A Mechanism of Reducing Methane Production During Sewage Sludge Composting by Adding Urea
Abstract
1. Introduction
2. Materials and Methods
2.1. Compost Materials and Environmental Design
2.2. Composting System and Sampling
2.3. Measuring of Samples
2.4. Enzymatic Activity Assays
2.5. DNA Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Changes in Physicochemical Properties During Composting
3.1.1. Temperature
3.1.2. Change in pH, OM, O2 and CH4
3.1.3. Changes in TN, NH4+-N, TOC Contents and C/N
3.1.4. Changes in GI
3.2. Changes in Enzymatic Activities
3.2.1. Cellulase Activity
3.2.2. Protease Activity
3.2.3. Urease Activity
3.2.4. Arylsulphatase Activity
3.2.5. Peroxidase Activity
3.3. Evolution of Bacterial and Archaeal Communities
Effects of Different Initial Urea Additions on the Bacterial and Archaeal Community Structure
3.4. Effects of Physicochemical Properties, Enzymes, and Microbial on CH4
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meng, F.; Zhao, Q.; Zheng, Z.; Wei, L.; Wang, K.; Jiang, J.; Ding, J.; Na, X. Simultaneous sludge degradation, desalination and bioelectricity generation in two-phase microbial desalination cells. Chem. Eng. J. 2019, 361, 180–188. [Google Scholar] [CrossRef]
- Jara-Samaniego, J.; Pérez-Murcia, M.; Bustamante, M.; Pérez-Espinosa, A.; Paredes, C.; López, M.; López-Lluch, D.; Gavilanes-Terán, I.; Moral, R. Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suitability of the obtained composts for seedling production. J. Clean. Prod. 2017, 141, 1349–1358. [Google Scholar] [CrossRef]
- He, X.; Yin, H.; Han, L.; Cui, R.; Fang, C.; Huang, G. Effects of biochar size and type on gaseous emissions during pig manure/wheat straw aerobic composting: Insights into multivariate-microscale characterization and microbial mechanism. Bioresour. Technol. 2019, 271, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Szanto, G.; Hamelers, H.; Rulkens, W.; Veeken, A. NH3, N2O and CH4 emissions during passively aerated composting of straw-rich pig manure. Bioresour. Technol. 2007, 98, 2659–2670. [Google Scholar] [CrossRef] [PubMed]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC Sixth Assessment Report; IPCC: Geneva, Switzerland, 2021; Volume 2, p. 2391. [Google Scholar]
- Solomon, S. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Ge, J.; Huang, G.; Huang, J.; Zeng, J.; Han, L. Particle-scale modeling of methane emission during pig manure/wheat straw aerobic composting. Environ. Sci. Technol. 2016, 50, 4374–4383. [Google Scholar] [CrossRef]
- Trinh, M.V.; Tesfai, M.; Borrell, A.; Nagothu, U.S.; Bui, T.P.L.; Quynh, V.D.; Thanh, L.Q. Effect of organic, inorganic and slow-release urea fertilisers on CH4 and N2O emissions from rice paddy fields. Paddy Water Environ. 2017, 15, 317–330. [Google Scholar] [CrossRef]
- Zuo, Z.; Xing, Y.; Liu, T.; Zheng, M.; Lu, X.; Chen, Y.; Jiang, G.; Liang, P.; Huang, X.; Liu, Y. Methane mitigation via the nitrite-DAMO process induced by nitrate dosing in sewers. Water Res. 2024, 257, 121701. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Yao, T.; Su, M.; Li, J.; Liu, Z.; Xin, Y.; Wang, L.; Chen, J.; Gun, S. Effects of microbial inoculation on enzyme activity, available nitrogen content, and bacterial succession during pig manure composting. Bioresour. Technol. 2020, 306, 123167. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.; Ma, L.; Li, Y.; Deng, Y.; Chen, X.; Xu, Z. Adding an appropriate proportion of phosphogypsum ensured rice husk and urea composting to promote the compost as substrate utilization. Bioresour. Technol. 2022, 344, 126301. [Google Scholar] [CrossRef]
