Comprehensive Investigation of Fluoroquinolone Residues in Apis mellifera and Apis cerana Honey and Potential Risks to Consumers: A Five-Year Study (2014–2018) in Zhejiang Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Reagents and Chemicals
2.3. Apparatus and LC-MS/MS Conditions
2.4. Extraction Process
2.5. Quality Assurance/Quality Control
2.6. Assessment of Dietary Risk to Consumers
2.6.1. Deterministic Risk Assessment
2.6.2. Probabilistic Risk Assessment
2.7. Statistical Analysis
3. Results
3.1. Validation of the Analytical Methodology
3.2. FQ Overall Detection Rate and Concentration in Honey
3.3. Each FQ Detection Rate and Concentration in Honey
3.4. Comparison of FQ Detection Rate and Concentration in Honey among Different Areas, Years, Entomological Origins, Floral Origins, and Sale Channels
3.5. Assessment of Dietary Exposure Risk to Humans
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.H.; Wu, J.; Zhang, F.X. Analysis of domestic bee products market of 2013. China Anim. Ind. 2014, 22, 34–35. (In Chinese) [Google Scholar]
- Reybroeck, W.; Daeseleire, E.; De Brabander, H.F.; Herman, L. Antimicrobials in beekeeping. Vet. Microbiol. 2012, 158, 1–11. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Panseri, S.; Nobile, M.; Ceriani, F.; Arioli, F. Distribution of POPs, pesticides and antibiotic residues in organic honeys from different production areas. Food Addit. Contam. Part. A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 1340–1355. [Google Scholar] [CrossRef] [PubMed]
- Tillotson, G.S.; Doern, G.V.; Blondeau, J.M. Optimal antimicrobial therapy: The balance of potency and exposure. Expert. Opin. Investig. Drugs 2006, 15, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Muaz, K.; Riaz, M.; Akhtar, S.; Park, S.; Ismail, A. Antibiotic Residues in Chicken Meat: Global Prevalence, Threats, and Decontamination Strategies: A Review. J. Food Prot. 2018, 81, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, G.; Li, X.; Zou, S.; Li, P.; Hu, Z.; Li, J. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Res. 2007, 41, 4526–4534. [Google Scholar] [CrossRef]
- Huyghebaert, G.; Ducatelle, R.; Van Immerseel, F. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 2011, 187, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Silva, L.J.G.; Rodrigues, J.; Lino, C.; Pena, A. Risk assessment of fluoroquinolones from poultry muscle consumption: Comparing healthy adult and pre-school populations. Food Chem. Toxicol. 2018, 118, 340–347. [Google Scholar] [CrossRef]
- MAPRC. Decision on the prohibition of four veterinary drugs (lomefloxacin, pefloxacin, ofloxacin and norfloxacin) in food animals. In Ministry of Agriculture of the People’s Republic of China Bulletin No. 2292, China; Ministry of Agriculture: Beijing, China, 2015. [Google Scholar]
