromochloroacetic acid (Haloacetic water disinfectant) | Individual enantiomeric analyses of 1- and 2- in sludge and 3- in river water. | 1, 2- Centrifugation and filtration of the spiked sample with its racemates. Extraction with MeOH, dilution of the extract with H2O, centrifugation, and decantation. 3- Filtration and subsequent spiking of the sample with its racemates. | 1- BGE 20 mM tetraborate buffer, pH 8.5 + 40 mM HP-β-CD + 100 mM SDS + ACN (20%, v/v) 2- BGE: 25 mM tetraborate buffer, pH 8.5 + 25 mM TM-β-CD 3- BGE: 50 mM tetraborate buffer, pH 8.5 + 40 mM TM-β-CD Capillary: 75 µm i.d. × 50 cm e.l.; Ta: 23 °C; V: +25 kV (+15 kV for dichlorprop); Injection: hydrodynamic × 5 s; Detection: UV 1- and 3- 200 nm and 2- 230 nm | 1- Explained in the text 2- 7.8 min 3- n.d. | 1- 5 mg L−1 (n.d.) 2- 3 mg L−1 (n.d.) 3- 1 mg L−1 (n.d.) | [62] |
1- Phenothrin (Pyrethroid insecticide) 2- Dimethomorph (Morpholine fungicide) 3- Bioallethrin (Pyrethroid insecticide) 4- Propiconazole (Triazole fungicide) 5- Bitertanol (Triazole fungicide) 6- Triadimenol (Triazole fungicide) 7- Fenpropathrin (Pyrethroid insecticide) | Individual enantiomeric analysis in lake water. | Filtration, spiking of the sample with its racemates, and pH adjustment to 3.0. SPE with Oasis HLB cartridge, elution with MTBE/MeOH (90:10, v/v), evaporation to dry it out, and reconstitution of the residue in MeOH. | 1- BGE: 50 mM phosphate buffer, pH 7.0 + 15 mM DM-β-CD + 50 mM SC 2- BGE: 50 mM phosphate buffer, pH 7.0 + 15 mM HP-γ-CD + 50 mM SC 3- BGE: 50 mM phosphate buffer, pH 7.0 + 15 mM HP-β-CD + 50 mM SC 4- BGE: 50 mM phosphate buffer, pH 7.0 + 15 mM TM-β-CD + 50 mM SDS 5- BGE: 50 mM phosphate buffer, pH 7.0 + 15 mM TM-β-CD + 50 mM SDS 6- BGE: 50 mM phosphate buffer, pH 7.0 + 15 mM HP-γ-CD + 50 mM SDS 7- BGE: 50 mM phosphate buffer, pH 7.0 + 15 mM γ-CD + 50 mM SDS Capillary: 50 µm i.d. × 40 cm e.l.; Ta: 20 °C; V: +20 kV; Injection: 3.5 kPa × 2 s; Detection: UV 214 nm | 1- 6 min 2- 8.1 min 3- 8.5 min 4- 11.5 min 5- 11.8 min 6- 12 min 7- 17.8 min | 1- 0.98 µg L−1 (1.5) 2- 0.18 µg L−1 (8.7) 3- 0.41 µg L−1 (2.4) 4- 0.27 µg L−1 (1.5) 5- 0.40 µg L−1 (1.5) 6- 0.60 µg L−1 (1.5) 7- 0.36 µg L−1 (7.1) | [57] |
1- λ-Cyhalothrin (Pyrethroid insecticide) 2- β-Cyfluthrin (Pyrethroid insecticide) 3- Cis-bifenthrin (Pyrethroid insecticide) 4- Resmethrin (Pyrethroid insecticide) 5- Diniconazole (Triazole fungicide) 6- Metalaxyl (Acylamine fungicide) 7- Benalaxyl (Acylamine fungicide) 8- Hexaconazole (Triazole fungicide) 9- Myclobutanil (Triazole fungicide) 10- Tebuconazole (Triazole fungicide) 11- Dichlorprop (Aryloxy propionic acids) 12- Mecoprop (Aryloxy propionic acids) 13- α-Cypermethrin (Pyrethroid insecticide) 14- Uniconazole (Triazole fungicide) 15- Flutriafol (Triazole fungicide) 16- Fenpropathrin (Pyrethroid insecticide) | Individual enantiomeric separations. Enantiomeric analysis of metalaxyl and its enantiomeric impurity in a commercial fungicide product marketed as enantiomerically pure (metalaxyl-M) and in soil and tap water samples. | Dried soil sample was spiked with pure commercial product (R-metalaxyl). Extraction with MeOH, partial evaporation, dilution with H2O, and LLE with EtOAc. Drying of the organic phase with Na2SO4 and reconstitution in hexane. Finally, SPE was cleaned with Si cartridge, followed by elution with EtOAc/hexane (20:80, v/v), evaporation to dry it out, and reconstitution in ACN/H2O (80:20, v/v). Spiked tap WS with pure commercial product (R-metalaxyl) was extracted with C18 cartridge, eluted with MeOH, evaporated to dry it out, and reconstituted in ACN/H2O (80:20, v/v). | Mobile phase: ACN/H2O/ammonium formate (90:9:1, v/v/v) pH 2.5 CEC column: stationary phase of tris cellulose (4-chloro-3-methylphenylcarbamate); 100 µm i.d. × 24 cm e.l.; Ta: 25 °C; V: −10 kV; Injection: 10 bar × 12 s; Detection: UV 210 nm | 1- U 2- U 3- U 4- U 5- 18.1 min 6- 14.7 min 7- 19.2 min 8- 24.5 min 9- 20.3 min 10- 21.5 min 11- U 12- U 13- U 14- 21.9 min 15- 18.5 min 16- U | 5- n.d. (2.7) 6- 1.4 (S-metalaxyl; impurity) and 1.6 (R-metalaxyl) mg L−1 (2.5) 7- n.d. (1.3) 8- n.d. (6.4) 9- n.d. (0.8) 10- n.d. (2.6) 14- n.d. (3.3) 15- n.d. (0.9) | [35] |
Drugs | ||||||
Antihypertensive | ||||||