- Van Fan, Y.; Lee, C.T.; Klemeš, J.J.; Chua, L.S.; Sarmidi, M.R.; Leow, C.W. Evaluation of Effective Microorganisms on home scale organic waste composting. J. Environ. Manag. 2018, 216, 41–48. [Google Scholar] [CrossRef]
- Nelson, V.; Crowe, T.; Shah, M.; Watson, L. Temperature and turning energy of composting feedlot manure at different moisture contents in southern Alberta. Can. Biosyst. Eng. 2006, 48, 6. [Google Scholar]
- Bao, J.; Li, S.; Qv, M.; Wang, W.; Wu, Q.; Nugroho, Y.K.; Huang, L.; Zhu, L. Urea addition as an enhanced strategy for degradation of petroleum contaminants during co-composting of straw and pig manure: Evidences from microbial community and enzyme activity evaluation. Bioresour. Technol. 2024, 393, 130135. [Google Scholar] [CrossRef] [PubMed]
- Aweke, Y.K.; Tasisa, B.Y.; Garoma, W.D.; Denbi, W.B. Extraction and characterization of cellulase from forest and compost soil fungal isolates for the application of straw degradation. Int. J. Health Sci. 2022, 6, 7146–7162. [Google Scholar] [CrossRef]
- Yang, C.; Feng, M.; Song, L.; Jing, B.; Xie, Y.; Wang, C.; Qin, M.; Yang, W.; Xiao, L.; Sun, J. Hyperspectral monitoring of soil urease activity under different water regulation. Plant Soil 2022, 477, 779–792. [Google Scholar] [CrossRef]
- Benckiser, G.; Schartel, T.; Weiske, A. Control of NO3− and N2O emissions in agroecosystems: A review. Agron. Sustain. Dev. 2015, 35, 1059–1074. [Google Scholar] [CrossRef]
- Huang, Y.; Li, D.; Wang, L.; Yong, C.; Sun, E.; Jin, H.; Huang, H. Decreased enzyme activities, ammonification rate and ammonifiers contribute to higher nitrogen retention in hyperthermophilic pretreatment composting. Bioresour. Technol. 2019, 272, 521–528. [Google Scholar] [CrossRef]
- Şevik, F.; Tosun, İ.; Ekinci, K. The effect of FAS and C/N ratios on co-composting of sewage sludge, dairy manure and tomato stalks. Waste Manag. 2018, 80, 450–456. [Google Scholar] [CrossRef]
- Xie, T.; Zhang, Z.; Yu, Y.; Tian, Y.; Wang, F.; Li, D.; Nan, J.; Feng, Y. Aeration intensity drives dissolved organic matter transformation and humification during composting by regulating the organics metabolic functions of microbiome. Chem. Eng. J. 2023, 476, 146645. [Google Scholar] [CrossRef]
- Zhou, H.-B.; Ma, C.; Gao, D.; Chen, T.-B.; Zheng, G.-D.; Chen, J.; Pan, T.-H. Application of a recyclable plastic bulking agent for sewage sludge composting. Bioresour. Technol. 2014, 152, 329–336. [Google Scholar] [CrossRef]
- Wang, J.; Du, X.; Zhang, Y.; Li, T.; Liao, X. Effect of substrate on identification of microbial communities in poultry carcass composting and microorganisms associated with poultry carcass decomposition. J. Agric. Food Chem. 2016, 64, 6838–6847. [Google Scholar] [CrossRef]
- Tiquia, S.; Tam, N. Composting of spent pig litter in turned and forced-aerated piles. Environ. Pollut. 1998, 99, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Pandey, A.K.; Bundela, P.S.; Khan, J. Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: Characterization of physicochemical parameters and microbial enzymatic dynamic. Bioresour. Technol. 2015, 182, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Tian, D.; Liu, J.; Lv, S.; He, X.; Gao, M. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agric. Ecosyst. Environ. 2018, 265, 576–586. [Google Scholar] [CrossRef]
- Ouyang, J.-X.; Shi, Z.; Zhong, H.; Liu, W.; Chai, Q.; Yuan, X.-Z. Static aerobic composting of municipal sewage sludge with forced ventilation: Using matured compost as bulking conditioner. J. Cent. South Univ. 2014, 21, 303–309. [Google Scholar] [CrossRef]
