Toxicity of Polystyrene Microplastics with Cadmium on the Digestive System of Rana zhenhaiensis Tadpoles
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Cd and PS Analysis
2.3. Measurement of Morphological Indicators
2.4. Histological Examination of Liver
2.5. Transcriptomic Analysis and Quantitative Real Time-Polymerase Chain Reaction (RT-qPCR) of Liver
2.6. Microbiota Analysis of Intestines
2.7. Statistical Analysis
3. Results
3.1. Effects of Cadmium and Microplastic Exposure on the Growth of R. zhenhaiensis Tadpoles
3.2. Accumulation of Heavy Metals and Microplastics in R. zhenhaiensis Tadpoles
3.2.1. The Accumulation of Cd in the Tadpoles
3.2.2. The Accumulation of PS in the Tadpoles
3.3. Effects of Exposure to Cd and PS on Liver of R. zhenhaiensis Tadpoles
3.3.1. Histological Observation of Liver
3.3.2. Analysis of Differentially Expressed Transcriptome Genes and Oxidative Stress-Related Genes
3.4. Effects of Cd and PS Exposure on Intestinal Microorganisms of R. zhenhaiensis Tadpoles
3.4.1. Effects of Cd and PS Exposure on the Alpha Diversity of Intestinal Microorganisms of R. zhenhaiensis Tadpoles
3.4.2. Effects of Cd and PS Exposure on the Beta Diversity of Intestinal Microorganisms of R. zhenhaiensis Tadpoles
3.4.3. Effects of Cd and PS Exposure on the Intestinal Microbial Community Composition of R. zhenhaiensis Tadpoles
4. Discussion
4.1. Accumulation of Cd and PS in Tadpoles of R. zhenhaiensis
4.2. Effects of Cd and PS on Tadpole Growth and Development
4.3. Effects of Cd and PS on Digestive System of Tadpoles
4.3.1. Liver Histological Observation and Gene Expression
4.3.2. Gut Microbes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plastics–the Fast Facts 2024. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2024/ (accessed on 20 November 2024).
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A detailed review study on potential effects of microplastics and additives of concern on human health. Int. J. Environ. Res. Public Health 2020, 4, 1212. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Jones, D.L.; Li, Z.; Liu, Q.; Yan, C. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Sci. Total Environ. 2020, 703, 134722. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Shao, W.; Zhao, W.; Zhu, H. The occurrence, distribution, environmental effects, and interactions of microplastics and antibiotics in the aquatic environment of China. Water 2024, 16, 1435. [Google Scholar] [CrossRef]
- Nizzetto, L.; Bussi, G.; Futter, M.N.; Butterfield, D.; Whitehead, P.G.; Sveriges, L.A. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ. Sci. Proc. Impacts 2016, 18, 1050–1059. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; McGonigle, A.W.G.J.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Miao, C.; Zhang, J.; Jin, R.; Li, T.; Zhao, Y.; Shen, M. Microplastics in aquaculture systems: Occurrence, ecological threats and control strategies. Chemosphere 2023, 340, 139924. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Ding, R.; Tong, L.; Zhang, W. Microplastics in freshwater environments: Sources, fates and toxicity. Water Air Soil Pollut. 2021, 232, 181. [Google Scholar] [CrossRef]
- Katsumi, N.; Kusube, T.; Nagao, S.; Okochi, H. The role of coated fertilizer used in paddy fields as a source of microplastics in the marine environment. Mar. Pollut. Bull. 2020, 161, 111727. [Google Scholar] [CrossRef]
