Activated Sludge Combined with Pervious Concrete Micro-Ecosystem for Runoff Rainwater Collection and Pollutant Purification
Abstract
1. Introduction
2. Materials and Methods
2.1. Inoculum and Materials
2.2. Production of Pervious Concrete
2.3. Micro-Ecosystem Construction
2.4. Rainwater Purification Test
2.5. Test Methods
3. Results and Discussion
3.1. Effect of HRT on Rainwater Pollutant Removal Performance
3.2. Effect of Influent Concentration on Rainwater Pollutant Removal Performance
3.3. Evolutionary Analysis of Microbial Community Structure
3.3.1. Analysis of Microbial Community Structure
3.3.2. Evolutionary Analysis of Bacterial Communities
3.4. Analysis of Activated Sludge Pervious Concrete Ecosystem Application and Comparison of Purification Effect with Other Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, J.; Huang, G.; Luo, H.; Mai, Y.; Wu, H. First flush of non-point source pollution and hydrological effects of LID in a Guangzhou community. Sci. Rep. 2019, 9, 13865. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Gao, Y.; Guan, M. Linking downstream river water quality to urbanization signatures in subtropical climate. Sci. Total Environ. 2023, 870, 161902. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Zhou, T.; Bai, J.; Zhang, Y.; Li, J.; Zhou, C.; Zhou, B. Nitrogen-containing wastewater fuel cells for total nitrogen removal and energy recovery based on Cl•/ClO• oxidation of ammonia nitrogen. Water Res. 2023, 235, 119914. [Google Scholar] [CrossRef] [PubMed]
- Mangani, G.; Berloni, A.; Bellucci, F.; Tatàno, F.; Maione, M. Evaluation of the pollutant content in road runoff first flush waters. Water Air Soil Pollut. 2005, 160, 213–228. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, Y.; Yin, J.; Zhou, J.; Wu, Z. Evaluation of polluted urban river water quality: A case study of the Xunsi River watershed, China. Environ. Sci. Pollut. Res. 2022, 29, 68035–68050. [Google Scholar] [CrossRef]
- Técher, D.; Berthier, E. Supporting evidences for vegetation-enhanced stormwater infiltration in bioretention systems: A comprehensive review. Environ. Sci. Pollut. Res. 2023, 30, 19705–19724. [Google Scholar] [CrossRef]
- Gong, Y.; Li, X.; Xie, P.; Fu, H.; Nie, L.; Li, J.; Li, Y. The migration and accumulation of typical pollutants in the growing media layer of bioretention facilities. Environ. Sci. Pollut. Res. 2023, 30, 44591–44606. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhai, Y.; Wei, Y.; Mao, Y. Evaluation of the effects of low-impact development practices under different rainy types: Case of Fuxing Island Park, Shanghai, China. Environ. Sci. Pollut. Res. 2019, 26, 6706–6716. [Google Scholar] [CrossRef]
- LeFevre, G.H.; Paus, K.H.; Natarajan, P.; Gulliver, J.S.; Novak, P.J.; Hozalski, R.M. Review of Dissolved Pollutants in Urban Storm Water and Their Removal and Fate in Bioretention Cells. J. Environ. Eng.-ASCE 2015, 141, 4014050. [Google Scholar] [CrossRef]
- Huang, L.; Luo, J.; Li, L.; Jiang, H.; Sun, X.; Yang, J.; She, W.; Liu, W.; Li, L.; Davis, A.P. Unconventional microbial mechanisms for the key factors influencing inorganic nitrogen removal in stormwater bioretention columns. Water Res. 2022, 209, 117895. [Google Scholar] [CrossRef]
- Li, J.; Zhao, R.; Li, Y.; Li, H. Simulation and optimization of layered bioretention facilities by HYDRUS-1D model and response surface methodology. J. Hydrol. 2020, 586, 124813. [Google Scholar] [CrossRef]