- Tabatabai, M. Soil Enzymes. Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties; John Wiley & Sons: Hoboken, NJ, USA, 1994; Volume 5, pp. 775–833. [Google Scholar]
- Galgani, F.; Bocquene, G. Semi-automated colorimetric and enzymatic assays for aquatic organisms using microplate readers. Water Res. 1991, 25, 147–150. [Google Scholar] [CrossRef]
- Liu, C.; Li, H.; Zhang, Y.; Si, D.; Chen, Q. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresour. Technol. 2016, 216, 87–94. [Google Scholar] [CrossRef]
- Wu, J.; He, S.; Liang, Y.; Li, G.; Li, S.; Chen, S.; Nadeem, F.; Hu, J. Effect of phosphate additive on the nitrogen transformation during pig manure composting. Environ. Sci. Pollut. Res. 2017, 24, 17760–17768. [Google Scholar] [CrossRef]
- Sun, Z.-Y.; Li, X.-X.; Shuai, W.-L.; Wang, S.-P.; Tang, Y.-Q. Improving the efficiency of rice straw composting by addition of a protein hydrolysate as a nitrogen source. Environ. Eng. Sci. 2021, 38, 703–713. [Google Scholar] [CrossRef]
- Wang, S.; Meng, Q.; Zhu, Q.; Niu, Q.; Yan, H.; Li, K.; Li, G.; Li, X.; Liu, H.; Liu, Y. Efficient decomposition of lignocellulose and improved composting performances driven by thermally activated persulfate based on metagenomics analysis. Sci. Total Environ. 2021, 794, 148530. [Google Scholar] [CrossRef]
- Ge, M.; Zhou, H.; Shen, Y.; Meng, H.; Li, R.; Zhou, J.; Cheng, H.; Zhang, X.; Ding, J.; Wang, J. Effect of aeration rates on enzymatic activity and bacterial community succession during cattle manure composting. Bioresour. Technol. 2020, 304, 122928. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, Y.; Fan, Y.; Zhang, F.; Tan, W.; He, X.; Xi, B. Roles of bacterial community in the transformation of dissolved organic matter for the stability and safety of material during sludge composting. Bioresour. Technol. 2018, 267, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Hansen, R.; Keener, H.; Dick, W.; Marugg, C.; Hoitink, H. Poultry Manure Composting. Ammonia Capture and Aeration Control; ASAE: St. Joseph, MI, USA, 1990. [Google Scholar]
- Jain, S.; Jain, S.; Wolf, I.T.; Lee, J.; Tong, Y.W. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew. Sustain. Energy Rev. 2015, 52, 142–154. [Google Scholar] [CrossRef]
- Rihani, M.; Malamis, D.; Bihaoui, B.; Etahiri, S.; Loizidou, M.; Assobhei, O. In-vessel treatment of urban primary sludge by aerobic composting. Bioresour. Technol. 2010, 101, 5988–5995. [Google Scholar] [CrossRef] [PubMed]
- Amlinger, F.; Peyr, S.; Cuhls, C. Green house gas emissions from composting and mechanical biological treatment. Waste Manag. Res. 2008, 26, 47–60. [Google Scholar] [CrossRef]
- Jiang, T.; Schuchardt, F.; Li, G.; Guo, R.; Zhao, Y. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. J. Environ. Sci. 2011, 23, 1754–1760. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Sun, Y.; Yuan, Z. Bioaugmentation strategy for enhancing anaerobic digestion of high C/N ratio feedstock with methanogenic enrichment culture. Bioresour. Technol. 2018, 261, 188–195. [Google Scholar] [CrossRef]
- Peng, S.; Li, H.; Xu, Q.; Lin, X.; Wang, Y. Addition of zeolite and superphosphate to windrow composting of chicken manure improves fertilizer efficiency and reduces greenhouse gas emission. Environ. Sci. Pollut. Res. 2019, 26, 36845–36856. [Google Scholar] [CrossRef]
- Ermolaev, E.; Sundberg, C.; Pell, M.; Smårs, S.; Jönsson, H. Effects of moisture on emissions of methane, nitrous oxide and carbon dioxide from food and garden waste composting. J. Clean. Prod. 2019, 240, 118165. [Google Scholar] [CrossRef]