- Mottier, P.; Hammel, Y.A.; Gremaud, E.; Guy, P.A. Quantitative high-throughput analysis of 16 (fluoro)quinolones in honey using automated extraction by turbulent flow chromatography coupled to liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2008, 56, 35–43. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, J.; Zhao, W.; Zhang, W.; Wang, L.; Zhou, J.; Li, Y. Development and validation of a multiclass method for the quantification of veterinary drug residues in honey and royal jelly by liquid chromatography-tandem mass spectrometry. Food Chem. 2017, 221, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Dong, X.L.; Han, M.H.; Yang, Y.; Qian, L.; Huang, M.; Luo, B.Z.; Wang, H.X.; Chen, Y.; Jiang, Q.W. Antibiotic residues in honey in the Chinese market and human health risk assessment. J. Hazard. Mater. 2022, 44, 129815. [Google Scholar] [CrossRef]
- Soares, S.; Grazina, L.; Mafra, I.; Costa, J.; Pinto, M.A.; Duc, H.P.; Oliveira, M.; Amaral, J.S. Novel diagnostic tools for Asian (Apis cerana) and European (Apis mellifera) honey authentication. Food Res. Int. 2008, 105, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.N.; Liu, H.M.; Yan, J.; Li, X.G.; Li, Y.; Wang, T.J.; He, J.M.; Niu, Q.S.; Xing, X.M. Geometric morphology and population genomics provide insights into the adaptive evolution of Apis cerana in Changbai Mountain. BMC Genom. 2022, 23, 64. [Google Scholar]
- Xu, R.; Cheng, N.; Huang, W.; Gao, H.; Deng, J.D.; Cao, W. Effects of the processing steps on parathion levels during honey. Food Control. 2012, 23, 234–237. [Google Scholar] [CrossRef]
- Zheng, H.Q.; Cao, L.F.; Huang, S.K.; Neumann, P.; Hu, F.L. Current Status of the Beekeeping Industry in China. In Asian Beekeeping in the 21st Century; Springer: Berlin/Heidelberg, Germany, 2018; pp. 129–158. [Google Scholar]
- Wang, J.M.; Yang, H.; Zeng, Y.H.; Wu, L.Q.; Li, R.; Yuan, Y.W.; Qiang, M.R. Measuring the antibiotics and pesticides in honeys by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). J. ZheJIang Univ. 2018, 45, 330–342. (In Chinese) [Google Scholar]
- Zheng, H.Q.; Wei, W.T.; Hu, F.L. Beekeeping Industry In China. Bee World 2015, 88, 41–44. [Google Scholar] [CrossRef]
- Ji, X.F.; Xu, Y.; Wang, J.M.; Lyu, W.T.; Li, R.; Tan, S.; Xiao, Y.P.; Tang, B.; Yang, H.; Qian, M.R. Multiresidue determination of antibiotics in ready-to-eat duck eggs marketed through e-commerce stores in China and subsequent assessment of dietary risks to consumers. J. Food Sci. 2021, 86, 2145–2162. [Google Scholar] [CrossRef]
- GB 31650-2019; National Food Safety Standard-Maximum Residue Limits for Veterinary Drugs in Foods. Ministry of Agriculture and Rural Affairs of the People’s Republic of China, MOA: Beijing, China, 2019.
- GB 31650.1-2022; National Food Safety Standard Maximum Residue Limits of 41 Veterinary Drugs in Food. Ministry of Agriculture and Rural Affairs of the People’s Republic of China, MOA: Beijing, China, 2022.
