Effect of Substituent Groups on the Adsorption Efficiency of Phenols by Activated Carbon Developed by Hydrothermally Treated Phyllanthus Emblica Fruit Stone
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Adsorbents
2.3. Adsorbent Characterization
2.4. Adsorption Studies
3. Results and Discussion
3.1. Adsorbent Characterization
3.2. Effect for Different Parameters on Phenolic Compounds Adsorption
Effect of Contact Time and Initial Concentration
3.3. Adsorption Isotherms
3.4. Mechanism of Adsorption of Phenols
3.5. Thermodynamics of Phenol Adsorption
3.6. Kinetics Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sobiesiak, M. Chemical structure of phenols and its consequence for sorption processes. In Phenolic Compounds-Natural Sources, Importance and Applications; IntechOpen: London, UK, 2017. [Google Scholar]
- Haydar, S.; Ferro-Garcıa, M.; Rivera-Utrilla, J.; Joly, J. Adsorption of p-nitrophenol on an activated carbon with different oxidations. Carbon 2003, 41, 387–395. [Google Scholar] [CrossRef]
- Omokhogbo, R.E.; Samuel, O.O.; Chukuwendu, U.M. The Effectiveness of Carbonized Neem Leaves Adsorbent for the Removal of Phenol from Synthesized Effluent Using the Batch Process Method. Adv. J. Sci. Technol. Eng. 2024, 4, 80–96. [Google Scholar]
- Liu, Q.-S.; Zheng, T.; Wang, P.; Jiang, J.-P.; Li, N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 2010, 157, 348–356. [Google Scholar] [CrossRef]
- Dąbrowski, A.; Podkościelny, P.; Hubicki, Z.; Barczak, M. Adsorption of phenolic compounds by activated carbon—A critical review. Chemosphere 2005, 58, 1049–1070. [Google Scholar] [CrossRef]
- Adams, C.D.; Cozzens, R.A.; Kim, B.J. Effects of ozonation on the biodegradability of substituted phenols. Water Res. 1997, 31, 2655–2663. [Google Scholar] [CrossRef]
- Mahugo Santana, C.; Sosa Ferrera, Z.; Esther Torres Padrón, M.; Juan Santana Rodríguez, J. Methodologies for the Extraction of Phenolic Compounds from Environmental Samples: New Approaches. Molecules 2009, 14, 298–320. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M.; Gayatri, S.L. Activated tea waste as a potential low-cost adsorbent for the removal of p-nitrophenol from wastewater. J. Chem. Eng. Data. 2010, 55, 4614–4623. [Google Scholar] [CrossRef]
- Barrios-Martinez, A.; Barbot, E.; Marrot, B.; Moulin, P.; Roche, N. Degradation of synthetic phenol-containing wastewaters by MBR. J. Membr. Sci. 2006, 281, 288–296. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Kara-Zaïtri, C.; Mujtaba, I.M. Removal of phenol from wastewater using spiral-wound reverse osmosis process: Model development based on experiment and simulation. J. Water Process Eng. 2017, 18, 20–28. [Google Scholar] [CrossRef]
- Pimentel, M.; Oturan, N.; Dezotti, M.; Oturan, M.A. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl. Catal. B Environ. 2008, 83, 140–149. [Google Scholar] [CrossRef]
- Sclafani, A.; Palmisano, L.; Schiavello, M. Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion. J. Phys. Chem. 1990, 94, 829–832. [Google Scholar] [CrossRef]
- Gupta, V.K.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L.; Suhas. Low-Cost Adsorbents: Growing Approach to Wastewater Treatment—A Review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 783–842. [Google Scholar] [CrossRef]