- Ben-David, E.A.; Habibi, M.; Haddad, E.; Hasanin, M.; Angel, D.L.; Booth, A.M.; Sabbah, I. Microplastic distributions in a domestic wastewater treatment plant: Removal efficiency, seasonal variation and influence of sampling technique. Sci. Total Environ. 2021, 752, 141880. [Google Scholar] [CrossRef] [PubMed]
- Tamminga, M.; Fischer, E.K. Microplastics in a deep, dimictic lake of the north German Plain with special regard to vertical distribution patterns. Environ. Pollut. 2020, 267, 115507. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, J.; Cao, W.; Jiang, F.; Zhao, C.; Ding, H.; Wang, M.; Gao, F.; Sun, C. Vertical distribution of microplastics in bay sediment reflecting effects of sedimentation dynamics and anthropogenic activities. Mar. Pollut. Bull. 2020, 152, 110885. [Google Scholar] [CrossRef] [PubMed]
- Wanner, P. Plastic in agricultural soils—A global risk for groundwater systems and drinking water supplies?—A review. Chemosphere 2021, 264, 128453. [Google Scholar] [CrossRef]
- Li, N.; Khan, M.H.; Ali, M.; Sidra; Ahmad, S.; Khan, A.; Nabi, G.; Ali, F.; Bououdina, M.; Kyzas, G.Z. Insight into microplastics in the aquatic ecosystem: Properties, sources, threats and mitigation strategies. Sci. Total Environ. 2024, 913, 169489. [Google Scholar]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; Yang, Y.; Du, Z.; Li, L.; Zhang, M.; Ni, S.; Yue, Z.; Yang, K.; Wang, Y.; et al. Microplastics in three types of human arteries detected by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). J. Hazard. Mater. 2024, 469, 133855. [Google Scholar] [CrossRef]
- Schmidt, C.; Krauth, T.; Wagner, S. Export of plastic debris by rivers into the sea. Environ. Sci. Technol. 2017, 51, 12246–12253. [Google Scholar] [CrossRef]
- Chen, M.; Jin, M.; Tao, P.; Wang, Z.; Xie, W.; Yu, X.; Wang, K. Assessment of microplastics derived from mariculture in Xiangshan Bay, China. Environ. Pollut. 2018, 242, 1146–1156. [Google Scholar] [CrossRef]
- Razeghi, N.; Hamidian, A.H.; Wu, C.; Zhang, Y.; Yang, M. Scientific studies on microplastics pollution in Iran: An in-depth review of the published articles. Mar. Pollut. Bull. 2021, 162, 111901. [Google Scholar] [CrossRef]
- Nan, B.; Su, L.; Kellar, C.; Craig, N.J.; Keough, M.J.; Pettigrove, V. Identification of microplastics in surface water and Australian freshwater shrimp Paratya australiensis in Victoria, Australia. Environ. Pollut. 2020, 259, 113865. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Kelly, F.J.; Wright, S.L. Advances and challenges of microplastic pollution in freshwater ecosystems: A UK perspective. Environ. Pollut. 2020, 256, 113445. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Han, Q.; Wei, Z.; Wang, Y.; Xie, J.; Chen, M. Worldwide distribution and abundance of microplastic: How dire is the situation? Waste Manag. Res. 2018, 36, 873–897. [Google Scholar]
- Wang, S.; Han, Q.; Wei, Z.; Wang, Y.; Xie, J.; Chen, M. Polystyrene microplastics affect learning and memory in mice by inducing oxidative stress and decreasing the level of acetylcholine. Food Chem. Toxicol. 2022, 162, 112904. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, Y.; Wang, S.; Xie, J.; Han, Q.; Chen, M. Comparing the effects of polystyrene microplastics exposure on reproduction and fertility in male and female mice. Toxicology. 2022, 465, 153059. [Google Scholar] [CrossRef]
