Enantioselective Toxicity of Tetramethrin to Different Developmental Stages of Zebrafish (Danio rerio)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Enantiomer Preparation
2.2. Zebrafish Maintenance and Embryo Collection
2.3. Exposure Experiments
2.4. Determination of Tet Content in Exposure Solution and Juvenile Fish
2.5. Quality Assurance/Quality Control (QA/QC)
2.6. RNA Extraction, Reverse Transcription, and Realtime PCR
2.7. Statistical Analysis
3. Results
3.1. Enantiomeric Separation
3.2. Acute Toxicity
3.3. Bioconcentration
3.4. Developmental Toxicity
3.5. mRNA Expression Levels of cyp19 and vtg Genes
3.6. Impact on the Transcription of Innate Immune-Related Genes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, M.; Chen, Y. Zebrafish as an Emerging Model to Study Gonad Development. Comput. Struct. Biotechnol. J. 2020, 18, 2373–2380. [Google Scholar] [CrossRef]
- Fent, K.; Weisbrod, C.J.; Wirth-Heller, A.; Pieles, U. Assessment of Uptake and Toxicity of Fluorescent Silica Nanoparticles in Zebrafish (Danio rerio) Early Life Stages. Aquat. Toxicol. 2010, 100, 218–228. [Google Scholar] [CrossRef]
- Fraher, D.; Sanigorski, A.; Mellett, N.A.; Meikle, P.J.; Sinclair, A.J.; Gibert, Y. Zebrafish Embryonic Lipidomic Analysis Reveals That the Yolk Cell Is Metabolically Active in Processing Lipid. Cell Rep. 2016, 14, 1317–1329. [Google Scholar] [CrossRef]
- Xu, C.; Li, X.; Jin, M.; Sun, X.; Niu, L.; Lin, C.; Liu, W. Early Life Exposure of Zebrafish (Danio rerio) to Synthetic Pyrethroids and Their Metabolites: A Comparison of Phenotypic and Behavioral Indicators and Gene Expression Involved in the HPT Axis and Innate Immune System. Environ. Sci. Pollut. Res. 2018, 25, 12992–13003. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Lucci, E.; Dal Bosco, C.; Antonelli, L.; Fanali, C.; Fanali, S.; Gentili, A.; Chankvetadze, B. Enantioselective High-Performance Liquid Chromatographic Separations to Study Occurrence and Fate of Chiral Pesticides in Soil, Water, and Agricultural Products. J. Chromatogr. A 2022, 1685, 463595. [Google Scholar] [CrossRef] [PubMed]
- Sanganyado, E.; Lu, Z.; Liu, W. Application of Enantiomeric Fractions in Environmental Forensics: Uncertainties and Inconsistencies. Environ. Res. 2020, 184, 109354. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cheng, F.; Wei, Y.; Lydy, M.J.; You, J. Global Occurrence of Pyrethroid Insecticides in Sediment and the Associated Toxicological Effects on Benthic Invertebrates: An Overview. J. Hazard. Mater. 2017, 324, 258–271. [Google Scholar] [CrossRef]
- Tang, W.; Wang, D.; Wang, J.; Wu, Z.; Li, L.; Huang, M.; Xu, S.; Yan, D. Pyrethroid Pesticide Residues in the Global Environment: An Overview. Chemosphere 2018, 191, 990–1007. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Moreno, L.; Lin, K.; Veiga-Nascimento, R.; Gan, J. Occurrence and Toxicity of Three Classes of Insecticides in Water and Sediment in Two Southern California Coastal Watersheds. J. Agric. Food Chem. 2011, 59, 9448–9456. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, J.T.; Giroux, M.; Cryder, Z.; Gan, J.; Schlenk, D. The Use of Non-Targeted Metabolomics to Assess the Toxicity of Bifenthrin to Juvenile Chinook Salmon (Oncorhynchus tshawytscha). Aquat. Toxicol. 2020, 224, 105518. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, W.; Xu, C.; Fu, Z.; Liu, W. Induction of Hepatic Estrogen-Responsive Gene Transcription by Permethrin Enantiomers in Male Adult Zebrafish. Aquat. Toxicol. 2008, 88, 146–152. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.-Y.; Park, H.; Song, G.; Lim, W. Bifenthrin Induces Developmental Immunotoxicity and Vascular Malformation during Zebrafish Embryogenesis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 228, 108671. [Google Scholar] [CrossRef] [PubMed]