- Suhas; Gupta, V.K.; Singh, L.P.; Chaudhary, M.; Kushwaha, S. A novel approach to develop activated carbon by an ingenious hydrothermal treatment methodology using Phyllanthus emblica fruit stone. J. Clean. Prod. 2021, 288, 125643. [Google Scholar] [CrossRef]
- Srivastava, V.C.; Swamy, M.M.; Mall, I.D.; Prasad, B.; Mishra, I.M. Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics. Colloids Surf. A Physicochem. Eng. Asp. 2006, 272, 89–104. [Google Scholar] [CrossRef]
- Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J. Hazard. Mater. 2009, 164, 473–482. [Google Scholar] [CrossRef]
- Guo, J.; Song, Y.; Ji, X.; Ji, L.; Cai, L.; Wang, Y.; Zhang, H.; Song, W. Preparation and characterization of nanoporous activated carbon derived from prawn shell and its application for removal of heavy metal ions. Materials 2019, 12, 241. [Google Scholar] [CrossRef]
- Ai, L.; Zhang, C.; Liao, F.; Wang, Y.; Li, M.; Meng, L.; Jiang, J. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis. J. Hazard. Mater. 2011, 198, 282–290. [Google Scholar] [CrossRef]
- Dursun, G.; Çiçek, H.; Dursun, A.Y. Adsorption of phenol from aqueous solution by using carbonised beet pulp. J. Hazard. Mater. 2005, 125, 175–182. [Google Scholar] [CrossRef]
- Hameed, B.; Chin, L.; Rengaraj, S. Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust. Desalination 2008, 225, 185–198. [Google Scholar] [CrossRef]
- Mohd Din, A.T.; Hameed, B.H.; Ahmad, A.L. Batch adsorption of phenol onto physiochemical-activated coconut shell. J. Hazard. Mater. 2009, 161, 1522–1529. [Google Scholar] [CrossRef]
- Ghaedi, M.; Ansari, A.; Assefi Nejad, P.; Ghaedi, A.; Vafaei, A.; Habibi, M.H. Artificial neural network and Bees Algorithm for removal of Eosin B using Cobalt Oxide Nanoparticle-activated carbon: Isotherm and Kinetics study. Environ. Prog. Sustain. Energy. 2015, 34, 155–168. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Weber, T.W.; Chakravorti, R.K. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 1974, 20, 228–238. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Temkin, M.I. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. URSS 1940, 12, 327–356. [Google Scholar]
- Dubinin, M.M. The Equation of the Characteristic Curve of Activated Charcoal. Dokl. Akad. Nauk. SSSR 1947, 55, 327–329. [Google Scholar]
- Liu, Z.; Zhang, F.-S. Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars. Desalination 2011, 267, 101–106. [Google Scholar] [CrossRef]
- Namane, A.; Mekarzia, A.; Benrachedi, K.; Belhaneche-Bensemra, N.; Hellal, A. Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4. J. Hazard. Mater. 2005, 119, 189–194. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; da Silva, M.L.C.P.; Alvarez-Mendes, M.O.; Coutinho, A.d.R.; Thim, G.P. Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chem. Eng. J. 2011, 174, 49–57. [Google Scholar] [CrossRef]
- Dhorabe Prashant, T.; Lataye Dilip, H.; Ingole Ramakant, S. Adsorptive Removal of 4-Nitrophenol from Aqueous Solution by Activated Carbon Prepared from Waste Orange Peels. J. Hazard. Toxic Radioact. Waste 2017, 21, 04016015. [Google Scholar] [CrossRef]
- Bastami, T.R.; Entezari, M.H. Activated carbon from carrot dross combined with magnetite nanoparticles for the efficient removal of p-nitrophenol from aqueous solution. Chem. Eng. J. 2012, 210, 510–519. [Google Scholar] [CrossRef]