- Zhou, J.; Xiong, J.; Xu, Y.; Zhang, F.; Zhang, F. Performance evaluation of a low-cost loess-based filler for bioretention cells. J. Environ. Manag. 2023, 344, 118542. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, G.; Kamai, T.; Chen, W.; Zhang, D.; Yang, J. Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution. Eng. Geol. 2013, 155, 69–79. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, J.; Xiong, J. Sulfoaluminate cement-modified loess as bioretention cell filler for nutrient removal from stormwater runoff. Environ. Res. 2024, 261, 119704. [Google Scholar] [CrossRef]
- Xiong, J.; Zhou, J.; Li, J.; Sun, G.; Wang, X.C.; An, S.; Li, W.; Wang, J. Removal of nitrogen from rainwater runoff by bioretention cells filled with modified collapsible loess. Ecol. Eng. 2020, 158, 106065. [Google Scholar] [CrossRef]
- Parde, D.; Patwa, A.; Shukla, A.; Vijay, R.; Killedar, D.J.; Kumar, R. A review of constructed wetland on type, treatment and technology of wastewater. Environ. Technol. Innov. 2021, 21, 101261. [Google Scholar] [CrossRef]
- Paulo, P.L.; Azevedo, C.; Begosso, L.; Galbiati, A.F.; Boncz, M.A. Natural systems treating greywater and blackwater on-site: Integrating treatment, reuse and landscaping. Ecol. Eng. 2013, 50, 95–100. [Google Scholar] [CrossRef]
- Blanco, I.; Molle, P.; Sáenz De Miera, L.E.; Ansola, G. Basic Oxygen Furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands. Water Res. 2016, 89, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Korkusuz, E.A.; Beklioğlu, M.; Demirer, G.N. Comparison of the treatment performances of blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey. Ecol. Eng. 2005, 24, 185–198. [Google Scholar] [CrossRef]
- Zhao, Z.; Chang, J.; Han, W.; Wang, M.; Ma, D.; Du, Y.; Qu, Z.; Chang, S.X.; Ge, Y. Effects of plant diversity and sand particle size on methane emission and nitrogen removal in microcosms of constructed wetlands. Ecol. Eng. 2016, 95, 390–398. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Liu, R.; Morgan, D. Global development of various emerged substrates utilized in constructed wetlands. Bioresour. Technol. 2018, 261, 441–452. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, B.; Liu, Z.; Wang, J. Optimization of four kinds of constructed wetlands substrate combination treating domestic sewage. Wuhan Univ. J. Nat. Sci. 2007, 12, 1136–1142. [Google Scholar] [CrossRef]
- Cao, W.; Wang, Y.; Sun, L.; Jiang, J.; Zhang, Y. Removal of nitrogenous compounds from polluted river water by floating constructed wetlands using rice straw and ceramsite as substrates under low temperature conditions. Ecol. Eng. 2016, 88, 77–81. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, L.; Wang, Y.; Ruan, C. Removal of oxygen demand and nitrogen using different particle-sizes of anthracite coated with nine kinds of LDHs for wastewater treatment. Sci. Rep. 2015, 5, 15146. [Google Scholar] [CrossRef]
- Li, A.; Ji, G.; Xu, C.; Lichtfouse, E.; Huang, J.; Liu, H. Elevated purification of urban rainwater runoff using a calamus constructed wetland with multi-layer carrier fillers. J. Water Process. Eng. 2023, 56, 104273. [Google Scholar] [CrossRef]
- Kia, A.; Delens, J.M.; Wong, H.S.; Cheeseman, C.R. Structural and hydrological design of permeable concrete pavements. Case Stud. Constr. Mater. 2021, 15, e00564. [Google Scholar] [CrossRef]
- Guan, X.; Wang, J.; Xiao, F. Sponge city strategy and application of pavement materials in sponge city. J. Clean. Prod. 2021, 303, 127022. [Google Scholar] [CrossRef]