- Wang, H.X.; Wang, N.; Qian, J.H.; Hu, L.Y.; Huang, P.X.; Su, M.F.; Yu, X.; Fu, C.W.; Jiang, F.; Zhao, Q.; et al. Urinary antibiotics of pregnant women in Eastern China and cumulative health risk assessment. Environ. Sci. Technol. 2017, 51, 3518–3525. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Report of the JECFA/JMPR Expert Working Group on Harmonizing/Combining Exposure from Veterinary Drug and Pesticide Use; Final report of meeting 11–13 October 2017; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- GEMS/FOOD. Global Environment Monitoring System—Food Contamination Monitoring and Assessment Programme, GEMS/Food Consumption Cluster Diets; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Wang, X.; Goulson, D.; Chen, L.Z.; Zhang, J.Z.; Zhao, W.; Jin, Y.; Yang, S.P.; Li, Y.; Zhou, J.H. Occurrence of Neonicotinoids in Chinese Apiculture and a Corresponding Risk Exposure Assessment. Environ. Sci. Technol. 2020, 54, 5021–5030. [Google Scholar] [CrossRef]
- Jiang, C.L.; Zhao, Q.; Zheng, L.G.; Chen, X.; Li, C.; Ren, M.X. Distribution, source and health risk assessment based on the Monte Carlo method of heavy metals in shallow groundwater in an area affected by mining activities China. Ecotoxicol. Environ. Saf. 2021, 224, 112679. [Google Scholar] [CrossRef]
- Alipour, M.; Sarafraz, M.; Chavoshi, H.; Bay, A.; Nematollahi, A.; Sadani, M.; Fakhri, Y.; Vasseghian, Y.; Khaneghah, A.M. The concentration and probabilistic risk assessment of potentially toxic elements in fillets of silver pomfret (Pampus argenteus): A global systematic review and meta-analysis. J. Environ. Sci. 2020, 100, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Soltanpour, Z.; Mohammadian, Y.; Fakhri, Y. The concentration of benzene, toluene, ethylbenzene, and xylene in ambient air of the gas stations in Iran: A systematic review and probabilistic health risk assessment. Toxicol. Ind. Health 2021, 37, 134–141. [Google Scholar] [CrossRef]
- Kujawski, M.W.; Namiesnik, J. Challenges in preparing honey samples for chromatographic determination of contaminants and trace residues. TrAC Trends Anal. Chem. 2008, 27, 785–793. [Google Scholar] [CrossRef]
- Fukumitsu, T.; Waki, M.; Hagio, M.; Hayashi, T.; Kuwahara, C. Development of an Analytical Method for Simultaneous Determinationof Quinolones and Tetracyclines in Livestock and Fishery Products. Shokuhin Eiseigaku Zasshi 2021, 62, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Roberta, G.; Giorgio, S.; Danilo, G.; Rosanna, R.; Simone, M. Multiclass determination of 27 antibiotics in honey. Food Control. 2015, 48, 12–24. [Google Scholar]
- Louppis, A.P.; Kontominas, M.G.; Papastephanou, C. Determination of antibiotic residues in honey by high-performance liquid chromatography with electronspray ionization tandem mass spectrometry. Food Anal. Methods 2017, 10, 3385–3397. [Google Scholar] [CrossRef]
- Reybroeck, W. Residues of antibiotics and chemotherapeutics in honey. J. Apic. Res. 2018, 57, 97–112. [Google Scholar] [CrossRef]
- Yatsukawa, Y.; Ito, H.; Matsuda, T.; Nakamura, M.; Watai, M.; Fujita, K. Determination of residual fluoroquinolones in honey by liquid chromatography using metal chelate affinity chromatography. J. AOAC Int. 2011, 94, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Bonerba, E.; Panseri, S.; Arioli, F.; Nobile, M.; Terio, V.; Di Cesare, F.; Tantillo, G.; Maria Chiesa, L. Determination of antibiotic residues in honey in relation to different potential sources and relevance for food inspection. Food Chem. 2020, 334, 127575. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Wang, Y.; Yuan, Y.; Xie, Y. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci. Total Environ. 2021, 798, 149205. [Google Scholar] [CrossRef]
