Testing the Aquatic Toxicity of 2D Few-Layer Graphene Inks Using Rainbow Trout (Oncorhynchus mykiss): In Vivo and In Vitro Approaches to Support an SSbD Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanomaterials and Stock Dispersions
2.2. Characterization
2.2.1. Dynamic Light Scattering
2.2.2. Atomic Force Microscopy
2.2.3. Turbiscan
2.3. In Vitro Cytotoxicity Assays
2.4. Measurement of Intracellular Reactive Oxygen Species (ROS)
2.5. Fish Acute Toxicity Test
2.6. EROD/BFCOD Activities
2.6.1. Enzyme Activities in RTL-W1 Cell Cultures
2.6.2. Enzyme Activities in Rainbow Trout Livers
2.7. Statistical Analysis
3. Results
3.1. Characterization of FLG Inks
3.1.1. Dynamic Light Scattering
3.1.2. Atomic Force Microscopy
3.1.3. Turbiscan
3.2. In Vitro Cytotoxicity in RTL-W1 Cells
3.2.1. AlamarBlue Assay
3.2.2. CFDA-AM Assay
3.2.3. Neutral Red Uptake (NRU) Assay
3.2.4. Generation of Intracellular ROS
3.2.5. EROD/BFCOD Activities
3.3. In Vivo Toxicity Tests in Rainbow Trout
3.3.1. Fish Acute Toxicity Test
3.3.2. EROD/BFCOD Activities in Livers and Gills
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Dasmahapatra, A.K.; Dasari, T.P.S.; Tchounwou, P.B. Graphene-Based Nanomaterials Toxicity in Fish. In Reviews of Environmental Contamination and Toxicology; De Voogt, P., Ed.; Springer International Publishing: Cham, Switzerland, 2018; Volume 247, pp. 1–58. ISBN 9783030062309. [Google Scholar]
- Da Luz, F.; Garcia Filho, F.; del-Río, M.; Nascimento, L.; Pinheiro, W.; Monteiro, S. Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview. Polymers 2020, 12, 1601. [Google Scholar] [CrossRef]
- Jaber-Ansari, L.; Hersam, M.C. Solution-Processed Graphene Materials and Composites. MRS Bull. 2012, 37, 1167–1175. [Google Scholar] [CrossRef]
- Pan, K.; Fan, Y.; Leng, T.; Li, J.; Xin, Z.; Zhang, J.; Hao, L.; Gallop, J.; Novoselov, K.S.; Hu, Z. Sustainable Production of Highly Conductive Multilayer Graphene Ink for Wireless Connectivity and IoT Applications. Nat. Commun. 2018, 9, 5197. [Google Scholar] [CrossRef]
- Kamyshny, A.; Magdassi, S. Conductive Nanomaterials for 2D and 3D Printed Flexible Electronics. Chem. Soc. Rev. 2019, 48, 1712–1740. [Google Scholar] [CrossRef]
- Douglas, S.P.; Mrig, S.; Knapp, C.E. MODs vs. NPs: Vying for the Future of Printed Electronics. Chem. Eur. J. 2021, 27, 8062–8081. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Research and Innovation. Safe and Sustainable by Design Chemicals and Materials: A European Assessment Framework; Publications Office of the European Union: Luxemburg, 2022; ISBN 9789276555025. Available online: https://data.europa.e (accessed on 17 December 2023).
- European Commission. Commission Recommendation of 10.06.2022 on the Definition of Nanomaterial. Off. J. EU 2022, C229, 1–5. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32022H0614%2801%29 (accessed on 17 December 2023).