- Ortega-Villar, R.; Lizárraga-Mendiola, L.; Coronel-Olivares, C.; López-León, L.D.; Bigurra-Alzati, C.A.; Vázquez-Rodríguez, G.A. Effect of photocatalytic Fe2O3 nanoparticles on urban runoff pollutant removal by permeable concrete. J. Environ. Manag. 2019, 242, 487–495. [Google Scholar] [CrossRef]
- Teymouri, E.; Wong, K.S.; Tan, Y.Y.; Pauzi, N.N.M. Mechanical behaviour of adsorbent pervious concrete using iron slag and zeolite as coarse aggregates. Constr. Build. Mater. 2023, 388, 131720. [Google Scholar] [CrossRef]
- Azad, A.; Saeedian, A.; Mousavi, S.; Karami, H.; Farzin, S.; Singh, V.P. Effect of zeolite and pumice powders on the environmental and physical characteristics of green concrete filters. Constr. Build. Mater. 2020, 240, 117931. [Google Scholar] [CrossRef]
- Koupai, J.A.; Nejad, S.S.; Mostafazadeh-Fard, S.; Behfarnia, K. Reduction of Urban Storm-Runoff Pollution Using Porous Concrete Containing Iron Slag Adsorbent. J. Environ. Eng.-ASCE 2016, 142, 4015072. [Google Scholar] [CrossRef]
- Fan, M.; Tang, B.; Sun, X.; He, X.; Yuan, L. Experimental study on the water purification performance of carbonated recycled aggregate pervious concrete. Constr. Build. Mater. 2023, 406, 133392. [Google Scholar] [CrossRef]
- Lin, Z.; Yang, H.; Chen, H. Influence of fillers on the removal of rainwater runoff pollutants by a permeable brick system with a frame structure base. Water Sci. Technol. 2020, 80, 2131–2140. [Google Scholar] [CrossRef]
- Ruan, Z.; Chen, K.; Cao, W.; Meng, L.; Yang, B.; Xu, M.; Xing, Y.; Li, P.; Freilich, S.; Chen, C.; et al. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. Nat. Commun. 2024, 15, 4694. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, W.; Yanuka-Golub, K.; Driesen, N.; De Vrieze, J. Engineering microbial technologies for environmental sustainability: Choices to make. Microb. Biotechnol. 2022, 15, 215–227. [Google Scholar] [CrossRef]
- Verstraete, W.; De Vrieze, J. Microbial technology with major potentials for the urgent environmental needs of the next decades. Microb. Biotechnol. 2017, 10, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Nishimura, F.; Tanaka, M.; Kassai, H.; Matsue, N.; Henmi, A. Characteristics of Porous Concrete with Zeolite as a Medium Purifying River Water for Ammonia Removal and Biological Nitrification. J. Jpn. Soc. Civ. Eng. Ser. G (Environ. Res.) 2016, 72, 29–36. [Google Scholar] [CrossRef]
- Makul, N.; Fediuk, R.; Szelag, M. Advanced interactions of cement-based materials with microorganisms: A review and future perspective. J. Build. Eng. 2022, 45, 103458. [Google Scholar] [CrossRef]
- Fan, L.; Wang, S.; Chen, C.; Hsieh, H.; Chen, J.; Chen, T.; Chao, W. Microbial Community Structure and Activity under Various Pervious Pavements. J. Environ. Eng.-ASCE 2014, 140, 4013012. [Google Scholar] [CrossRef]
- Yadu, A.; Sahariah, B.P.; Anandkumar, J. Influence of COD/ammonia ratio on simultaneous removal of NH4+-N and COD in surface water using moving bed batch reactor. J. Water Process. Eng. 2018, 22, 66–72. [Google Scholar] [CrossRef]
- Aphaawwa, W. Standard Methods for the Examination of Water and Wastewater; APHAAWWA, WPCF: Washington, WA, USA, 1998. [Google Scholar]
- Wang, A.; Shi, K.; Ning, D.; Cheng, H.; Wang, H.; Liu, W.; Gao, S.; Li, Z.; Han, J.; Liang, B.; et al. Electrical selection for planktonic sludge microbial community function and assembly. Water Res. 2021, 206, 117744. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; He, Z.; Ren, Y.; Yang, W.; Tang, C.; Chen, F.; Zhou, A.; Liu, W.; Liang, B.; Wang, A. Role and significance of water and acid washing on biochar for regulating methane production from waste activated sludge. Sci. Total Environ. 2022, 817, 152950. [Google Scholar] [CrossRef] [PubMed]