- Saygın, Ö.; Gölal, E.; Yalçın, B.; Güneş, M.; Kaya, B. Genotoxicity Testing of Tetramethrin in the Drosophila SMART Assay. Toxicol. Lett. 2016, 258, S189. [Google Scholar] [CrossRef]
- Tu, W.; Niu, L.; Liu, W.; Xu, C. Embryonic Exposure to Butachlor in Zebrafish (Danio rerio): Endocrine Disruption, Developmental Toxicity and Immunotoxicity. Ecotoxicol. Environ. Saf. 2013, 89, 189–195. [Google Scholar] [CrossRef] [PubMed]
- OECD. OECD Test No. 212: Fish, Short-Term Toxicity Test on Embryo and Sac-Fry Stages; Organization for Economic Cooperation and Development: Paris, France, 1998. [Google Scholar]
- Mundy, P.C.; Carte, M.F.; Brander, S.M.; Hung, T.-C.; Fangue, N.; Connon, R.E. Bifenthrin Exposure Causes Hyperactivity in Early Larval Stages of an Endangered Fish Species at Concentrations That Occur during Their Hatching Season. Aquat. Toxicol. 2020, 228, 105611. [Google Scholar] [CrossRef] [PubMed]
- Pang, G.-F.; Cao, Y.-Z.; Zhang, J.-J.; Fan, C.-L.; Liu, Y.-M.; Li, X.-M.; Jia, G.-Q.; Li, Z.-Y.; Shi, Y.-Q.; Wu, Y.-P.; et al. Validation Study on 660 Pesticide Residues in Animal Tissues by Gel Permeation Chromatography Cleanup/Gas Chromatography-Mass Spectrometry and Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2006, 1125, 1–30. [Google Scholar] [CrossRef]
- Tang, S.; Cai, Q.; Chibli, H.; Allagadda, V.; Nadeau, J.L.; Mayer, G.D. Cadmium Sulfate and CdTe-Quantum Dots Alter DNA Repair in Zebrafish (Danio rerio) Liver Cells. Toxicol. Appl. Pharmacol. 2013, 272, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Brander, S.M.; Werner, I.; White, J.W.; Deanovic, L.A. Toxicity of a Dissolved Pyrethroid Mixture to Hyalella Azteca at Environmentally Relevant Concentrations. Environ. Toxicol. Chem. 2009, 28, 1493–1499. [Google Scholar] [CrossRef]
- Knöbel, M.; Busser, F.J.M.; Rico-Rico, A.; Kramer, N.I.; Hermens, J.L.M.; Hafner, C.; Tanneberger, K.; Schirmer, K.; Scholz, S. Predicting Adult Fish Acute Lethality with the Zebrafish Embryo: Relevance of Test Duration, Endpoints, Compound Properties, and Exposure Concentration Analysis. Environ. Sci. Technol. 2012, 46, 9690–9700. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Chai, T.; Wang, K.; Zhang, J.; Zhu, L.; Li, X.; Wang, C. Occurrence and Origin of Sensitivity toward Difenoconazole in Zebrafish (Danio Reio) during Different Life Stages. Aquat. Toxicol. 2015, 160, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M.B.; Feo, M.L.; Corcellas, C.; Vidal, L.G.; Bertozzi, C.P.; Marigo, J.; Secchi, E.R.; Bassoi, M.; Azevedo, A.F.; Dorneles, P.R.; et al. Pyrethroids: A New Threat to Marine Mammals? Environ. Int. 2012, 47, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Corcellas, C.; Eljarrat, E.; Barceló, D. First Report of Pyrethroid Bioaccumulation in Wild River Fish: A Case Study in Iberian River Basins (Spain). Environ. Int. 2015, 75, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.; Xu, C.; Lu, B.; Lin, C.; Wu, Y.; Liu, W. Acute Exposure to Synthetic Pyrethroids Causes Bioconcentration and Disruption of the Hypothalamus-Pituitary-Thyroid Axis in Zebrafish Embryos. Sci. Total Environ. 2016, 542, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Nillos, M.G.; Chajkowski, S.; Rimoldi, J.M.; Gan, J.; Lavado, R.; Schlenk, D. Stereoselective Biotransformation of Permethrin to Estrogenic Metabolites in Fish. Chem. Res. Toxicol. 2010, 23, 1568–1575. [Google Scholar] [CrossRef] [PubMed]
- Köprücü, K.; Aydın, R. The Toxic Effects of Pyrethroid Deltamethrin on the Common carp (Cyprinus carpio L.) Embryos and Larvae. Pestic. Biochem. Physiol. 2004, 80, 47–53. [Google Scholar] [CrossRef]
- Parlak, V. Evaluation of Apoptosis, Oxidative Stress Responses, AChE Activity and Body Malformations in Zebrafish (Danio rerio) Embryos Exposed to Deltamethrin. Chemosphere 2018, 207, 397–403. [Google Scholar] [CrossRef]