1- Pindolol 2- Atenolol 3- Propranolol 4- Metoprolol (Hydroxypropyl amines) | Simultaneous enantiomeric analyses in river, tap, and groundwater. | SPE with SBA15-C18 extraction cartridge of the spiked samples with racemates. Elution with MeOH, evaporation of the extract to dry it out, and reconstitution of the residue in BGE. | BGE: 50 mM phosphate buffer, pH 2.5 + M-β-CD (1.25%, w/v) Capillary: 50 µm i.d. × 40 cm e.l.; Ta: 30 °C; V: +20 kV; Injection: +10 kV × 6 s; Detection: UV, 1- and 3- 220 nm, 2- and 4- 200 nm | <35 min | 1- 1.3 µg L−1 (1- 1.5) 2- 1.3 µg L−1 (2- 1.1) 3- S-1.3 µg L−1 R-1 µg L−1 (3- 2.9) 4- 1.6 µg L−1 (4- 1.3) | [58] |
1- Pindolol 2- Atenolol 3- Propranolol 4- Metoprolol (Hydroxypropyl amines) | Simultaneous enantiomeric analyses in river and sewage water samples. | SPE with SBA15-C8 extraction cartridge of the spiked samples with racemates. Elution with MeOH, evaporation of the extract to dry it out, and reconstitution of the residue in BGE. | BGE: 50 mM phosphate buffer, pH 2.5 + M-β-CD (1.25%, w/v) Capillary: 50 µm i.d. × 41 cm e.l.; Ta: 20 °C; V: +20 kV; Injection: 5 kPa × 5 s; Detection: UV, 1- and 3- 220 nm, 2- and 4- 200 nm | <42 min | 1- 0.5 µg L−1 (1- n.d.) 2- 0.5 µg L−1 (2- n.d.) 3- 0.4 µg L−1 (3- n.d.) 4- 0.6 µg L−1 (4- n.d.) | [59] |
Anti-inflammatory | ||||||
Ketoprofen (2-aryl propionate) | Enantiomeric analysis in wastewater. | The sample was stabilized with nitric acid (0.1%, v/v) and stored in dark at 8 °C. Samples were spiked with the compounds. An on-line preconcentration step was necessary, using 50 mmol L−1 borate/NaOH electrolyte at pH of 9.5 containing MeOH 0–80% (v/v). | BGE: 50 mM phosphate buffer, pH 2.5 + S-β-CD (4%, w/v) + TM-β-CD (0.5%, w/v) + 20 mM SDS Capillary: 50 µm i.d. × 24.5 cm e.l.; Ta: 25 °C; V: −15 kV; Injection: −15 kV × 30 min; Detection: UV 200 nm | 13.5 min | E1: 0.64 µg L−1 E2: 0.86 µg L−1 (>2.0) | [61] |
Ibuprofen (2-aryl propionate) | Enantiomeric analyses in urban water and human urine samples. | DSPE for sample solution with pH of 4.0 containing 1.4 M NaCl and 0.12 g adsorbent (MoS2). 10 min adsorption time at 25 °C for 1 mL the elution solvent (acetone-0.25 M NaOH (aq) (2:1, v/v)), and 5 min desorption time at 50 °C. A rate of 900 rpm was used for adsorption and desorption steps. | BGE: 100 mM phosphate buffer, pH 6.5 + 1 mM VC Capillary: 50 µm i.d. × 47 cm e.l.; Ta: 20 °C; V: +20 kV; Injection: 65 mbar × 10 s; Detection: UV 214 nm | 26 min | 0.025 mg L−1 (n.d.) | [39] |
Mixtures of different drug families | ||||||
1- Duloxetine (Amine) 2- Terbutaline (Hydroxypropyl amine) 3- Econazole (Imidazole) 4- Propranolol (Hydroxypropyl amine) 5- Verapamil (Nitrilo) 6- Metoprolol (Hydroxypropyl amine) 7- Betaxolol (Hydroxypropyl amine) | Simultaneous enantiomeric analysis in wastewater. | Samples were filtered and stored at 4 °C before being analyzed. | BGE: 25 mM phosphate buffer, pH 3.0 + S-β-CD (2%, w/v) Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 20 °C; V: −20 kV; Injection: 50 mbar × 10 s; Detection: UV, 1- 220 nm, 2-, 3-and 5- 200 nm, 4- 215 nm, 6- and 7- 194 nm | 16 min | 1- 0.5 mg L−1 (8.3) 2- 0.7 mg L−1 (8.4) 3- 1.5 mg L−1 (8.5) 4- 0.4 mg L−1 (4.1) 5- 0.6 mg L−1 (3.7) 6- 0.7 mg L−1 (2.5) 7- 0.8 mg L−1 (2.4) | [53] |
2.3. Fungicides
2.4. Nematicides
2.5. Mixtures of Pesticides with Different Activity
2.6. Antihypertensive Drugs
2.7. Anti-Inflammatory Drugs
2.8. Mixtures of Different Drug Families
3. Applications of Chiral CE to Toxicity Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ye, J.; Zhao, M.; Niu, L.; Liu, W. Enantioselective environmental toxicology of chiral pesticides. Chem. Res. Toxicol. 2015, 28, 325–338. [Google Scholar] [CrossRef]
- Valimaña-Traverso, J.; Amariei, G.; Boltes, K.; García, M.A.; Marina, M.L. Stability and toxicity studies for duloxetine and econazole on Spirodela polyrhiza using chiral capillary electrophoresis. J. Hazard. Mater. 2019, 374, 203–210. [Google Scholar] [CrossRef]
- Casado, N.; Valimaña-Traverso, J.; García, M.A.; Marina, M.L. Enantiomeric determination of drugs in pharmaceutical formulations and biological samples by Electrokinetic Chromatography. Crit. Rev. Anal. Chem. 2020, 50, 554–584. [Google Scholar] [CrossRef]
- McConathy, J.; Owens, M.J. Stereochemistry in Drug Action. Prim. Care Companion J. Clin. Psychiatry 2003, 5, 70–73. [Google Scholar] [CrossRef]