- Godzieba, M.; Zubrowska-Sudol, M.; Walczak, J.; Ciesielski, S. Development of microbial communities in biofilm and activated sludge in a hybrid reactor. Sci. Rep. 2022, 12, 12558. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lv, Y.; Cao, M.; Zeng, H.; Zhang, J. Optimized hydraulic retention time for phosphorus and COD removal from synthetic domestic sewage with granules in a continuous-flow reactor. Bioresour. Technol. 2016, 216, 1083–1087. [Google Scholar] [CrossRef]
- Tavana, A.; Pishgar, R.; Tay, J.H. Impact of hydraulic retention time and organic matter concentration on side-stream aerobic granular membrane bioreactor. Sci. Total Environ. 2019, 693, 133525. [Google Scholar] [CrossRef]
- Mensah, L.; Petrie, B.; Scrimshaw, M.; Cartmell, E.; Fletton, M.; Campo, P. Influence of solids and hydraulic retention times on microbial diversity and removal of estrogens and nonylphenols in a pilot-scale activated sludge plant. Heliyon 2023, 9, e19461. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.; Takeuchi, H.; Hasegawa, T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renew. Sust. Energ. Rev. 2012, 16, 1462–1476. [Google Scholar] [CrossRef]
- Faust, V.; Vlaeminck, S.E.; Ganigué, R.; Udert, K.M. Influence of pH on Urine Nitrification: Community Shifts of Ammonia-Oxidizing Bacteria and Inhibition of Nitrite-Oxidizing Bacteria. ACS EST Eng. 2024, 4, 342–353. [Google Scholar] [CrossRef]
- Bolaji, I.O.; Dionisi, D. Experimental investigation and mathematical modelling of batch and semi-continuous anaerobic digestion of cellulose at high concentrations and long residence times. SN Appl. Sci. 2021, 3, 778. [Google Scholar] [CrossRef]
- Peces, M.; Dottorini, G.; Nierychlo, M.; Andersen, K.S.; Dueholm, M.K.D.; Nielsen, P.H. Microbial communities across activated sludge plants show recurring species-level seasonal patterns. ISME Commun. 2022, 2, 18. [Google Scholar] [CrossRef]
- Hossain, M.I.; Paparini, A.; Cord-Ruwisch, R. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake. Bioresour. Technol. 2017, 228, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Brix, H. Sludge Dewatering and Mineralization in Sludge Treatment Reed Beds. Water 2017, 9, 160. [Google Scholar] [CrossRef]
- Yue, X.; Liu, H.; Wei, H.; Chang, L.; Gong, Z.; Zheng, L.; Yin, F. Reactive and microbial inhibitory mechanisms depicting the panoramic view of pH stress effect on common biological nitrification. Water Res. 2023, 231, 119660. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Vishnuvardhan, M.; Das, D. Continuous thermophilic biohydrogen production in packed bed reactor. Appl. Energy. 2014, 136, 51–58. [Google Scholar] [CrossRef]
- Adab, H.; Abbasi, M. Enhancing runoff treatment using green porous concrete incorporating recycled aggregates. Int. J. Environ. Sci. Technol. 2024, 21, 9853–9866. [Google Scholar] [CrossRef]
- Lin, Z.; Yang, H.; Chen, H.; Ouyang, X.; Liu, Z. Comparison of the Decontamination Performance of Three Permeable Bricks: Adsorption and Filtration Experiments. Pol. J. Environ. Stud. 2020, 29, 3225–3233. [Google Scholar] [CrossRef]
- Teymouri, E.; Mousavi, S.; Karami, H.; Farzin, S.; Hosseini Kheirabad, M. Municipal Wastewater pretreatment using porous concrete containing fine-grained mineral adsorbents. J. Water Process. Eng. 2020, 36, 101346. [Google Scholar] [CrossRef]
- Qi, Y.; Liu, Y.; Qiu, D.; Li, T. Effect of biochar particles applied in bedding course of the innovative permeable pavement on enhancing nitrogen removal. Water Sci. Technol. 2021, 84, 1693–1703. [Google Scholar] [CrossRef]