- Xu, S.; Ma, J.; Ji, R.; Pan, K.; Miao, A. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci. Total Environ. 2020, 703, 134699. [Google Scholar] [CrossRef]
- Qiao, R.; Deng, Y.; Zhang, S.; Wolosker, M.B.; Zhu, Q.; Ren, H.; Zhang, Y. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere 2019, 236, 124334. [Google Scholar] [CrossRef]
- Tallec, K.; Huvet, A.; Di Poi, C.; González-Fernández, C.; Lambert, C.; Petton, B.; Le Goïc, N.; Berchel, M.; Soudant, P.; Paul-Pont, I. Nanoplastics impaired oyster free living stages, gametes and embryos. Environ. Pollut. 2018, 242, 1226–1235. [Google Scholar] [CrossRef]
- Yu, P.; Liu, Z.; Wu, D.; Chen, M.; Lv, W.; Zhao, Y. Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver. Aquat. Toxicol. 2018, 200, 28–36. [Google Scholar] [CrossRef]
- Savuca, A.; Curpan, A.-S.; Hritcu, L.D.; Buzenchi Proca, T.M.; Balmus, I.-M.; Lungu, P.F.; Jijie, R.; Nicoara, M.N.; Ciobica, A.S.; Solcan, G.; et al. Do microplastics have neurological implications in relation to schizophrenia zebrafish models? A brain immunohistochemistry, neurotoxicity assessment, and oxidative stress analysis. Int. J. Mol. Sci. 2024, 25, 8331. [Google Scholar] [CrossRef]
- Kedzierski, M.; D’Almeida, M.; Magueresse, A.; Le Grand, A.; Duval, H.; César, G.; Sire, O.; Bruzaud, S.; Le Tilly, V. Threat of plastic ageing in marine environment. Adsorption/desorption of micropollutants. Mar. Pollut. Bull. 2018, 127, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Buzenchi Proca, T.M.; Solcan, C.; Solcan, G. Neurotoxicity of some environmental pollutants to Zebrafish. Life 2024, 14, 640. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, J.; Zhang, W.; Shi, L.; Yi, K.; Yu, H.; Zhang, C.; Li, S.; Li, J. Microplastics as a vehicle of heavy metals in aquatic environments: A review of adsorption factors, mechanisms, and biological effects. J. Environ. Manag. 2022, 302, 113995. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.; Aqeel, M.; Noman, A.; Khan, S.M.; Akhter, N. Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environ. Pollut. 2021, 290, 118104. [Google Scholar] [CrossRef] [PubMed]
- Massos, A.; Turner, A. Cadmium, lead and bromine in beached microplastics. Environ. Pollut. 2017, 227, 139–145. [Google Scholar] [CrossRef]
- Zhou, L.; Li, M.; Zhong, Z.; Chen, H.; Wang, M.; Lian, C.; Wang, H.; Zhang, H.; Cao, L.; Li, C. Toxicological effects of cadmium on deep-sea mussel Gigantidas platifrons revealed by a combined proteomic and metabolomic approach. Front. Mar. Sci. 2023, 10, 1087411. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, Z.; Wang, H.; Zhang, C.; Zhang, Y.; Zhao, M.; Chen, Y.; Meng, X.; Xu, D. Ascorbic acid protects against cadmium-induced endoplasmic reticulum stress and germ cell apoptosis in testes. Reprod. Toxicol. 2012, 34, 357–363. [Google Scholar] [CrossRef]
- Zhang, X.; Su, R.; Qin, Y.; Shen, Y.; Jia, L.; Zhang, W. Benefits and costs: Understanding the influence of heavy metal pollution on environmental adaptability in Strauchbufo raddei tadpoles through an energy budget perspective. Environ. Pollut. 2024, 35, 124388. [Google Scholar] [CrossRef]