- Lei, H.Y.; Guo, J.B.; Lv, Z.; Zhu, X.H.; Xue, X.M.; Wu, L.; Cao, W. Simultaneous Determination of Nitroimidazoles and Quinolones in Honey by Modified QuEChERS and LC-MS/MS Analysis. Int. J. Anal. Chem. 2018, 4, 1–12. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Norian, R.; Pajohi-Alamoti, M. Antibiotic residues in Iranian honey by ELISA. Int. J. Food Prop. 2014, 17, 2367–2373. [Google Scholar] [CrossRef]
- Er Demirhan, B.; Demirhan, B. Detection of Antibiotic Residues in Blossom Honeys from Different Regions in Turkey by LC-MS/MS Method. Antibiotics 2022, 11, 357. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y. Study on Thermostability of Chinese Monofloral Honey. Master’s Thesis, Nanchang University, Nanchang, China, 2007. (In Chinese). [Google Scholar]
- Vanengelsdorp, D.; Meixner, M.D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 2010, 103 (Suppl S1), S80–S95. [Google Scholar] [CrossRef]
- Yuan, Y.; Deng, Z.; Zhang, B.; Li, G.; Zhang, J.; Liu, R.; Li, H. Quality evaluation and geographical classification of immature rape and acacia honeys in China. J. Sci. Food Agric. 2021, 101, 5446–5456. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.W.; Chen, C.; Zheng, C.M.; Wang, X.L.; Yang, G.L.; Wang, Q.; Zhang, Z.H. Residue of chlorpyrifos and cypermethrin in vegetables and probabilistic exposure assessment for consumers in Zhejiang Province, China. Food Control. 2014, 36, 63–68. [Google Scholar] [CrossRef]
- Mandell, L.; Tillotson, G. Safety of fluoroquinolones: An update. Can. J. Infect. Dis. 2002, 13, 54–61. [Google Scholar] [CrossRef]
- Kim, D.; Song, N.; Nam, T.G.; Jung, Y.S.; Yoo, M. Investigation and human health risk assessment of multi-class veterinary antibiotics in honey from South Korea. J. Food Compost. Anal. 2021, 102, 104040. [Google Scholar] [CrossRef]
- Bwatanglang, I.B.; Bimba, J.S.; Magili, S.; Musa, Y.; Zira, S. Dietary exposure to antibiotics residue in honey and the potential health risks to consumers in Adamawa state, Nigeria. Int. J. Chem. Stud. 2019, 7, 1672–1679. [Google Scholar]
- Stephenson, C.L.; Harris, C.A. An assessment of dietary exposure to glyphosate using refined deterministic and probabilistic methods. Food Chem. Toxicol. 2016, 95, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.L.; Chimeddulam, D.; Sheen, L.Y.; Wu, K.Y. Probabilistic risk assessment of exposure to leucomalachite green residues from fish products. Food Chem. Toxicol. 2013, 62, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, M.C.; Van der Voet, H.; Roelofs, V.J.; Roelofs, W.; Glass, C.R.; de Boer, W.J.; Kruisselbrink, J.W.; Hart, A.D.M. New approaches to uncertainty analysis for use in aggregate and cumulative risk assessment of pesticides. Food Chem. Toxicol. 