- Lan, J.; Liu, B. Comparing the Purification Effects of Sewage Water Treated by Different Kinds of Porous Eco-Concrete. J. Electrochem. Soc. 2011, 130, 1–4. [Google Scholar] [CrossRef]
- Barreto Sandoval, G.; Melo Prudêncio De Araújo, W.; de Souza Picanço, M.; Negrão Macêdo, A.; Zoe Correa, C. Pervious concrete (PC) with adition of TiO2 used in sanitary sewage treatment. Rev. Ing. Constr. 2024, 37, 345–362. [Google Scholar] [CrossRef]
- Zeng, T.; Wang, L.; Ren, X.; Al-Dhabi, N.A.; Sha, H.; Fu, Y.; Tang, W.; Zhang, J. The effect of quorum sensing on cadmium- and lead-containing wastewater treatment using activated sludge: Removal efficiency, enzyme activity, and microbial community. Environ. Res. 2024, 252, 118835. [Google Scholar] [CrossRef] [PubMed]
- Jia, A.; Xu, L.; Wang, Y. Venn diagrams in bioinformatics. Brief Bioinform. 2021, 22, bbab108. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Ning, D.; Zhang, B.; Li, Y.; Zhang, P.; Shan, X.; Zhang, Q.; Brown, M.R.; Li, Z.; Van Nostrand, J.D.; et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 2019, 4, 1183–1195. [Google Scholar] [CrossRef]
- Junkins, E.N.; McWhirter, J.B.; McCall, L.; Stevenson, B.S. Environmental structure impacts microbial composition and secondary metabolism. ISME Commun. 2022, 2, 15. [Google Scholar] [CrossRef]
- Zhong, Y.; He, J.; Zhang, P.; Zou, X.; Pan, X.; Zhang, J. Effects of different particle size of zero-valent iron (ZVI) during anaerobic digestion: Performance and mechanism from genetic level. Chem. Eng. J. 2022, 435, 134977. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.; Yang, Y.; Mei, X.; Wu, Z. Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 high-throughput pyrosequencing. Water Res. 2013, 47, 859–869. [Google Scholar] [CrossRef]
- Wang, P.; Yu, Z.; Zhao, J.; Zhang, H. Do microbial communities in an anaerobic bioreactor change with continuous feeding sludge into a full-scale anaerobic digestion system? Bioresour. Technol. 2018, 249, 89–98. [Google Scholar] [CrossRef]
- Yang, F.; Wang, S.; Li, H.; Wang, G.; Wang, Y.; Yang, J.; Chen, Y.; Yan, P.; Guo, J.; Fang, F. Differences in responses of activated sludge to nutrients-poor wastewater: Function, stability, and microbial community. Chem. Eng. J. 2023, 457, 141247. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, G.; Wei, Q.; Liu, S.; Shao, Y.; Zhang, J.; Qi, L.; Wang, H. Regional discrepancy of microbial community structure in activated sludge system from Chinese WWTPs based on high-throughput 16S rDNA sequencing. Sci. Total Environ. 2022, 818, 151751. [Google Scholar] [CrossRef]
- Nguyen, J.; Lara-Gutiérrez, J.; Stocker, R. Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiol. Rev. 2021, 45, fuaa068. [Google Scholar] [CrossRef]
- Rivett, D.W.; Bell, T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat. Microbiol. 2018, 3, 767–772. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Liu, D.; Shi, Y.; Wu, X.; Dai, Y.; Shang, Y.; Peng, J.; Cui, Z. Broader environmental adaptation of rare rather than abundant bacteria in reforestation succession soil. Sci. Total Environ. 2022, 828, 154364. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Zhou, J.L.; Navidpour, A.H.; Altaee, A. Progress in osmotic membrane bioreactors research: Contaminant removal, microbial community and bioenergy production in wastewater. Bioresour. Technol. 2021, 330, 124998. [Google Scholar] [CrossRef] [PubMed]