- Aboul-Enein, H.Y.; Ali, I. Chiral Separations by Liquid Chromatography and Related Technologies; CRC Press: Boca Raton, FL, USA, 2003; pp. 2–352. [Google Scholar]
- Röesner, M.; Capraro, H.G.; Jacobson, A.E.; Atwell, L.; Brossi, A.; Lorio, M.A.; Williams, T.H.; Chignell, C.F. Biological effects of modified colchicines. Improved preparation of 2-demethylcolchicine, 3-demethylcolchicine, and (+)-colchicine and reassignment of the position of the double bond in dehydro-7-deacetamidocolchicines. J. Med. Chem. 1981, 24, 257–261. [Google Scholar] [CrossRef]
- Del Bubba, M.; Checchini, L.; Lepri, L. Thin-layer chromatography enantioseparations on chiral stationary phases: A review. Anal. Bioanal. Chem. 2013, 405, 533–554. [Google Scholar] [CrossRef]
- Ariëns, E. Racemic therapeutics-ethical and regulatory aspects. Eur. J. Clin. Pharmacol. 1991, 41, 89–93. [Google Scholar] [CrossRef]
- Purushoth, P. Pharmaceutical review and its importance of chiral chromatography. Int. J. Res. Pharm. Chem. 2016, 6, 476–484. [Google Scholar]
- Bertaso, A.; Musile, G.; Gottardo, R.; Seri, C.; Tagliaro, F. Chiral analysis of methorphan in opiate-overdose related deaths by using capillary electrophoresis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1000, 130–135. [Google Scholar] [CrossRef]
- García-Martín, E.; Martínez, C.; Tabarés, B.; Frías, J.; Agúndez, J.A.G. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P4502C8 and 2C9 amino acid polymorphisms. Clin. Pharmacol. Ther. 2004, 76, 119–127. [Google Scholar] [CrossRef]
- Hammami, R.; Nouira, I.; Frein, Y. Effects of customers’ environmental awareness and environmental regulations on the emission intensity and price of a product. Decis. Sci. 2018, 49, 1116–1155. [Google Scholar] [CrossRef]
- Rentsch, K.M. The importance of stereoselective determination of drugs in the clinical laboratory. J. Biochem. Biophys. Methods 2002, 54, 1–9. [Google Scholar] [CrossRef]
- Garrison, A.W. Probing the enantioselectivity of chiral pesticides. Environ. Sci. Technol. 2006, 40, 16–23. [Google Scholar] [CrossRef]
- Lucci, E.; Dal Bosco, C.; Antonelli, L.; Fanali, C.; Fanali, S.; Gentili, A.; Chankvetadze, B. Enantioselective high-performance liquid chromatographic separations to study occurrence and fate of chiral pesticides in soil, water, and agricultural products. J. Chromatogr. A 2022, 1685, 463595. [Google Scholar] [CrossRef]
- Valimaña-Traverso, J.; Amariei, G.; Bolter, K.; García, M.Á.; Marina, M.L. Enantiomer stability and combined toxicity of duloxetine and econazole on Daphnia magna using real concentrations determined by capillary electrophoresis. Sci. Total Environ. 2019, 670, 770–778. [Google Scholar] [CrossRef]
- Camacho-Muñoz, D.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Concentration evolution of pharmaceutically active compounds in raw urban and industrial wastewater. Chemosphere 2014, 111, 70–79. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, S.; Amariei, G.; Boltes, K.; García, M.A.; Marina, M.L. Enantiomeric separation of panthenol by Capillary Electrophoresis. Analysis of commercial formulations and toxicity evaluation on non-target organisms. J. Chromatogr. A 2021, 1639, 461919. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, S.; Amariei, G.; Boltes, K.; García, M.A.; Marina, M.L. Stereoselective separation of sulfoxaflor by electrokinetic chromatography and applications to stability and ecotoxicological studies. J. Chromatogr. A 2021, 1654, 462450. [Google Scholar] [CrossRef]
- Greño, M.; Amariei, G.; Boltes, K.; Castro-Puyana, M.; García, M.A.; Marina, M.L. Ecotoxicity evaluation of tetramethrin and analysis in agrochemical formulations using chiral electrokinetic chromatography. Sci. Total Environ. 2021, 800, 149496. [Google Scholar] [CrossRef]
- Amariei, G.; Jiménez-Jiménez, S.; García, M.A.; Marina, M.L.; Boltes, K. First eco-toxicological evidence of ivabradine effect on the marine bacterium Vibrio fischeri: A chiral view. Sci. Total Environ. 2022, 838, 156617. [Google Scholar] [CrossRef]
- Tůma, P. Progress in on-line, at-line, and in-line coupling of sample treatment with capillary and microchip electrophoresis over the past 10 years: A review. Anal. Chim. Acta. 2023, 1261, 341249. [Google Scholar] [CrossRef] [PubMed]