- Connolly, M.; Moles, G.; Carniel, F.C.; Tretiach, M.; Caorsi, G.; Flahaut, E.; Soula, B.; Pinelli, E.; Gauthier, L.; Mouchet, F.; et al. Applicability of OECD TG 201, 202, 203 for the Aquatic Toxicity Testing and Assessment of 2D Graphene Material Nanoforms to Meet Regulatory Needs. NanoImpact 2023, 29, 100447. [Google Scholar] [CrossRef]
- Lu, K.; Dong, S.; Petersen, E.J.; Niu, J.; Chang, X.; Wang, P.; Lin, S.; Gao, S.; Mao, L. Biological Uptake, Distribution, and Depuration of Radio-Labeled Graphene in Adult Zebrafish: Effects of Graphene Size and Natural Organic Matter. ACS Nano 2017, 11, 2872–2885. [Google Scholar] [CrossRef]
- Su, Y.; Yang, G.; Lu, K.; Petersen, E.J.; Mao, L. Colloidal Properties and Stability of Aqueous Suspensions of Few-Layer Graphene: Importance of Graphene Concentration. Environ. Pollut. 2017, 220, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Huang, Q.; Wang, P.; Mao, L. Physicochemical Changes of Few-Layer Graphene in Peroxidase-Catalyzed Reactions: Characterization and Potential Ecological Effects. Environ. Sci. Technol. 2015, 49, 8558–8565. [Google Scholar] [CrossRef]
- Pulido-Reyes, G.; Moreno-Martín, G.; Gómez-Gómez, B.; Navas, J.M.; Madrid, Y.; Fernández-Cruz, M.L. Fish Acute Toxicity of Nine Nanomaterials: Need of Pre-Tests to Ensure Comparability and Reuse of Data. Environ. Res. 2024, 245, 118072. [Google Scholar] [CrossRef]
- Lee, L.E.J.; Clemons, J.H.; Bechtel, D.G.; Caldwell, S.J.; Han, K.-B.; Pasitschniak-Arts, M.; Mosser, D.D.; Bols, N.C. Development and Characterization of a Rainbow Trout Liver Cell Line Expressing Cytochrome P450-Dependent Monooxygenase Activity. Cell Biol. Toxicol. 1993, 9, 279–294. [Google Scholar] [CrossRef]
- Dayeh, V.R.; Schirmer, K.; Lee, L.E.J.; Bols, N.C. Rainbow Trout Gill Cell Line Microplate Cytotoxicity Test. In Small-Scale Freshwater Toxicity Investigations; Blaise, C., Férard, J.-F., Eds.; Springer: Berlin/Heidelberg, 2005; pp. 473–503. ISBN 9781402031199. [Google Scholar]
- OECD. Test No. 249: Fish Cell Line Acute Toxicity—The RTgill-W1 Cell Line Assay. In OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2021; pp. 1–50. ISBN 9789264714137. [Google Scholar] [CrossRef]
- Lammel, T.; Boisseaux, P.; Fernández-Cruz, M.-L.; Navas, J.M. Internalization and Cytotoxicity of Graphene Oxide and Carboxyl Graphene Nanoplatelets in the Human Hepatocellular Carcinoma Cell Line Hep G2. Part. Fibre Toxicol. 2013, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Kalman, J.; Merino, C.; Fernández-Cruz, M.L.; Navas, J.M. Usefulness of Fish Cell Lines for the Initial Characterization of Toxicity and Cellular Fate of Graphene-Related Materials (Carbon Nanofibers and Graphene Oxide). Chemosphere 2019, 218, 347–358. [Google Scholar] [CrossRef]