2015, 79, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Kettler, S.; Kennedy, M.; McNamara, C.; Oberd€orfer, R.; O’Mahony, C.; Schnabel, J.; Smith, B.; Sprong, C.; Faludi, R.; Tennant, D. Assessing and reporting uncertainties in dietary exposure analysis: Mapping of uncertainties in a tiered approach. Food Chem. Toxicol. 2015, 82, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Stanton, I.C.; Murray, A.K.; Zhang, L.; Snape, J.; Gaze, W.H. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Commun. Biol. 2020, 3, 467. [Google Scholar] [CrossRef] [PubMed]
Compound | Retention Time (min) | Linearity (μg/L) | R2 | LOD (μg/kg) | LOQ (μg/kg) | Matrix Effect (%) |
---|---|---|---|---|---|---|
marbofloxacin | 7.21 | 0.1~200 | 0.994 | 0.17 | 0.54 | 104.6 |
fleroxacin | 7.43 | 0.1~200 | 0.998 | 0.58 | 1.75 | 95.6 |
ofloxacin | 7.88 | 0.1~200 | 0.999 | 0.15 | 0.54 | 99.4 |
pefloxacin | 7.91 | 0.1~200 | 0.999 | 0.15 | 0.53 | 110.1 |
enoxacin | 7.94 | 0.1~200 | 0.999 | 0.21 | 0.63 | 106.4 |
norfloxacin | 8.18 | 0.1~200 | 0.999 | 0.35 | 1.0 | 103.8 |
ciprofloxacin | 8.38 | 0.1~200 | 0.999 | 0.30 | 1.0 | 101.2 |
enrofloxacin | 8.48 | 0.1~200 | 0.991 | 0.47 | 1.4 | 103.6 |
danofloxacin | 8.49 | 0.1~200 | 0.996 | 0.28 | 0.85 | 92.9 |
lomefloxacin | 8.64 | 0.1~200 | 0.999 | 1.03 | 3.10 | 106.4 |
difloxacin | 8.74 | 0.1~200 | 0.992 | 0.16 | 0.68 | 96.4 |
sarafloxacin | 8.89 | 0.1~200 | 0.998 | 0.2 | 0.59 | 104.7 |
flumequine | 10.57 | 0.1~200 | 0.999 | 0.37 | 1.05 | 104.6 |
Compound | ADI (μg/kg) | Average Residue (μg/kg) | EDI (μg/kg bw/Day) | HQ |
---|---|---|---|---|
Ciprofloxacin | 0.15 [22] | 1.06 ± 10.88 | 1.77 × 10−4 | 1.18 × 10−3 |
Enrofloxacin | 6.2 [20] | 0.24 ± 0.091 | 4.0 × 10−5 | 6.45 × 10−6 |
Norfloxacin | 14 [21] | 16.10 ± 307.76 | 2.68 × 10−3 | 1.91 × 10−4 |
Ofloxacin | 3.2 [22] | 0.091 ± 0.422 | 1.52 × 10−5 | 4.75 × 10−6 |
Compound | Entomological Origin | ADI (μg/kg) | Average Residue (μg/kg) | EDI (μg/kg w/Day) | HQ |
---|---|---|---|---|---|
Ciprofloxacin | Apis mellifera | 0.15 [22] | 1.32 ± 12.4 | 2.19 × 10−4 | 1.46 × 10−3 |
Apis cerana | 0.21 ± 0.51 | 3.45 × 10−5 | 2.30 × 10−4 | ||
Enrofloxacin | Apis mellifera | 6.2 [20] | 0.240 ± 0.1 | 4.0 × 10−5 | 6.45 × 10−6 |
Apis cerana | 0.235 | 3.92 × 10−3 | 6.32 × 10−6 | ||
Norfloxacin | Apis mellifera | 14 [21] | 20.7 ± 351.7 | 3.45 × 10−3 | 2.46 × 10−4 |
Apis cerana | 1.113 ± 7.5 | 1.86 × 10−4 | 1.33 × 10−5 | ||
Ofloxacin | Apis mellifera | 3.2 [22] | 0.101 ± 0.48 | 1.68 × 10−5 | 5.25 × 10−6 |
Apis cerana | 0.075 | 1.25 × 10−5 | 3.91 × 10−6 |
Compound | Floral Origin | ADI (μg/kg) | Average Residue (μg/kg) | EDI (μg/kg bw/Day) | HQ |
---|---|---|---|---|---|
Ciprofloxacin | Acacia | 0.15 [22] | 0.833 ± 6.25 | 1.39 × 10−5 | 9.27 × 10−5 |
Chinese milk vetch | 74.3 ± 92.7 | 1.24 × 10−2 | 8.27 × 10−2 | ||
Loquat | 2.12 ± 11.6 | 3.53 × 10−4 | 3.80 × 10−3 | ||
Mutiflower | 0.366 ± 1.78 | 6.10 × 10−5 | 4.07 × 10−4 | ||
Rape | 0.4 ± 2.64 | 6.70 × 10−5 | 4.47 × 10−4 | ||