- Hu, Y.; Rong, Y.; Li, S.; Ji, C.; Han, R. Adsorption of 4-chlorophenol from solution by activated carbon prepared from peanut husk. In Proceedings of the Asia-Pacific Engineering and Technology Conference (APETC), Kuala Lumpur, Malaysia, 25–26 May 2017. [Google Scholar] [CrossRef]
- Chen, S.; Qin, C.; Wang, T.; Chen, F.; Li, X.; Hou, H.; Zhou, M. Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. J. Mol. Liq. 2019, 285, 62–74. [Google Scholar] [CrossRef]
- Cansado, I.P.P.; Mourão, P.A.M.; Falcão, A.I.; Ribeiro Carrott, M.M.L.; Carrott, P.J.M. The influence of the activated carbon post-treatment on the phenolic compounds removal. Fuel Process. Technol. 2012, 103, 64–70. [Google Scholar] [CrossRef]
- Xu, J.; Wang, L.; Zhu, Y. Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption. Langmuir 2012, 28, 8418–8425. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, R.-Q. A new insight into π–π stacking involving remarkable orbital interactions. Phys. Chem. Chem. Phys. 2016, 18, 25452–25457. [Google Scholar] [CrossRef]
- Lagergren, S. About the Theory of So-Called Adsorption of Soluble Substances. K. Sven. Vetensk. Akad. Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Duran, C.; Ozdes, D.; Gundogdu, A.; Senturk, H.B. Kinetics and Isotherm Analysis of Basic Dyes Adsorption onto Almond Shell (Prunus dulcis) as a Low Cost Adsorbent. J. Chem. Eng. Data 2011, 56, 2136–2147. [Google Scholar] [CrossRef]
Adsorbate | 4-Nitrophenol | 4-CP | Phenol | ||||||
---|---|---|---|---|---|---|---|---|---|
Experiments and Models Applied | Temperature | Temperature | Temperature | ||||||
25 °C | 35 °C | 45 °C | 25 °C | 35 °C | 45 °C | 25 °C | 35 °C | 45 °C | |
Experimental data qexp (mmol g−1) mg g−1 | 0.478 66.5 | 0.537 74.7 | 0.574 80.1 | 0.442 56.9 | 0.504 64.8 | 0.540 69.5 | 0.341 32.1 | 0.375 35.3 | 0.442 41.6 |
Langmuir parameters | |||||||||
qmax (mmol g−1) | 0.463 | 0.520 | 0.532 | 0.434 | 0.493 | 0.522 | 0.387 | 0.423 | 0.425 |
b (L mol−1) | 5.78 × 104 | 6.33 × 104 | 8.49 × 104 | 4.57 × 104 | 4.92 × 104 | 6.52 × 104 | 3.09 × 104 | 3.27 × 104 | 3.83 × 104 |
R2 | 0.988 | 0.994 | 0.992 | 0.992 | 0.996 | 0.996 | 0.988 | 0.985 | 0.990 |
Freundlich parameters | |||||||||
Kf (mmolg−1) (molL−1)1/n | 20.0 | 20.6 | 24.5 | 12.7 | 16.9 | 19.6 | 34.3 | 56.9 | 63.5 |
n | 2.37 | 2.42 | 2.41 | 2.46 | 2.45 | 2.46 | 1.94 | 1.81 | 1.80 |
R2 | 0.959 | 0.966 | 0.960 | 0.949 | 0.964 | 0.957 | 0.949 | 0.949 | 0.968 |
Temkin parameters | |||||||||
AT (L mg−1) | 4.05 | 4.33 | 5.61 | 3.78 | 3.75 | 5.06 | 3.44 | 3.60 | 3.97 |
bT (KJ mol−1) | 0.179 | 0.159 | 0.152 | 0.214 | 0.184 | 0.174 | 0.314 | 0.280 | 0.271 |
R2 | 0.978 | 0.987 | 0.993 | 0.992 | 0.994 | 0.989 | 0.985 | 0.973 | 0.981 |
D–R parameters | |||||||||
qm (mg g−1) | 49.5 | 57.8 | 59.8 | 42.7 | 50.2 | 53.5 | 24.7 | 26.3 | 27.1 |
E (KJ mol−1) | 1.40 | 1.53 | 1.84 | 1.24 | 1.36 | 1.64 | 1.38 | 1.49 | 1.62 |
R2 | 0.896 | 0.861 | 0.834 | 0.905 | 0.860 | 0.859 | 9.901 | 0.893 | 0.899 |
Precursor | Methods of Preparation of Activated Carbon | Pollutant | Surface Area (m2g−1) | Adsorption Capacity qmax (mgg−1) | Reference |
---|---|---|---|---|---|
Rice husk | Hydrothermal carbonization at 300 °C; physical activation at 800 °C in CO2 | Phenol | 358 | 39.30 | [28] |