- Strepis, N.; Naranjo, H.D.; Meier-Kolthoff, J.; Göker, M.; Shapiro, N.; Kyrpides, N.; Klenk, H.; Schaap, P.J.; Stams, A.J.M.; Sousa, D.Z. Genome-guided analysis allows the identification of novel physiological traits in Trichococcus species. BMC Genom. 2020, 21, 24. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Razavi, S.H.; Mousavi, S.M. Characterization of bacteria of the genus Dietzia: An updated review. Ann. Microbiol. 2014, 64, 1–11. [Google Scholar] [CrossRef]
- Venil, C.K.; Malathi, M.; Devi, P.R. Characterization of Dietzia maris AURCCBT01 from oil-contaminated soil for biodegradation of crude oil. 3 Biotech 2021, 11, 291. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, A.; Muñoz-Palazon, B.; Hurtado-Martinez, M.; Mikola, A.; Gonzalez-Lopez, J.; Vahala, R.; Gonzalez-Martinez, A. Analysis of microbial communities involved in organic matter and nitrogen removal in a full-scale moving bed biofilm reactor located near the Polar Arctic Circle. Int. Biodeterior. Biodegrad. 2020, 146, 104830. [Google Scholar] [CrossRef]
- Begmatov, S.; Dorofeev, A.G.; Kadnikov, V.V.; Beletsky, A.V.; Pimenov, N.V.; Ravin, N.V.; Mardanov, A.V. The structure of microbial communities of activated sludge of large-scale wastewater treatment plants in the city of Moscow. Sci. Rep. 2022, 12, 3458. [Google Scholar] [CrossRef]
- Jiang, C.; Li, J.; Li, H.; Li, Y.; Chen, L. Field Performance of Bioretention Systems for Runoff Quantity Regulation and Pollutant Removal. Water Air Soil Pollut. 2017, 228, 468. [Google Scholar] [CrossRef]
- Katsenovich, Y.; Shapovalova, L.; But, L.; Ijitskaja, M. Evaluation of biological pond system modified with submerged planted dams. Ecol. Eng. 2008, 33, 1–7. [Google Scholar] [CrossRef]
- Li, D.; Ye, B.; Hou, Z.; Chu, Z.; Zheng, B. Long-term performance and microbial distribution of a filed-scale storing multi-pond constructed wetland with Ottelia acuminata for the treatment of non-point source pollution. J. Clean. Prod. 2020, 262, 121367. [Google Scholar] [CrossRef]
- Li, J.; Lei, L.; Lei, Y.; Luo, Q.; Lai, H.; Liu, L.; Li, X.; Liang, W. Evaluation of a Pilot Scale Combined Constructed Wetlands and Stabilization Ponds for Initial Rainwater Treatment. IOP Conf. Ser. Earth Environ. Sci. 2020, 598, 12054. [Google Scholar] [CrossRef]
- Lin, H.; Na, Y.; Liu, X.W.; Mao, J.H.; Deng, F. A high-flux constructed wetland for tertiary treatment of brackish wastewater treatment plant effluent: Process performance and influence factors. IOP Conf. Ser. Earth Environ. Sci. 2019, 344, 12114. [Google Scholar] [CrossRef]
- Ilyas, H.; Masih, I. The performance of the intensified constructed wetlands for organic matter and nitrogen removal: A review. J. Environ. Manag. 2017, 198, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Melián, J.A.; Guedes-Alonso, R.; Tite-Lezcano, J.C.; Santiago, D.E.; Ranieri, E.; Alonso-Bilbao, I. The Effect of Effluent Recirculation in a Full-Scale Constructed Wetland System. Sustainability 2023, 15, 4310. [Google Scholar] [CrossRef]
- Strotmann, U.; Durand, M.-J.; Thouand, G.; Eberlein, C.; Heipieper, H.J.; Gartiser, S.; Pagga, U. Microbiological toxicity tests using standardized ISO/OECD methods—Current state and outlook. Appl. Microbiol. Biotechnol. 2024, 108, 454. [Google Scholar] [CrossRef]
Materials | Coarse Aggregate | Cement | Water | Activated Sludge | Water Reducer |
---|---|---|---|---|---|
g | |||||
Mass | 1500 | 414 | 121.5 | 36 | 0.45 |
COD | NH4+-N | C6H12O6 | NH4Cl | NaCl | MgCl2 | K2HPO4 |
---|---|---|---|---|---|---|
mg/L | ||||||
400 | 10 | 373.8 | 38.5 | 20.0 | 2.5 | 3.7 |
600 | 20 | 560.8 | 76.9 | 25.0 | 3.0 | 5.6 |