- de Rijke, E.; Out, P.; Niessen, W.M.A.; Ariese, F.; Gooijer, C.; Brinkman, U.A.T. Analytical separation and detection methods for flavonoids. J. Chromatogr. A 2006, 1112, 31–63. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, Y.; Chinaka, S.; Yamamoto, A.; Hayakawa, K. Chiral capillary electrophoresis of agrochemicals in real samples. J. Health Sci. 2006, 52, 489–494. [Google Scholar] [CrossRef]
- Herrero, M.; Simó, C.; García-Cañas, V.; Fanali, S.; Cifuentes, A. Chiral capillary electrophoresis in food analysis. Electrophoresis 2010, 31, 2106–2114. [Google Scholar] [CrossRef]
- Hernández-Borges, J.; Rodríguez-Delgado, M.A.; García-Montelongo, F.J. Chiral analysis of pollutants and their metabolites by capillary electromigration methods. Electrophoresis 2005, 26, 3799–3813. [Google Scholar] [CrossRef]
- Pérez-Fernández, V.; García, M.A.; Marina, M.L. Chiral separation of agricultural fungicides. J. Chromatogr. A 2011, 1218, 6561–6582. [Google Scholar] [CrossRef]
- Eash, D.T.; Bushway, R.J. Herbicide and plant growth regulator analysis by capillary electrophoresis. J. Chromatogr. A 2000, 880, 281–294. [Google Scholar] [CrossRef]
- Pérez-Fernández, V. Separación Enantiomérica y/o Determinación de Compuestos de Interés Medioambiental por Metodologías Analíticas Electroforéticas y Cromatográficas Innovadoras. Ph.D. Thesis, University of Alcalá, Alcalá de Henares, Spain, 2013. [Google Scholar]
- Saz, J.M.; Marina, M.L. Recent advances on the use of cyclodextrins in the chiral analysis of drugs by capillary electrophoresis. J. Chromatogr. A 2016, 1467, 79–94. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1753. [Google Scholar] [CrossRef]
- Terabe, S.; Otsuka, K.; Ichikawa, K.; Tsuchiya, A.; Ando, T. Electrokinetic separations with micellar solutions and open-tubular capillaries. Anal. Chem. 1984, 56, 111–113. [Google Scholar] [CrossRef]
- Nishi, H.; Fukuyama, T.; Terabe, S. Chiral separation by cyclodextrin-modified micellar electrokinetic chromatography. J. Chromatogr. A 1991, 553, 503–516. [Google Scholar] [CrossRef]
- Messina, A.; Sinibaldi, M. CEC enantioseparations on chiral monolithic columns: A study of the stereoselective degradation of (R/S)-dichlorprop 2-(2,4-dichlorophenoxy)propionic acid in soil. Electrophoresis 2007, 28, 2613–2618. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Fernández, V.; Dominguez-Vega, E.; Chankvetadze, B.; Grego, A.L.; García, M.A.; Marina, M.L. Evaluation of new cellulose-based chiral stationary phases Sepapak-2 and Sepapak-4 for the enantiomeric separation of pesticides by nano liquid chromatography and capillary electrochromatography. J. Chromatogr. A 2012, 1234, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Lin, J.; Xu, L.; Chen, G. Nonaqueous and aqueous-organic media for the enantiomeric separations of neutral organophosphorus pesticides by CE. Electrophoresis 2007, 28, 2758–2764. [Google Scholar] [CrossRef] [PubMed]
- Polcaro, C.M.; Marra, C.; Desiderio, C.; Fanali, S. Stereoselective analysis of acid herbicides in natural waters by capillary electrophoresis. Electrophoresis 1999, 20, 2420–2424. [Google Scholar] [CrossRef]
- Desiderio, C.; Polcaro, C.M.; Padiglioni, P.; Fanali, S. Enantiomeric separation of acidic herbicides by capillary electrophoresis using vancomycin as chiral selector. J. Chromatogr. A 1997, 781, 503–513. [Google Scholar] [CrossRef]
- Naghdi, E.; Fakhari, A.R.; Ghasemi, J.B. Enantioseparation and quantitative determination of ibuprofen using vancomycin-mediated capillary electrophoresis combined with molybdenum disulfide-assisted dispersive solid-phase extraction: Optimization using experimental design. J. Iran. Chem. Soc. 2020, 17, 1467–1477. [Google Scholar] [CrossRef]
- Asami, T.; Imura, H. Absolute determination method for trace quantities of enantiomer of glufosinate by gamma-cyclodextrin modified capillary zone electrophoresis combined with solid-phase extraction and on-capillary concentration. Anal. Sci. 2006, 22, 1489–1493. [Google Scholar] [CrossRef]
- Klein, C.; Schneider, R.J.; Meyer, M.T.; Aga, D.S. Enantiomeric separation of metolachlor and its metabolites using LC-MS and CZE. Chemosphere 2006, 62, 1591–1599. [Google Scholar] [CrossRef]
