Zinc Removal from Water via EDTA-Modified Mesoporous SBA-16 and SBA-15
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Adsorbents Synthesis and Modification
2.3. Adsorbents Characterization
2.4. Batch Adsorption Experiments
3. Results and Discussion
3.1. Adsorbents’ Characterization
3.2. Zinc Adsorption Experiments
3.2.1. Effect of Contact Time and pH
3.2.2. Adsorption Kinetics
3.2.3. Adsorption Isotherms
4. Adsorbents’ Regeneration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asberry, H.B.; Kuo, C.; Gung, C.; Conte, E.D.; Suen, S. Characterization of water bamboo husk biosorbents and their application in heavy metals ion trapping. Microchem. J. 2014, 113, 59–63. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environmental remediation and application of nanoscale zerovalent iron and its composites for the removal of heavy metal ions: A review. Environ. Sci. Technol. 2016, 50, 7290–7304. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Grillini, V. Surface water and groundwater quality in South Africa and mozambique—Analysis of the Most critical pollutants for drinking purposes and challenges in water treatment selection. Water 2020, 12, 305. [Google Scholar] [CrossRef] [Green Version]
- Taseidifar, M.; Makavipour, F.; Pashley, R.M.; Rahman, A.F.M.M. Removal of heavy metal ions from water using ion flotation. Environ. Technol. Innov. 2017, 8, 182–190. [Google Scholar] [CrossRef]
- García-Niño, W.R.; Pedraza-Chaverrí, J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem. Toxicol. 2014, 69, 182–201. [Google Scholar] [CrossRef]
- Wang, W.N.; Liang, H.; Wang, A. Effect of pH and Zn2+ on subcultured muscle cells from Macrobrachium nipponense. Methods Cell Sci. 2000, 22, 277–284. [Google Scholar] [CrossRef]
- Wadige, C.P.M.M.; Taylor, A.M.; Maher, W.A.; Krikowa, F. Bioavailability and toxicity of zinc from contaminated freshwater sediments: Linking exposure-dose–response relationships of the freshwater bivalve Hyridella australis to zinc-spiked sediments. Aquat. Toxicol. 2017, 156, 179–190. [Google Scholar] [CrossRef]
- Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y.S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 366, 608–621. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Mohammadi, L.; Moghaddam, A.A.; Mahvi, A.H. Heavy metals removal from aqueous environments by electrocoagulation process—A systematic review. J. Environ. Health Sci. Eng. 2015, 13, 74. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Luo, J.; Liu, C.; Chu, L.; Crittenden, J. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Res. 2018, 131, 246–254. [Google Scholar] [CrossRef]
- Qasem, N.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Aguado, J.; Arsuaga, J.; Arencibia, A.; Lindo, M. Gas_cn, V Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. J. Hazard. Mater. 2009, 163, 213–221. [Google Scholar] [CrossRef]
- Babel, S.; Kurniawan, T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 2003, 97, 219–243. [Google Scholar] [CrossRef] [PubMed]
- Repo, E.; Kurniawan, T.A.; Warchol, J.K.; Sillanpää, M.E. Removal of Co(II) and Ni(II) ions from contaminated water using silica gel functionalized with EDTA and/or DTPA as chelating agents. J. Hazard. Mater. 2009, 171, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Onundi, Y.B.; Mamum, A.A.; Al-Khatib, M.F.; Ahmed, Y.M. Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int. J. Environ. Sci. Technol. 2010, 7, 751–758. [Google Scholar] [CrossRef] [Green Version]
- Swarnalatha, K.; Ayoob, S. Adsorption Studies on Coir Pith for Heavy Metal Removal. Int. J. Sustain. Eng. 2016, 9, 259–265. [Google Scholar] [CrossRef]
- Demiral, İ.; Samdan, C.; Demiral, H. Enrichment of the surface functional groups of activated carbon by modification. Method Surf. Interfaces 2021, 22, 100873. [Google Scholar]
- Marciniak, M.; Goscianska, J.; Frankowski, M.; Pietrzak, R. Optimal synthesis of oxidized mesoporous carbons for the adsorption of heavy metal ions. J. Mol. Liq. 2019, 276, 630–637. [Google Scholar] [CrossRef]