- Wang, H.; Joseph, J.A. Quantifying Cellular Oxidative Stress by Dichlorofluorescein Assay Using Microplate reader11Mention of a Trade Name, Proprietary Product, or Specific Equipment Does Not Constitute a Guarantee by the United States Department of Agriculture and Does Not Imply Its Approval to the Exclusion of Other Products That May Be Suitable. Free. Radic. Biol. Med. 1999, 27, 612–616. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 203: Fish, Acute Toxicity Test. In OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2019; pp. 1–24. ISBN 9789264069961. [Google Scholar] [CrossRef]
- Valdehita, A.; Fernández-Cruz, M.L.; Navas, J.M. The Potentiating Effect of Graphene Oxide on the Arylhydrocarbon Receptor (AhR)–Cytochrome P4501A (Cyp1A) System Activated by Benzo(k)Fluoranthene (BkF) in Rainbow Trout Cell Line. Nanomaterials 2023, 13, 2501. [Google Scholar] [CrossRef]
- Creusot, N.; Brion, F.; Piccini, B.; Budzinski, H.; Porcher, J.M.; Aït-Aïssa, S. BFCOD Activity in Fish Cell Lines and Zebrafish Embryos and Its Modulation by Chemical Ligands of Human Aryl Hydrocarbon and Nuclear Receptors. Environ. Sci. Pollut. Res. 2015, 22, 16393–16404. [Google Scholar] [CrossRef]
- Burke, M.D.; Mayer, R.T. Ethoxyresorufin: Direct Fluorimetric Assay of a Microsomal O-Dealkylation Which Is Preferentially Inducible by 3-Methylcholanthrene. Drug Metab. Dispos. 1974, 2, 583–588. [Google Scholar]
- Habila, S.; Leghouchi, E.; Valdehita, A.; Bermejo-Nogales, A.; Khelili, S.; Navas, J.M. Induction of EROD and BFCOD Activities in Tissues of Barbel (Barbus Callensis) from a Water Reservoir in Algeria. Ecotoxicol. Environ. Saf. 2017, 142, 129–138. [Google Scholar] [CrossRef]
- Udenfriend, S.; Stein, S.; Böhlen, P.; Dairman, W.; Leimgruber, W.; Weigele, M. Fluorescamine: A Reagent for Assay of Amino Acids, Peptides, Proteins, and Primary Amines in the Picomole Range. Science 1972, 178, 871–872. [Google Scholar] [CrossRef] [PubMed]
- Thibaut, R.; Schnell, S.; Porte, C. The Interference of Pharmaceuticals with Endogenous and Xenobiotic Metabolizing Enzymes in Carp Liver: An In-Vitro Study. Environ. Sci. Technol. 2006, 40, 5154–5160. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guidance Document on Aquatic and Sediment Toxicological Testing of Nanomaterials, Series on Testing and Assessment OECD No. 317, 2022. Available online: https://one.oecd.org/document/env/jm/mono(2020)8/en/pdf (accessed on 22 January 2024).
- Amaro-Gahete, J.; Benítez, A.; Otero, R.; Esquivel, D.; Jiménez-Sanchidrián, C.; Morales, J.; Caballero, Á.; Romero-Salguero, F. A Comparative Study of Particle Size Distribution of Graphene Nanosheets Synthesized by an Ultrasound-Assisted Method. Nanomaterials 2019, 9, 152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-H.; Sun, T.; Niu, A.; Tang, Y.-M.; Deng, S.; Luo, W.; Xu, Q.; Wei, D.; Pei, D.-S. Perturbation Effect of Reduced Graphene Oxide Quantum Dots (rGOQDs) on Aryl Hydrocarbon Receptor (AhR) Pathway in Zebrafish. Biomaterials 2017, 133, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano 2010, 4, 5731–5736. [Google Scholar] [CrossRef]
- Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano 2011, 5, 6971–6980. [Google Scholar] [CrossRef]
- Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of Graphene-Family Nanoparticles: A General Review of the Origins and Mechanisms. Part. Fibre Toxicol. 2016, 13, 57. [Google Scholar] [CrossRef]
- Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J.I.; Wiesner, M.R.; Nel, A.E. Comparison of the Abilities of Ambient and Manufactured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm. Nano Lett. 2006, 6, 1794–1807. [Google Scholar] [CrossRef]
- Shvedova, A.A.; Pietroiusti, A.; Fadeel, B.; Kagan, V.E. Mechanisms of Carbon Nanotube-Induced Toxicity: Focus on Oxidative Stress. Toxicol. Appl. Pharmacol. 2012, 261, 121–133. [Google Scholar] [CrossRef]
- Yuan, J.; Gao, H.; Sui, J.; Duan, H.; Chen, W.N.; Ching, C.B. Cytotoxicity Evaluation of Oxidized Single-Walled Carbon Nanotubes and Graphene Oxide on Human Hepatoma HepG2 Cells: An iTRAQ-Coupled 2D LC-MS/MS Proteome Analysis. Toxicol. Sci. 2012, 126, 149–161. [Google Scholar] [CrossRef]
- Whyte, J.J.; Jung, R.E.; Schmitt, C.J.; Tillitt, D.E. Ethoxyresorufin- O -Deethylase (EROD) Activity in Fish as a Biomarker of Chemical Exposure. Crit. Rev. Toxicol. 2000, 30, 347–570. [Google Scholar] [CrossRef]
- Hollenberg, P.F.; Kent, U.M.; Bumpus, N.N. Mechanism-Based Inactivation of Human Cytochromes P450s: Experimental Characterization, Reactive Intermediates, and Clinical Implications. Chem. Res. Toxicol. 2008, 21, 189–205. [Google Scholar] [CrossRef] [PubMed]
- Real Decreto 53/2013, de 1 de Febrero, Por El Que Se Establecen Las Normas Básicas Aplicables Para La Protección de Los Animales Utilizados En Experimentación y Otros Fines Científicos, Incluyendo La Docencia.; Boletin Oficial del Estado, 34, de 8 de febrero de 2013, pp. 11370–11421. Available online: https://www.boe.es/eli/es/rd/2013/02/01/53/con (accessed on 17 December 2023).
- European Commission. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Off. J. EU 2010, L276. Available online: http://data.europa.eu/eli/dir/2010/63/oj (accessed on 17 December 2023).
Product | Supplied Form | Processing | Composition |
---|---|---|---|
IA | Aqueous dispersion | SDC exfoliation | Water, FLG, SDC |
IA+ | Powder | SDC exfoliation, evaporation, freeze-drying | FLG, SDC |
IA++ | Powder | SDC exfoliation, evaporation, freeze-drying, washing, filtration, freeze-drying | FLG |
VA | Aqueous solution | Aqueous dispersion | Water, SDC |
IB | Aqueous dispersion | NMP exfoliation, evaporation | Water, FLG, SDC, traces of NMP |
IB+ | Powder | Exfoliation, evaporation, DMSO treatment, freeze-drying | FLG, traces of DMSO and NMP |
VB | Aqueous solution | Aqueous dispersion | Water, SDC, traces of NMP |
Sample | Dispersion Medium | Time (h) | Concentration (mg/L) | Z-Ave a (nm) | PDI b | Average HDD c nm ± SEM (%) d | Z-Potential (mV) | |