- Yi, F.; Guo, B.; Peng, Z.; Li, H.; Marriott, P.; Lin, J.M. Study of the enantioseparation of imazaquin and enantioselective degradation in field soils by CZE. Electrophoresis 2007, 28, 2710–2716. [Google Scholar] [CrossRef]
- García-Cansino, L.; García, M.A.; Marina, M.L. Simultaneous enantiomeric separation of carfentrazone-ethyl herbicide and its hydrolysis metabolite carfentrazone by cyclodextrin electrokinetic chromatography. Analysis of agrochemical products and a degradation study. Molecules 2021, 26, 5350. [Google Scholar] [CrossRef]
- Wu, Y.S.; Lee, H.K.; Li, S.F.Y. Simultaneous chiral separation of triadimefon and triadimenol by sulfated beta-cyclodextrin-mediated capillary electrophoresis. Electrophoresis 2000, 21, 1611–1619. [Google Scholar] [CrossRef]
- Ibrahim, W.A.W.; Hermawan, D.; Sanagi, M.M. On-line preconcentration and chiral separation of propiconazole by cyclodextrin-modified micellar electrokinetic chromatography. J. Chromatogr. A 2007, 1170, 107–113. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, S.; Castro-Puyana, M.; Marina, M.L.; García, M.Á. Enantiomeric separation of prothioconazole and prothioconazole-desthio by capillary electrophoresis. Degradation studies in environmental samples. J. Chromatogr. A 2021, 1651, 462255. [Google Scholar] [CrossRef]
- Chu, B.L.; Guo, B.Y.; Wang, Z.; Guo, G.; Lin, J.M. Studies on degradation of imazalil enantiomers in soil using capillary ellectrophoresis. J. Sep. Sci. 2007, 30, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Kodama, S.; Yamamoto, A.; Ohura, T.; Matsunaga, A.; Kanbe, Y. Enantioseparation of imazalil residue in orange by capillary electrophoresis with 2-hydroxypropyl-beta-cyclodextrin as a chiral selector. J. Agric. Food Chem. 2003, 51, 6128–6131. [Google Scholar] [CrossRef] [PubMed]
- Lecoeur-Lorin, M.; Delepee, R.; Morin, P. Simultaneous enantioselective determination of fenamiphos and its two metabolites in soil sample by CE. Electrophoresis 2009, 30, 2931–2939. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.L.; Garrison, A.W.; Wommack, K.E.; Whittemmore, A.; Steudler, P.; Melillo, J. Influence of environmental changes on degradation of chiral pollutants in soils. Nature 1999, 401, 898–901. [Google Scholar] [CrossRef] [PubMed]
- Jarman, J.L.; Jones, W.J.; Howell, L.A.; Garrison, A.W. Application of capillary electrophoresis to study the enantioselective transformation of five chiral pesticides in aerobic soil slurries. J. Agric. Food Chem. 2005, 53, 6175–6182. [Google Scholar] [CrossRef] [PubMed]
- Garrison, A.W.; Schmitt, P.; Martens, D.; Kettrup, A. Enantiomeric selectivity in the environmental degradation of dichlorprop as determined by high performance capillary electrophoresis. Environ. Sci. Technol. 1996, 30, 2449–2455. [Google Scholar] [CrossRef]
- Valimaña-Traverso, J.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; García, M.A.; Sierra, I.; Marina, M.L. Periodic mesoporous organosilica materials as sorbents for solid-phase extraction of drugs prior to simultaneous enantiomeric separation by capillary electrophoresis. J. Chromatogr. A 2018, 1566, 135–145. [Google Scholar] [CrossRef]
- García-Ruiz, C.; Álvarez-Llamas, G.; Puerta, Á.; Blanco, E.; Sanz-Mendel, A.; Marina, M.L. Enantiomeric separation of organophosphorus pesticides by capillary electrophoresis-Application to the determination of malathion in water samples after preconcentration by off-line solid-phase extraction. Anal. Chim. Acta 2005, 543, 77–83. [Google Scholar] [CrossRef]
- Hsieh, Y.Z.; Huang, H.Y. Analysis of chlorophenoxy acid herbicides by cyclodextrin-modified capillary electrophoresis. J. Chromatogr. A 1996, 745, 217–223. [Google Scholar] [CrossRef]
- Kodama, S.; Yamamoto, A.; Saitoh, Y.; Matsunaga, A.; Okamura, K.; Kizu, R.; Hayakawa, K. Enantioseparation of vindozolin by gamma-cyclodextrin-modified micellar electrokinetic chromatography. J. Agric. Food Chem. 2002, 50, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- Shea, D.; Penmetsa, K.V.; Leidy, R.B. Enantiomeric and isomeric separation of pesticides by cyclodextrin-modified micellar electrokinetic chromatography. J. AOAC Int. 1999, 82, 1550–1561. [Google Scholar] [CrossRef]