800 | 30 | 747.7 | 115.4 | 30.0 | 3.5 | 7.5 |
Number | Influent COD (mg/L) | Influent NH4+-N (mg/L) | HRT (h) |
---|---|---|---|
RFE-1 | 400 | 10 | 6 |
RFE-2 | 400 | 10 | 9 |
RFE-3 | 400 | 10 | 12 |
RFE-4 | 600 | 20 | 9 |
RFE-5 | 800 | 30 | 9 |
Number | Activated Sludge Reactor | Riverbed Sludge Reactor | ||||
---|---|---|---|---|---|---|
COD Removal | NH4+-N Removal | Final pH | COD Removal | NH4+-N Removal | Final pH | |
REF-1 | 48.53% | 57.32% | 8.13 ± 0.23 | 44.82% | 51.29% | 7.99 ± 0.15 |
REF-2 | 58.50% | 62.18% | 8.28 ± 0.36 | 54.93% | 59.45% | 8.08 ± 0.27 |
REF-3 | 62.22% | 45.44% | 7.49 ± 0.18 | 60.78% | 37.22% | 7.37 ± 0.12 |
REF-4 | 62.67% | 71.21% | 8.76 ± 0.21 | 46.05% | 66.55% | 8.34 ± 0.25 |
REF-5 | 64.81% | 45.11% | 7.29 ± 0.16 | 43.95% | 39.70% | 7.45 ± 0.19 |
Materials | COD Removal | NH4+-N Removal | Refs. |
---|---|---|---|
Recycled aggregates | 52% | 42% | [56] |
Ceramics | 10% | 20% | [57] |
Steel slag | 14% | 32% | [57] |
Mineral adsorbents and biochar | 31% | 20% | [58,59] |
Composite cement | 35% | 47% | [60] |
General cement | 22% | 44% | [60] |
Composite cement and red clay | 31% | 55% | [60] |
TiO2 | 69% | 78% | [61] |
Pervious concrete micro-ecosystem | 63% | 71% | This study |
System Type | COD Removal | NH4+-N Removal | Ref. |
---|---|---|---|
Bioretention basin | 65% | 63% | [80] |
Modified bioretention basin | 76% | 89% | [81] |
Cistern-like artificial wetland | 42% | 51% | [82] |
Stabilization ponds and artificial wetland | 32% | 77% | [83] |
High-throughput artificial wetland | 65% | 20% | [84] |
Intensive artificial wetland | 84% | 63% | [85] |
Sewage-recycling artificial wetland | 66% | 55% | [86] |
Pervious concrete micro-ecosystem | 63% | 71% | This study |
Rainfall Levels | Time Period Rainfall (mm) | |
---|---|---|
12 h | 24 h | |
Light rainfall (scattered drizzle) | <0.1 | <0.1 |
Light rain | 0.1~4.9 | 0.1~9.9 |
Moderate rain | 5.0~14.9 | 10.0~24.9 |
Heavy rain | 15.0~29.9 | 25.0~49.9 |
Rainstorm | 30.0~69.9 | 50.0~99.9 |
Heavy rainstorm | 70.0~139.9 | 100.0~249.9 |
Extremely heavy rainstorm | ≥140.0 | ≥250.0 |
Characterization | WASE | RBSE |
---|---|---|
Microbial diversity | Low | High |
Functional microorganisms abundance | High | Low |
Rainwater treatment capacity | High | Low |
Start-up speed | Fast | Slow |
Pollutant load adaptability | Strong | Weak |
Pollutant degradation capacity | Strong | Weak |
Natural environment adaptation | Weak | Strong |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jia, X.; Yuan, P.; Li, B.; Pan, W.; Liu, J.; Zhao, W. Activated Sludge Combined with Pervious Concrete Micro-Ecosystem for Runoff Rainwater Collection and Pollutant Purification. Toxics 2024, 12, 838. https://doi.org/10.3390/toxics12120838
Zhang Y, Jia X, Yuan P, Li B, Pan W, Liu J, Zhao W. Activated Sludge Combined with Pervious Concrete Micro-Ecosystem for Runoff Rainwater Collection and Pollutant Purification. Toxics. 2024; 12(12):838. https://doi.org/10.3390/toxics12120838
Chicago/Turabian StyleZhang, Yongsheng, Xuechen Jia, Pengfei Yuan, Bingqi Li, Wenyan Pan, Jianfei Liu, and Weilong Zhao. 2024. "Activated Sludge Combined with Pervious Concrete Micro-Ecosystem for Runoff Rainwater Collection and Pollutant Purification" Toxics 12, no. 12: 838. https://doi.org/10.3390/toxics12120838
APA StyleZhang, Y., Jia, X., Yuan, P., Li, B., Pan, W., Liu, J., & Zhao, W. (2024). Activated Sludge Combined with Pervious Concrete Micro-Ecosystem for Runoff Rainwater Collection and Pollutant Purification. Toxics, 12(12), 838. https://doi.org/10.3390/toxics12120838