---|---|---|---|---|---|---|---|---|
Peak 1 | Peak 2 | |||||||
IA | Milli-Q H2O | 0 | 560 | 835 ± 127 | 0.86 ± 0.07 | 448 ± 38 (88) | 133 ± 12 (12) | - |
IA+ | Milli-Q H2O | 0 | 800 | 2138 ± 187 | 0.85 ± 0.09 | 770 ± 118 (100) | - | - |
IA++ | Milli-Q H2O | 0 | 1000 | 2643 ± 395 | 0.88 ± 0.10 | 890 ± 147 (100) | - | - |
IB | Milli-Q H2O | 0 | 580 | 557± 16 | 0.55 ± 0.03 | 518 ± 39 (86) | 188 ± 26 (14) | - |
IB+ | Milli-Q H2O | 0 | 1000 | 5101 ± 480 | 0.75 ± 0.07 | 933 ± 140 (100) | - | - |
IA | L-15 | 0 | 56 | 2647 ± 480 | 1.00 ± 0.00 | 553 ± 132 (93) | 111 ± 33 (7) | - |
IA | L-15 | 144 | 56 | 1681 ± 81 | 1.00 ± 0.00 | 196 ± 36 (95.30) | 8.5 ± 3.1 (4.7) | - |
IA+ | L-15 | 0 | 80 | 5406 ± 15 | 0.94 ± 0.06 | 500 ± 90 (100) | - | - |
IA+ | L-15 | 144 | 80 | 1953 ± 198 | 0.93 ± 0.07 | 388 ± 92.2 (100) | - | - |
IA++ | L-15 | 0 | 100 | 3032 ± 260 | 0.80 ± 0.14 | 606 ± 30 (100) | - | - |
IA++ | L-15 | 144 | 100 | 3107 ± 475 | 0.89 ± 0.12 | 757 ± 238 (100) | - | - |
IB | L-15 | 0 | 58 | 3247 ± 391 | 1.00 ± 0.00 | 382 ± 52 (100) | - | - |
IB | L-15 | 144 | 58 | 2499 ± 135 | 0.97 ± 0.03 | 579 ± 1.3 (100) | - | - |
IB+ | L-15 | 0 | 100 | 5190 ± 518 | 0.57 ± 0.09 | 727 ± 161 (100) | - | - |
IB+ | L-15 | 144 | 100 | 3586 ± 471 | 1.00 ± 0.00 | 216 ± 44 (100) | - | - |
IA | Aquarium H2O | 0 | 67.6 | 2929 ± 440 | 1.00 ± 0.00 | 265 ± 82 (100) | - | −28.3 ± 0.7 |
IA | Aquarium H2O | 48 | 67.6 | 2906 ± 239 | 1.00 ± 0.00 | 350 ± 49 (100) | - | - |
IA | Aquarium H2O | 96 | 67.6 | 4401 ± 653 | 0.99 ± 0.01 | 486 ± 234 (100) | - | −21.3 ± 0.2 |
IB | Aquarium H2O | 0 | 67.6 | 1900 ± 134 | 1.00 ± 0.00 | 507 ± 45 (98.2) | 118 (1.8) | −28.5 ± 0.8 |
IB | Aquarium H2O | 48 | 67.6 | 2577 ± 218 | 1.00 ± 0.00 | 500 ± 54 (98) | 241 (2) | - |
IB | Aquarium H2O | 96 | 67.6 | 3574 ± 349 | 0.99 ± 0.01 | 517 ± 29 (100) | - | −25.6 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molés, G.; Connolly, M.; Valdehita, A.; Pulido-Reyes, G.; Fernandez-Cruz, M.L.; Flahaut, E.; Navas, J.M. Testing the Aquatic Toxicity of 2D Few-Layer Graphene Inks Using Rainbow Trout (Oncorhynchus mykiss): In Vivo and In Vitro Approaches to Support an SSbD Assessment. Toxics 2024, 12, 97. https://doi.org/10.3390/toxics12020097
Molés G, Connolly M, Valdehita A, Pulido-Reyes G, Fernandez-Cruz ML, Flahaut E, Navas JM. Testing the Aquatic Toxicity of 2D Few-Layer Graphene Inks Using Rainbow Trout (Oncorhynchus mykiss): In Vivo and In Vitro Approaches to Support an SSbD Assessment. Toxics. 2024; 12(2):97. https://doi.org/10.3390/toxics12020097
Chicago/Turabian StyleMolés, Gregorio, Mona Connolly, Ana Valdehita, Gerardo Pulido-Reyes, Maria L. Fernandez-Cruz, Emmanuel Flahaut, and José M. Navas. 2024. "Testing the Aquatic Toxicity of 2D Few-Layer Graphene Inks Using Rainbow Trout (Oncorhynchus mykiss): In Vivo and In Vitro Approaches to Support an SSbD Assessment" Toxics 12, no. 2: 97. https://doi.org/10.3390/toxics12020097