- Silva, M.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Marina, M.L.; Sierra, I. Preconcentration of beta-blockers using functionalized ordered mesoporous silica as sorbent for SPE and their determination in waters by chiral CE. Electrophoresis 2017, 38, 1905–1912. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Marina, M.L.; Sierra, I. Environmental chiral analysis of beta-blockers: Evaluation of different n-alkyl-modified SBA-15 mesoporous silicas as sorbents in solid-phase extraction. Environ. Chem. 2018, 15, 362–371. [Google Scholar] [CrossRef]
- Valimaña-Traverso, J.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; García, M.A.; Sierra, I.; Marina, M.L. Cationic amine-bridged periodic mesoporous organosilica materials for off-line solid-phase extraction of phenoxy acid herbicides from water samples prior to their simultaneous enantiomeric determination by capillary electrophoresis. J. Chromatogr. A 2018, 1566, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Petr, J.; Ginterová, P.; Znaleziona, J.; Knob, R.; Lošťáková, M.; Maier, V.; Ševčík, J. Separation of ketoprofen enantiomers at nanomolar concentration levels by micellar electrokinetic chromatography with on-line electrokinetic preconcentration. Cent. Eur. J. Chem. 2013, 11, 335–340. [Google Scholar] [CrossRef]
- Garrison, A.W.; Schmitt-Kopplin, P.; Avants, J.K. Analysis of the enantiomers of chiral pesticides and other pollutants in environmental samples by capillary electrophoresis. In Methods in Molecular Biology; Schmitt-Kopplin, P., Ed.; Humana Press: Totowa, NJ, USA, 2008; Volume 384, pp. 157–170. [Google Scholar]
- Pérez-Fernández, V.; García, M.A.; Marina, M.L. Enantiomeric separation of cis-bifenthrin by CD-MEKC: Quantitative analysis in a commercial insecticide formulation. Electrophoresis 2010, 31, 1533–1539. [Google Scholar] [CrossRef]
- Pérez-Fernández, V.; García, M.A.; Marina, M.L. Chiral separation of metalaxyl and benalaxyl fungicides by electrokinetic chromatography and determination of enantiomeric impurities. J. Chromatogr. A 2011, 1218, 4877–4885. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.C. Biomarkers in Toxicology; Academic Press: Hopkinsville, KY, USA, 2019. [Google Scholar]
- MAPA. Encuesta de Comercialización de Productos Fitosanitarios; Ministerio de Agricultura, Pesca y Alimentación: Madrid, España, 2018; pp. 1–6.
- Insecticides. Available online: https://www.epa.gov/caddis-vol2/insecticides (accessed on 10 January 2024).
- O’Mahony, T.; Moore, S.; Brosnan, B.; Glennon, J.D. Monitoring the supercritical fluid extraction of pyrethroid pesticides using capillary electrochromatography. Int. J. Environ. Anal. Chem. 2003, 83, 681–691. [Google Scholar] [CrossRef]
- Liu, T.L.; Wang, Y.S.; Yen, J.H. Separation of bifenthrin enantiomers by chiral HPLC and determination of their toxicity to aquatic organism. J. Food Drug Anal. 2005, 13, 3. [Google Scholar] [CrossRef]
- Zhe, X.; Wenwei, X.; Hua, H.; Lirui, P.; Xu, X. Direct chiral resolution and its application to the determination of the pesticide tetramethrin in soil by high-performance liquid chromatography using polysaccharide-type chiral stationary phase. J. Chromatogr. Sci. 2008, 46, 783–786. [Google Scholar] [CrossRef] [PubMed]
- Eliel, E.L.; Wilen, S.H. Stereochemistry of Organic Compounds; Jonh Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Morrissey, C.A.; Mineau, P.; Devries, J.H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M.C.; Liber, K. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 2015, 74, 291–303. [Google Scholar] [CrossRef]
- Van den Brink, P.J.; Semeden, J.M.V.; Bekele, R.S.; Dierick, W.; De Gelder, D.M.; Noteboom, M.; Roessink, I. Acute and chronic toxicity of neonicotinoids to nymphs of a mayfly species and some notes on seasonal differences. Environ. Toxicol. Chem. 2016, 35, 128–133. [Google Scholar] [CrossRef]
- Hossain, M. Recent perspective of herbicide: Review of demand and adoption in world agriculture. J. Bangladesh Agric. Univ. 2015, 13, 19–30. [Google Scholar] [CrossRef]
- Tejedor, A.S. La Industria Agroquímica. Available online: https://www.eii.uva.es/organica/qoi/tema-12.php (accessed on 9 January 2024).
- PubChem, National Library of Medicine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/4794 (accessed on 9 January 2024).