- Ju, Z.; Ya, J.; Li, X.; Wang, H.; Zhao, H. The effects of chronic cadmium exposure on Bufo gargarizans larvae: Histopathological impairment, gene expression alteration and fatty acid metabolism disorder in the liver. Aquat. Toxicol. 2020, 222, 105470. [Google Scholar] [CrossRef]
- Ya, J.; Xu, Y.; Wang, G.; Zhao, H. Cadmium induced skeletal underdevelopment, liver cell apoptosis and hepatic energy metabolism disorder in Bufo gargarizans larvae by disrupting thyroid hormone signaling. Ecotoxicol. Environ. Saf. 2021, 211, 111957. [Google Scholar] [CrossRef]
- Zheng, R.; Wang, P.; Cao, B.; Wu, M.; Li, X.; Wang, H.; Chai, L. Intestinal response characteristic and potential microbial dysbiosis in digestive tract of Bufo gargarizans after exposure to cadmium and lead, alone or combined. Chemosphere 2021, 271, 129511. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, J. The chemical behaviors of microplastics in marine environment: A review. Mar. Pollut. Bull. 2019, 142, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Qiao, R.; An, H.; Zhang, Y. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere 2018, 202, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Barboza, L.G.A.; Vieira, L.R.; Branco, V.; Carvalho, C.; Guilhermino, L. Microplastics increase mercury bioconcentration in gills and bioaccumulation in the liver, and cause oxidative stress and damage in Dicentrarchus labrax juveniles. Sci. Rep. 2018, 8, 15655. [Google Scholar] [CrossRef] [PubMed]
- The IUCN Red List of Threatened Species (Version 2024-2). Available online: https://www.iucnredlist.org (accessed on 14 October 2024).
- Why Are Amphibian Populations Declining. Available online: https://www.usgs.gov/faqs/why-are-amphibian-populations-declining (accessed on 14 October 2024).
- Zhao, X.; Yao, L.; Ma, Q.; Zhou, G.; Wang, L.; Fang, Q.; Xu, Z. Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident. Chemosphere 2018, 194, 107–116. [Google Scholar] [CrossRef]
- Limonta, G.; Mancia, A.; Abelli, L.; Fossi, M.C.; Caliani, I.; Panti, C. Effects of microplastics on head kidney gene expression and enzymatic biomarkers in adult zebrafish. Comp. Biochem. Phys. C 2021, 245, 109037. [Google Scholar] [CrossRef]
- da Costa Araújo, A.P.; Malafaia, G. Microplastic ingestion induces behavioral disorders in mice: A preliminary study on the trophic transfer effects via tadpoles and fish. J. Hazard. Mater. 2021, 401, 123263. [Google Scholar] [CrossRef]
- Gosner, K.L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 1960, 16, 183–190. [Google Scholar]
- Jiang, K.; Li, J.T. Method for external measurement of adult anuran specimens. Bio-101 2021, e1010675. [Google Scholar]
- Yousafzai, A.M.; Ullah, F.; Bari, F.; Raziq, S.; Riaz, M.; Khan, K.; Nishan, U.; Sthanadar, I.A.; Shaheen, B.; Shaheen, M.; et al. Bioaccumulation of some heavy metals: Analysis and comparison of Cyprinus carpio and Labeo rohita from Sardaryab, Khyber Pakhtunkhwa. Biomed. Res. Int. 2017, 2017, 5801432. [Google Scholar] [CrossRef]