Enrofloxacin | Rape | 6.2 [20] | 0.245 ± 0.16 | 4.10 × 10−5 | 6.61 × 10−6 |
Norfloxacin | Acacia | 14 [21] | 3.15 ± 2.78 | 5.25 × 10−4 | 3.75 × 10−5 |
Chinese milk vetch | 0.82 ± 1.29 | 1.37 × 10−4 | 9.79 × 10−4 | ||
Citrus | 0.631 ± 1.82 | 1.05 × 10−4 | 7.50 × 10−6 | ||
Honeysuckle Flowers | 17.5 ± 15.6 | 2.92 × 10−3 | 2.09 × 10−6 | ||
Loquat | 0.573 ± 2.25 | 9.60 × 10−5 | 6.86 × 10−6 | ||
Mutiflower | 9.66 ± 104.8 | 1.61 × 10−3 | 1.15 × 10−4 | ||
Rape | 34.8 ± 504.1 | 5.80 × 10−3 | 4.14 × 10−4 | ||
Ofloxacin | Rape | 3.2 [22] | 0.13 ± 0.70 | 2.20 × 10−5 | 6.88 × 10−6 |
Compound | Sale Channel | ADI (μg/kg) | Average Residue (μg/kg) | EDI (μg/kg bw/Day) | HQ |
---|---|---|---|---|---|
Ciprofloxacin | Apiary | 0.15 [22] | 0.34 ± 2.18 | 5.63 × 10−5 | 3.75 × 10−4 |
Supermarket | 1.16 ± 7.44 | 1.93 × 10−4 | 1.29 × 10−3 | ||
Honey processing facility | 6.65 ± 32.27 | 1.11 × 10−4 | 7.40 × 10−4 | ||
Bee product store | 0.21 ± 0.41 | 3.57 × 10−5 | 2.50 × 10−4 | ||
Enrofloxacin | Apiary | 6.2 [20] | 0.24 ± 0.11 | 4.0 × 10−5 | 6.45 × 10−6 |
Norfloxacin | Apiary | 14 [21] | 17.4 ± 353.61 | 2.9 × 10−3 | 2.07 × 10−4 |
Supermarket | 10.3 ± 48.3 | 1.72 × 10−3 | 1.23 × 10−4 | ||
Honey processing facility | 0.72 ± 2.64 | 1.22 × 10−4 | 8.71 × 10−6 | ||
Bee product store | 35.1 ± 223.93 | 5.85 × 10−3 | 4.18 × 10−4 | ||
Ofloxacin | Apiary | 3.2 [22] | 0.102 ± 0.49 | 1.70 × 10−5 | 5.30 × 10−6 |
Compound | Percentile | Dietary Exposure Different Age Groups (HQs) | |||
---|---|---|---|---|---|
Children (4–11 Years) | Adolescents (12–18 Years) | Adults (19–64 Years) | Older Adults over 65 Years | ||
Ciprofloxacin | P50 | 2.42 × 10−2 | 5.55 × 10−2 | 0.117 | 0.107 |
P95 | 7.87 × 10−2 | 0.102 | 0.217 | 0.199 | |
Enrofloxacin | P50 | 1.34 × 10−5 | 1.77 × 10−5 | 3.77 × 10−5 | 3.50 × 10−5 |
P95 | 2.39 × 10−5 | 3.08 × 10−5 | 5.92 × 10−5 | 6.00 × 10−5 | |
Norfloxacin | P50 | 1.66 × 10−2 | 2.16 × 10−2 | 4.59 × 10−2 | 4.24 × 10−2 |
P95 | 2.94 × 10−2 | 4.01 × 10−2 | 8.57 × 10−2 | 7.86 × 10−2 | |
Ofloxacin | P50 | 1.02 × 10−4 | 1.34 × 10−4 | 2.87 × 10−4 | 2.64 × 10−4 |
P95 | 1.94 × 10−4 | 2.50 × 10−4 | 5.38 × 10−4 | 4.88 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Shen, L.; Zhang, J.; Li, R. Comprehensive Investigation of Fluoroquinolone Residues in Apis mellifera and Apis cerana Honey and Potential Risks to Consumers: A Five-Year Study (2014–2018) in Zhejiang Province, China. Toxics 2023, 11, 744. https://doi.org/10.3390/toxics11090744
He L, Shen L, Zhang J, Li R. Comprehensive Investigation of Fluoroquinolone Residues in Apis mellifera and Apis cerana Honey and Potential Risks to Consumers: A Five-Year Study (2014–2018) in Zhejiang Province, China. Toxics. 2023; 11(9):744. https://doi.org/10.3390/toxics11090744
Chicago/Turabian StyleHe, Liang, Leiding Shen, Jie Zhang, and Rui Li. 2023. "Comprehensive Investigation of Fluoroquinolone Residues in Apis mellifera and Apis cerana Honey and Potential Risks to Consumers: A Five-Year Study (2014–2018) in Zhejiang Province, China" Toxics 11, no. 9: 744. https://doi.org/10.3390/toxics11090744