- Charles, R. Modelling Pesticides Residues. Ph.D. Thesis, Federal Institute of Technology in Lausanne, Lausanne, Switzerland, 2004. [Google Scholar]
- Willis, G.H.; McDowell, L.L. Pesticide persistence on foliage. In Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews; Ware, G.W., Ed.; Springer: New York, NY, USA, 1987; Volume 100, pp. 23–73. [Google Scholar]
- Garrison, A.W.; Avants, J.K.; Miller, R.D. Loss of propiconazole and its four stereoisomers from the water phase of two soil-water slurries as measured by capillary electrophoresis. Int. J. Environ. Res. Public Health 2011, 8, 3453–3467. [Google Scholar] [CrossRef]
- The 2019 European Union Report on Pesticide Residues in Food. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/6491 (accessed on 14 January 2024).
- Ntalli, N.G.; Caboni, P. Botanical Nematicides: A Review. J. Agric. Food Chem. 2012, 60, 9929–9940. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.; Bellamy, M. Antihypertensive drugs. BJA Educ. 2015, 15, 280–285. [Google Scholar] [CrossRef]
- Nguyen, L.A.; He h Pham-Huy, C. Chiral drugs: An overview. Int. J. Biomed. Sci. 2006, 2, 85–100. [Google Scholar]
- Godoy, A.A.; Kummrow, P.; Pamplin, P.A.Z. Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment—A review. Chemosphere 2015, 138, 281–291. [Google Scholar] [CrossRef]
- De Oliveira, A.R.M.; Cesarino, E.J.; Bonato, P.S. Solid-phase microextraction and chiral HPLC analysis of ibuprofen in urine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 818, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Mai, T.D.; Bomastyk, B.; Duong, H.A.; Pham, H.V.; Hauser, P.C. Automated capillary electrophoresis with on-line preconcentration by solid phase extraction using a sequential injection manifold and contactless conductivity detection. Anal. Chim. Acta 2012, 727, 1–7. [Google Scholar] [CrossRef]
- Mardones, C.; Ríos, A.; Valcárcel, M. Determination of nonsteroidal anti-inflammatory drugs in biological fluids by automatic on-line integration of solid-phase extraction and capillary electrophoresis. Electrophoresis 2001, 22, 484–490. [Google Scholar] [CrossRef]
- Yilmaz, B.; Erdem, A.F. Determination of ibuprofen in human plasma and urine by gas chromatography/mass spectrometry. J. AOAC Int. 2014, 97, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Commission Directive 93/67/EEC of 20 July 1993 Laying down the Principles for Assessment of Risks to Man and the Environment of Subtances Notified in Accordance with Council Directive 67/548/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31993L0067 (accessed on 17 January 2024).
- García-Cansino, L.; Boltes, K.; Marina, M.L.; García, M.A. Enantioseparation and ecotoxicity evaluation of ibrutinib by electrokinetic chromatography using single and dual systems. Talanta 2023, 265, 124783. [Google Scholar] [CrossRef] [PubMed]
- Sanganyado, E.; Lu, Z.; Fu, Q.; Schlenk, D.; Gan, J. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Res. 2017, 124, 527–542. [Google Scholar] [CrossRef]
- Casado, N.; Salgado, A.; Castro-Puyana, M.; García, M.A.; Marina, M.L. Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography. Effect of amino acid chiral ionic liquids. J. Chromatogr. A 2019, 1608, 460407. [Google Scholar] [CrossRef]
- Hrobonova, K.; Lomenova, A. Determination of panthenol enantiomers in cosmetic preparations using an achiral-chiral-coupled column HPLC system. Chirality 2020, 32, 191–199. [Google Scholar] [CrossRef]
- Khater, S.; West, C. Development and validation of a supercritical fluid chromatography method for the direct determination of enantiomeric purity of provitamin B5 in cosmetic formulations with mass spectrometric detection. J. Pharm. Biomed. Anal. 2015, 102, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Lomenova, A.; Hrobonova, K.; Solonyova, T. HPLC separation of panthenol enantiomers on different types of chiral stationary phases. Acta Chim. Slovaca 2018, 11, 114–119. [Google Scholar] [CrossRef]
Analyte (Chemical family) | Applications | Sample Treatment | Separation Conditions | Analysis Time | LOD (Rs) | Ref. |
---|---|---|---|---|---|---|
Sulfoxaflor (Sulfoximine) | Stability evaluation of the stereoisomers under biotic and abiotic conditions on aquatic plant Spirodela polyrhiza and the marine bacterium Vibrio fischeri. | Turions for Spirodela polyrhiza were germinated in a growth medium for 3 days (25 °C). Freeze-dried bacterium Vibrio fischeri was reactivated in NaCl solution under the indications of the BioTox™ kit for 15 min. Exposure experiments were conducted with the analyte for 96 h and 1 h, respectively. | BGE: 100 mM borate buffer, pH 9.0 + 15 mM Succ-β-CD Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 15 °C; V: +20 kV; Injection: 50 mbar × 8 s; Detection: UV 205 ± 30 nm | 13.8 min | E1: 0.9 mg L−1 E2: 1.0 mg L−1 E3: 0.9 mg L−1 E4: 0.9 mg L−1 (E1, E2: 2.1 E2, E3: 1.5 E3, E4: 2.6) | [19] |