- Kebreab, E.; Clark, K.; Wagner-Riddle, C.; France, J. Methane and nitrous oxide emissions from Canadian animal agriculture: A review. Can. J. Anim. Sci. 2006, 86, 135–157. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, Z.; Guo, W.; Wei, Y.; Luo, J.; Song, C.; Lu, Q.; Zhao, Y. Two types nitrogen source supply adjusted interaction patterns of bacterial community to affect humifaction process of rice straw composting. Bioresour. Technol. 2021, 332, 125129. [Google Scholar] [CrossRef]
- Ren, L.; Schuchardt, F.; Shen, Y.; Li, G.; Li, C. Impact of struvite crystallization on nitrogen losses during composting of pig manure and cornstalk. Waste Manag. 2010, 30, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Sisouane, M.; Cascant, M.; Tahiri, S.; Garrigues, S.; Krati, M.E.; Boutchich, G.E.K.; Cervera, M.; de La Guardia, M. Prediction of organic carbon and total nitrogen contents in organic wastes and their composts by infrared spectroscopy and partial least square regression. Talanta 2017, 167, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Castaldi, P.; Garau, G.; Melis, P. Maturity assessment of compost from municipal solid waste through the study of enzyme activities and water-soluble fractions. Waste Manag. 2008, 28, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Mondini, C.; Fornasier, F.; Sinicco, T. Enzymatic activity as a parameter for the characterization of the composting process. Soil Biol. Biochem. 2004, 36, 1587–1594. [Google Scholar] [CrossRef]
- Han, Z.; Qi, F.; Wang, H.; Liu, B.; Shen, X.; Song, C.; Bao, Z.; Zhao, X.; Xu, Y.; Sun, D. Emission characteristics of volatile sulfur compounds (VSCs) from a municipal sewage sludge aerobic composting plant. Waste Manag. 2018, 77, 593–602. [Google Scholar] [CrossRef]
- Huang, K.; Li, F.; Wei, Y.; Chen, X.; Fu, X. Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida. Bioresour. Technol. 2013, 150, 235–241. [Google Scholar] [CrossRef]
- Li, T.; Kong, Z.; Zhang, X.; Wang, X.; Chai, L.; Liu, D.; Shen, Q. Deciphering the effect of exogenous lignocellulases addition on the composting efficiency and microbial communities. Bioresour. Technol. 2022, 361, 127751. [Google Scholar] [CrossRef]
Parameters | Sewage Sludge | Sawdust | Pile A | Pile B | Pile C |
---|---|---|---|---|---|
pH | 8.12 | 5.55 | 8.30 | 8.83 | 8.95 |
Moisture content | 80.52% | 8.23% | 51.34% | 51.11% | 51.09% |
Organic matter | 43.39% | 97.66% | 84.42% | 84.04% | 84.84% |
Total organic carbon | 28.11% | 57.82% | 36.06% | 36.57% | 35.96% |
Total nitrogen | 2.05% | 0.41% | 1.03% | 1.41% | 2.34% |
C/N ratio | 13.32 | 140.30 | 35.51 | 25.34 | 15.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Guo, H.; Liang, Y.; Liu, F.; Zheng, G.; Zhang, J.; Gao, A.; Liu, N.; Ma, C. A Mechanism of Reducing Methane Production During Sewage Sludge Composting by Adding Urea. Toxics 2024, 12, 895. https://doi.org/10.3390/toxics12120895
Zhang K, Guo H, Liang Y, Liu F, Zheng G, Zhang J, Gao A, Liu N, Ma C. A Mechanism of Reducing Methane Production During Sewage Sludge Composting by Adding Urea. Toxics. 2024; 12(12):895. https://doi.org/10.3390/toxics12120895
Chicago/Turabian StyleZhang, Ke, Haopeng Guo, Yujing Liang, Fuyong Liu, Guodi Zheng, Jun Zhang, Aihua Gao, Nan Liu, and Chuang Ma. 2024. "A Mechanism of Reducing Methane Production During Sewage Sludge Composting by Adding Urea" Toxics 12, no. 12: 895. https://doi.org/10.3390/toxics12120895
APA StyleZhang, K., Guo, H., Liang, Y., Liu, F., Zheng, G., Zhang, J., Gao, A., Liu, N., & Ma, C. (2024). A Mechanism of Reducing Methane Production During Sewage Sludge Composting by Adding Urea. Toxics, 12(12), 895. https://doi.org/10.3390/toxics12120895