- Grigorakis, S.; Mason, S.A.; Drouillard, K.G. Determination of the gut retention of plastic microbeads and microfibers in goldfish (Carassius auratus). Chemosphere 2017, 169, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Yang, J. Microplastic serves as a potential vector for Cr in an in-vitro human digestive model. Sci. Total Environ. 2020, 703, 134805. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Vidili, G.; Casu, G.; Navarese, E.P.; Sechi, L.A.; Chen, Y. Microplastics and nanoplastics in cardiovascular disease-a narrative review with worrying links. Front. Toxicol. 2024, 6, 1479292. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liang, G.; Chai, L.; Wang, H. Effects of copper on growth, metamorphosis and endocrine disruption of Bufo gargarizans larvae. Aquat. Toxicol. 2016, 170, 24–30. [Google Scholar] [CrossRef]
- Thambirajah, A.; Koide, E.; Imbery, J.; Helbing, C. Contaminant and environmental influences on thyroid hormone action in amphibian metamorphosis. Front. Endocrinol. 2019, 10, 276. [Google Scholar]
- Yao, F.C.; Gu, Y.; Jiang, T.; Wang, P.F.; Song, F.B.; Zhou, Z.; Sun, J.; Luo, J. The involvement of oxidative stress mediated endoplasmic reticulum pathway in apoptosis of Golden Pompano (Trachinotus blochii) liver under PS-MPs stress. Ecotox. Environ. Saf. 2023, 249, 114440. [Google Scholar] [CrossRef]
- Araújo, A.P.D.C.; Gomes, A.R.; Malafaia, G. Hepatotoxicity of pristine polyethylene microplastics in neotropical Physalaemus cuvieri tadpoles (Fitzinger, 1826). J. Hazard. Mater. 2020, 386, 121992. [Google Scholar] [CrossRef]
- Zhang, C.; Ye, L.; Wang, C.; Xiong, X.; Li, Y.; Zhang, X.; Yu, H. Toxic effect of combined exposure of microplastics and copper on Goldfsh (Carassius auratus): Insight from oxidative stress, infammation, apoptosis and autophagy in hepatopancreas and intestine. B. Environ Contam. Toxicol. 2022, 109, 1029–1036. [Google Scholar] [CrossRef]
- Daenen, K.; Andries, A.; Mekahli, D.; Van Schepdael, A.; Jouret, F.; Bammens, B. Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 2019, 34, 975–991. [Google Scholar] [CrossRef]
- Willi, J.; Küpfer, P.; Evéquoz, D.; Fernandez, G.; Katz, A.; Leumann, C.; Polacek, N. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center. Nucleic Acids Res. 2018, 46, 1945–1957. [Google Scholar] [CrossRef]
- Nagel, A.; Cuss, C.W.; Goss, G.G.; Shotyk, W.; Glover, C.N. Effects of acute and subchronic waterborne thallium exposure on ionoregulatory enzyme activity and oxidative stress in Rainbow Trout (Oncorhynchus mykiss). Environ. Toxicol. Chem. 2024, 43, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, Y.; Yang, Y.; Zhao, L.; Li, H.; Long, L.; Wang, J.; Wu, X.; Wei, Z. The role of linalool in managing Alternaria alternata infection and delaying black mold rot in goji berry. Postharvest Biol. Technol. 2025, 219, 113240. [Google Scholar] [CrossRef]
- Zou, H.; Chen, Y.; Qu, H.; Sun, J.; Wang, T.; Ma, Y.; Yuan, Y.; Bian, J.; Liu, Z. Microplastics exacerbate Cadmium-Induced kidney injury by enhancing oxidative stress, autophagy, apoptosis, and fibrosis. Int. J. Mol. Sci. 2022, 23, 14411. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Hamid, N.; Deng, S.; Jia, P.; Pei, D. Individual and combined toxicogenetic effects of microplastics and heavy metals (Cd, Pb, and Zn) perturb gut microbiota homeostasis and gonadal development in marine medaka (Oryzias melastigma). J. Hazard. Mater. 2020, 397, 122795. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bo, X.; Yao, Q.; Wu, M.; Wang, H. The effect of fluorine exposure on morphological indicators and intestinal microbial community in Bufo gargarizans tadpoles. Ecol. Indic. 2019, 98, 763–771. [Google Scholar] [CrossRef]