Tetramethrin (Pyrethroid) | Stability and toxicity evaluation under biotic and abiotic conditions on microcrustacean Daphnia magna. | Daphnia magna eggs were incubated in a growth medium for 3 days (20–22 °C). Exposure experiments were conducted with the analyte for 72 h. | BGE: 100 mM borate buffer, pH 8.0 + 15 mM HP-β-CD + 50 mM SDC Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 15 °C; V: +20 kV; Injection: 50 mbar × 2 s; Detection: UV 220 ± 4 nm | <12.5 min | Trans-tetramethrin: 1.30 mg L−1 (1.7) Cis-tetramethrin: 0.97 mg L−1 (1.3) | [20] |
1- Duloxetine (Amine) 2- Econazole (Imidazole) | Stability and toxicity studies under biotic and abiotic conditions on aquatic plant Spirodela polyrhiza. | Turions were germinated in a growth medium for 3 days (25 °C). Exposure experiments were conducted with the analytes for 72 h. | BGE: 25 mM phosphate buffer, pH 3.0 + S-β-CD (1.5%, w/v) Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 30 °C; V: −20 kV; Injection: 50 mbar × 10 s; Detection *: UV; 1- 220 ± 5 nm; 2- 200 ± 5 nm | 7.5 min | 1- E1: 0.2 mg L−1 E2: 0.3 mg L−1 (7.9) 2- E1: 0.7 mg L−1 E2: 0.8 mg L−1 (6.5) | [2] |
1- Duloxetine (Amine) 2- Econazole (Imidazole) | Stability and toxicity evaluation under biotic and abiotic conditions on microcrustacean Daphnia magna. | Daphnia magna eggs were incubated for 3 days (20 ± 1 °C). Exposure experiments were conducted with the analytes for 48 h. | BGE: 25 mM phosphate buffer, pH 3.0 + S-β-CD (1.5%, w/v) Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 30 °C; V: −20 kV; Injection: 50 mbar × 10 s; Detection *: UV; 1- 220 ± 5 nm; 2- 200 ± 5 nm | 7.5 min | 1- E1: 0.3 mg L−1 E2: 0.4 mg L−1 (7.9) 2- E1: 1.0 mg L−1 E2: 1.1 mg L−1 (6.5) | [16] |
Ivabradine (Benzazepine) | Stability and toxicity evaluation under biotic and abiotic conditions on marine bacterium Vibrio fischeri. | Freeze-dried bacterium Vibrio fischeri was reactivated in NaCl solution under the indications of the BioTox™ kit for 15 min. Exposure experiments were conducted with the analyte for 1 h. | BGE: 50 mM formate buffer, pH 2.0 + 4 mM S-γ-CD Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 25 °C; V: −30 kV; Injection: 50 mbar × 5 s; Detection: 200 nm | 6 min | R-ivabradine: 0.11 mg L−1 S-ivabradine: 0.11 mg L−1 (2.7) | [21] |
Ibrutinib | Stability and toxicity evaluation under biotic and abiotic conditions on microcrustacean Daphnia magna. | Daphnia magna eggs were incubated for 3 days (20 ± 2 °C). Exposure experiments were conducted with the analytes for 48 h. | Method 1: BGE: 25 mM formate buffer, pH 3.0 + 2 mM S-γ-CD Method 2: BGE: 25 mM formate buffer, pH 3.0 + 2 mM S-γ-CD + 5 mM [TMA][L-Lys] Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 30 °C; V: −30 kV; Injection: 50 mbar × 5 s; Detection: 200 ± 4 nm | Method 1: 4.2 min Method 2: 8.1 min | Method 1: 0.1 mg L−1 (1.5) Method 2: 0.1 mg L−1 (3.3) | [90] |
Panthenol (Provitamin) | Stability and toxicity evaluation under biotic and abiotic conditions on aquatic plant Spirodela polyrhiza. | Turions were germinated in a growth medium for 3 days (23 ± 2 °C). Exposure experiments were conducted with the analyte for 96 h. | BGE: 100 mM borate buffer, pH 9.0 + 25 mM CE-β-CD Capillary: 50 µm i.d. × 50 cm e.l.; Ta: 30 °C; V: +30 kV; Injection: 50 mbar × 10 s; Detection: UV 205 ± 30 nm | 4.2 min | L-panthenol: 1 mg L−1 D-panthenol: 4 mg L−1 (2.0) | [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Cansino, L.; Marina, M.L.; García, M.Á. Chiral Analysis of Pesticides and Emerging Contaminants by Capillary Electrophoresis—Application to Toxicity Evaluation. Toxics 2024, 12, 185. https://doi.org/10.3390/toxics12030185
García-Cansino L, Marina ML, García MÁ. Chiral Analysis of Pesticides and Emerging Contaminants by Capillary Electrophoresis—Application to Toxicity Evaluation. Toxics. 2024; 12(3):185. https://doi.org/10.3390/toxics12030185
Chicago/Turabian StyleGarcía-Cansino, Laura, María Luisa Marina, and María Ángeles García. 2024. "Chiral Analysis of Pesticides and Emerging Contaminants by Capillary Electrophoresis—Application to Toxicity Evaluation" Toxics 12, no. 3: 185. https://doi.org/10.3390/toxics12030185
APA StyleGarcía-Cansino, L., Marina, M. L., & García, M. Á. (2024). Chiral Analysis of Pesticides and Emerging Contaminants by Capillary Electrophoresis—Application to Toxicity Evaluation. Toxics, 12(3), 185. https://doi.org/10.3390/toxics12030185