- Xu, C.; Wang, J.; Liu, W.; Daniel Sheng, G.; Tu, Y.; Ma, Y. Separation and Aquatic Toxicity of Enantiomers of the Pyrethroid Insecticide Lambda-Cyhalothrin. Environ. Toxicol. Chem. 2008, 27, 174–181. [Google Scholar] [CrossRef]
- Uno, T.; Ishizuka, M.; Itakura, T. Cytochrome P450 (CYP) in Fish. Environ. Toxicol. Pharmacol. 2012, 34, 1–13. [Google Scholar] [CrossRef]
- Lubzens, E.; Young, G.; Bobe, J.; Cerdà, J. Oogenesis in Teleosts: How Fish Eggs Are Formed. Gen. Comp. Endocrinol. 2010, 165, 367–389. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.; Wang, C.; Song, M.; Chen, X.; Zhang, J.; Wang, C. Chronic Exposure of Zebrafish (Danio rerio) to Flutolanil Leads to Endocrine Disruption and Reproductive Disorders. Environ. Res. 2020, 184, 109310. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.; Willi, R.A.; Fent, K. Effects of Environmental Steroid Mixtures Are Regulated by Individual Steroid Receptor Signaling. Aquat. Toxicol. 2020, 226, 105562. [Google Scholar] [CrossRef] [PubMed]
- McBlain, W.A. The Levo Enantiomer of o,p’-DDT Inhibits the Binding of 17 Beta-Estradiol to the Estrogen Receptor. Life Sci. 1987, 40, 215–221. [Google Scholar] [CrossRef]
- Trede, N.S.; Langenau, D.M.; Traver, D.; Look, A.T.; Zon, L.I. The Use of Zebrafish to Understand Immunity. Immunity 2004, 20, 367–379. [Google Scholar] [CrossRef]
- Eder, K.J.; Clifford, M.A.; Hedrick, R.P.; Köhler, H.-R.; Werner, I. Expression of Immune-Regulatory Genes in Juvenile Chinook Salmon Following Exposure to Pesticides and Infectious Hematopoietic Necrosis Virus (IHNV). Fish. Shellfish. Immunol. 2008, 25, 508–516. [Google Scholar] [CrossRef]
Life Stages | Toxic Endpoint | Exposure Time | LC50 (mg/L, Mean ± SD) | ||
---|---|---|---|---|---|
(±) | (+) | (−) | |||
Embryo | Coagulated embryos or lack of heartbeat | 48 h | 0.77 ± 0.09 | 0.69 ± 0.53 | >1 |
96 h | 0.57 ± 0.66 | 0.49 ± 0.53 | >1 | ||
Yolk sac larvae | Lack of movement or heartbeat | 48 h | >1 | >1 | >1 |
96 h | >1 | >1 | >1 | ||
Juvenile | Death | 48 h | 0.94 ± 0.66 | >1 | >1 |
96 h | 0.75 ± 0.83 | 0.65 ± 0.61 | >1 |
Stage | Chemicals | Exposure Concentration (µg/L) | BCFs |
---|---|---|---|
Embryo | (±)-Tet | 5.00 | 38.89 |
50.00 | 14.38 | ||
(+)-Tet | 5.00 | 52.27 | |
50.00 | 5.74 | ||
(−)-Tet | 5.00 | 35.02 | |
50.00 | 6.37 | ||
Yolk sac | (±)-Tet | 10.00 | 37.5 |
100.00 | 7.28 | ||
(+)-Tet | 10.00 | 26.97 | |
100.00 | 3.84 | ||
(−)-Tet | 10.00 | 16.48 | |
100.00 | 3.43 | ||
Juvenile | (±)-Tet | 6.50 | 45.23 |
65.00 | 9.94 | ||
(+)-Tet | 6.50 | 32.88 | |
65.00 | 3.59 | ||
(−)-Tet | 6.50 | 13.53 | |
65.00 | 2.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Xu, X.; Huang, W.; Gong, H.; Sun, X.; Liu, J.; Xu, C.; Liu, W. Enantioselective Toxicity of Tetramethrin to Different Developmental Stages of Zebrafish (Danio rerio). Toxics 2024, 12, 146. https://doi.org/10.3390/toxics12020146
Feng J, Xu X, Huang W, Gong H, Sun X, Liu J, Xu C, Liu W. Enantioselective Toxicity of Tetramethrin to Different Developmental Stages of Zebrafish (Danio rerio). Toxics. 2024; 12(2):146. https://doi.org/10.3390/toxics12020146
Chicago/Turabian StyleFeng, Jiqin, Xintong Xu, Wenfei Huang, Honghong Gong, Xiaohui Sun, Jinsong Liu, Chao Xu, and Weiping Liu. 2024. "Enantioselective Toxicity of Tetramethrin to Different Developmental Stages of Zebrafish (Danio rerio)" Toxics 12, no. 2: 146. https://doi.org/10.3390/toxics12020146
APA StyleFeng, J., Xu, X., Huang, W., Gong, H., Sun, X., Liu, J., Xu, C., & Liu, W. (2024). Enantioselective Toxicity of Tetramethrin to Different Developmental Stages of Zebrafish (Danio rerio). Toxics, 12(2), 146. https://doi.org/10.3390/toxics12020146