- Mu, D.; Meng, J.; Bo, X.; Wu, M.; Xiao, H.; Wang, H. The effect of cadmium exposure on diversity of intestinal microbial community of Rana chensinensis tadpoles. Ecotoxicol. Environ. Saf. 2018, 154, 6–12. [Google Scholar] [CrossRef]
- Zhang, Q.; Lv, Y.; Liu, J.; Chang, L.; Chen, Q.; Chen, Q.; Zhu, L.; Wang, B.; Jiang, J.; Zhu, W. Size matters either way: Differently-sized microplastics affect amphibian host and symbiotic microbiota discriminately. Environ. Pollut. 2023, 328, 121634. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, Z.; Zhong, X.; Wang, H.; Liu, Y.; Li, X. Manipulation of cadmium and diethylhexyl phthalate on Rana chensinensis tadpoles affects the intestinal microbiota and fatty acid metabolism. Sci. Total Environ. 2022, 821, 153455. [Google Scholar] [CrossRef]
- Ya, J.; Li, X.; Wang, L.; Kou, H.; Wang, H.; Zhao, H. The effects of chronic cadmium exposure on the gut of Bufo gargarizans larvae at metamorphic climax: Histopathological impairments, microbiota changes and intestinal remodeling disruption. Ecotoxicol. Environ. Saf. 2020, 195, 110523. [Google Scholar] [CrossRef]
- Shin, N.; Whon, T.W.; Bae, J. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Guo, H.; Yan, H.; Cheng, D.; Wei, X.; Kou, R.; Si, J. Tributyltin exposure induces gut microbiome dysbiosis with increased body weight gain and dyslipidemia in mice. Environ. Toxicol. Phar. 2018, 60, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Narwal, N.; Kakakhel, M.A.; Katyal, D.; Yadav, S.; Rose, P.K.; Rene, E.R.; Rakib, M.R.; Khoo, K.; Kataria, N. Interactions between microplastic and heavy metals in the aquatic environment: Implications for toxicity and mitigation strategies. Water Air Soil Pollut. 2024, 235, 567. [Google Scholar] [CrossRef]
CT | PS | Cd | Cd_PS | |
---|---|---|---|---|
observed_otus | 295.33 ± 205.25 ab | 133.83 ± 62.49 b | 233.50 ± 81.22 ab | 332.00 ± 80.85 a |
chao1 | 295.57 ± 205.45 ab | 134.07 ± 62.55 b | 234.27 ± 81.26 ab | 332.81 ± 81.01 a |
dominance | 0.10 ± 0.04 | 0.15 ± 0.07 | 0.18 ± 0.08 | 0.20 ± 0.10 |
pielou_e | 0.63 ± 0.06 a | 0.57 ± 0.07 ab | 0.52 ± 0.10 b | 0.49 ± 0.07 b |
shannon | 4.90 ± 1.12 | 3.92 ± 0.41 | 4.03 ± 0.93 | 4.09 ± 0.71 |
simpson | 0.90 ± 0.04 | 0.85 ± 0.07 | 0.82 ± 0.08 | 0.80 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Wu, X.; Pang, Y.; Xiao, S.; Xie, L.; Zhang, Y. Toxicity of Polystyrene Microplastics with Cadmium on the Digestive System of Rana zhenhaiensis Tadpoles. Toxics 2024, 12, 854. https://doi.org/10.3390/toxics12120854
Tang Y, Wu X, Pang Y, Xiao S, Xie L, Zhang Y. Toxicity of Polystyrene Microplastics with Cadmium on the Digestive System of Rana zhenhaiensis Tadpoles. Toxics. 2024; 12(12):854. https://doi.org/10.3390/toxics12120854
Chicago/Turabian StyleTang, Ye, Xueyi Wu, Yuting Pang, Shimin Xiao, Lei Xie, and Yongpu Zhang. 2024. "Toxicity of Polystyrene Microplastics with Cadmium on the Digestive System of Rana zhenhaiensis Tadpoles" Toxics 12, no. 12: 854. https://doi.org/10.3390/toxics12120854
APA StyleTang, Y., Wu, X., Pang, Y., Xiao, S., Xie, L., & Zhang, Y. (2024). Toxicity of Polystyrene Microplastics with Cadmium on the Digestive System of Rana zhenhaiensis Tadpoles. Toxics, 12(12), 854. https://doi.org/10.3390/toxics12120854