Coffee grounds | Carbonization and chemical activation with ZnCl2 + H3PO4 at 600 °C | Phenol | 640 | 3.22 | [29] |
Avocado kernels | Carbonization, activation at 1173 K in CO2 | Phenol | 206 | 90 | [30] |
Phyllanthus emblica fruit stone | Hydrothermal carbonization at 121 °C; physical activation in air at 400 °C | Phenol | 569 | 32.1 | This study |
Orange Peel | Carbonization and chemical activation with orthophosphoric acid at 350 °C | 4-nitrophenol | 540.61 | 73.35 | [31] |
Carrot dross | Activation at 500 °C in air atmosphere | 4-nitrophenol | 447 | 91 | [32] |
Phyllanthus emblica fruit stone | Hydrothermal carbonization at 121 °C; physical activation in air at 400 °C | 4-nitrophenol | 569 | 66.5 | This study |
Pea nut husk | Carbonization and chemical activation with (NH4)2HPO4 at 450 °C | 4-chlorophenol | 499.9 | 98.2 | [33] |
Phyllanthus emblica fruit stone | Hydrothermal carbonization at 121 °C; physical activation in air at 400 °C | 4-chlorophenol | 569 | 56.9 | This study |
Phenols | Temperature (°C) | ΔGo (kJ mol−1) | ΔSo (J mol−1 K−1) | ΔHo (kJ mol−1) |
---|---|---|---|---|
4-NP | 25 35 45 | −27.2 −28.3 −30.0 | 141 | 15.1 |
4-CP | 25 35 45 | −26.6 −27.7 −29.3 | 136 | 13.9 |
Phenol | 25 35 45 | −25.6 −26.6 −27.9 | 114 | 8.3 |
Phenols | Co (mol L−1) | qe(exp) (mmol g−1) | PFO | PSO | IPD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qe (cal) (mmol g−1) | K1 (min−1) | R2 | qe(cal) (mmol g−1) | K2 (g·mmol−1·min−1) | R2 | Kp1 | C1 | R2 | Kp2 | C2 | R2 | |||
4-NP | 3 × 10−4 | 0.260 | 0.140 | 3.09 × 10−2 | 0.958 | 0.266 | 0.505 | 0.999 | 3.00 × 10−2 | 4.73 × 10−2 | 0.922 | 3.90 × 10−3 | 0.2052 | 0.919 |
4-CP | 3 × 10−4 | 0.240 | 0.180 | 3.34 × 10−2 | 0.922 | 0.249 | 0.385 | 0.999 | 2.37 × 10−2 | 4.13 × 10−2 | 0.946 | 3.80 × 10−3 | 0.1866 | 0.921 |
Phenol | 3 × 10−4 | 0.234 | 0.119 | 1.96 × 10−2 | 0.949 | 0.245 | 0.334 | 0.999 | 2.39 × 10−2 | 2.96 × 10−2 | 0.978 | 3.30 × 10−3 | 0.1862 | 0.955 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suhas; Kushwaha, S.; Chaudhary, M.; Chaudhary, S.; Tyagi, V.; Cansado, I.P.d.P.; Dehghani, M.H. Effect of Substituent Groups on the Adsorption Efficiency of Phenols by Activated Carbon Developed by Hydrothermally Treated Phyllanthus Emblica Fruit Stone. Toxics 2024, 12, 874. https://doi.org/10.3390/toxics12120874
Suhas, Kushwaha S, Chaudhary M, Chaudhary S, Tyagi V, Cansado IPdP, Dehghani MH. Effect of Substituent Groups on the Adsorption Efficiency of Phenols by Activated Carbon Developed by Hydrothermally Treated Phyllanthus Emblica Fruit Stone. Toxics. 2024; 12(12):874. https://doi.org/10.3390/toxics12120874
Chicago/Turabian StyleSuhas, Sarita Kushwaha, Monika Chaudhary, Shubham Chaudhary, Vaishali Tyagi, Isabel Pestana da Paixão Cansado, and Mohammad Hadi Dehghani. 2024. "Effect of Substituent Groups on the Adsorption Efficiency of Phenols by Activated Carbon Developed by Hydrothermally Treated Phyllanthus Emblica Fruit Stone" Toxics 12, no. 12: 874. https://doi.org/10.3390/toxics12120874
APA StyleSuhas, Kushwaha, S., Chaudhary, M., Chaudhary, S., Tyagi, V., Cansado, I. P. d. P., & Dehghani, M. H. (2024). Effect of Substituent Groups on the Adsorption Efficiency of Phenols by Activated Carbon Developed by Hydrothermally Treated Phyllanthus Emblica Fruit Stone. Toxics, 12(12), 874. https://doi.org/10.3390/toxics12120874