- Upadhyay, U.; Sreedhar, I.; Singh, S.A.; Patel, C.M.; Anitha, K.L. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr. Polym. 2021, 251, 117000. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Zhao, Y.; Bai, H.; Wen, T.; Kang, S.; Song, G.; Song, S.; Komarneni, S. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites. Chem. Eng. 2020, 420, 127574. [Google Scholar] [CrossRef]
- Zhou, W.; Deng, J.; Qin, Z.; Huang, R.; Wang, Y.; Tong, S. Construction of MoS2 nanoarrays and MoO3 nanobelts: Two efficient adsorbents for removal of Pb(II), Au(III) and Methylene Blue. J. Environ. Sci. 2022, 111, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Barik, B.; Kumar, A.; Nayak, P.S.; Achary, L.S.K.; Rout, L.; Dash, P. Ionic liquid assisted mesoporous silica-graphene oxide nanocomposite synthesis and its application for removal of heavy metal ions from water. Mater. Chem. Phys. 2020, 239, 122028. [Google Scholar] [CrossRef]
- Qiu, B.; Xie, L.; Zeng, J.; Liu, T.; Yan, M.; Zhou, S.; Liang, Q.; Tang, J.; Liang, K.; Kong, B. Interfacially super-assembled asymmetric and H2O2 sensitive multilayer-sandwich magnetic mesoporous silica nanomotors for detecting and removing heavy metal ions. Adv. Funct. Mater. 2021, 31, 2010694. [Google Scholar] [CrossRef]
- Mannaa, M.A.; Altass, H.M.; Salama, R.S. MCM-41 grafted with citric acid: The role of carboxylic groups in enhancing the synthesis of xanthenes and removal of heavy metal ions. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100410. [Google Scholar] [CrossRef]
- Betiha, M.A.; Moustafa, Y.M.; El-Shahat, M.F.; Rafik, E. Polyvinylpyrrolidone-Aminopropyl-SBA-15 schiff Base hybrid for efficient removal of divalent heavy metal cations from wastewater. J. Hazard. Mater. 2020, 397, 122675. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Gupta, S.K.; Pathak, D.D. Selective adsorption of toxic heavy metal ions using guanine-functionalized mesoporous silica [SBA-16-g] from aqueous solution. Microporous Mesoporous Mater. 2019, 288, 109577. [Google Scholar] [CrossRef]
- Kaewprachum, W.; Wongsakulphasatch, S.; Kiatkittipong, W.; Striolo, A.; Cheng, C.K.; Assabumrungrat, S. SDS modified mesoporous silica MCM-41 for the adsorption of Cu2+, Cd2+, Zn2+ from aqueous systems. J. Environ. Chem. Eng. 2020, 8, 102920. [Google Scholar] [CrossRef]
- Hussain, A.A.; Nazir, S.; Irshad, R.; Tahir, K.; Raza, M.; Khan, Z.U.H.; Khan, A.U. Synthesis of functionalized mesoporous Ni-SBA-16 decorated with MgO nanoparticles for Cr (VI) adsorption and an effective catalyst for hydrodechlorination of chlorobenzene. Mater. Res. Bull. 2021, 133, 111059. [Google Scholar] [CrossRef]
- Zolfaghari, G.; Zanganeh Asadabadi, A. Synthesis of nanoporous silica SBA-16 and its modification with NH2 ligands and metal for removal of chromium in industry and environment. J. Environ. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- An, F.; Gao, B.; Dai, X.; Wang, M.; Wang, X. Efficient removal of heavy metal ions from aqueous solution using salicylic acid type chelate adsorbent. J. Hazard. Mater. 2011, 192, 956–962. [Google Scholar] [CrossRef]
- Northcott, K.; Kokusen, H.; Komatsu, Y.; Stevens, G. Synthesis and Surface Modification of Mesoporous Silicate SBA-15 for the Adsorption of Metal Ions. Sep. Sci. Technol. 2006, 41, 1829–1840. [Google Scholar] [CrossRef]
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.; Stucky, G. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Grudzien, R.M.; Grabicka, B.E.; Jaroniec, M. Adsorption studies of thermal stability of SBA-16 mesoporous silicas. Appl. Surf. Sci. 2007, 253, 5660–5665. [Google Scholar] [CrossRef]
- Ezzeddine, Z.; Batonneau-Gener, I.; Pouilloux, Y.; Hamad, H.; Saad, Z.; Kazpard, V. Divalent Heavy Metals Adsorption onto Different Types of EDTA-Modified Mesoporous Materials: Effectiveness and Complexation Rate. Microporous Mesoporous Mater. 2015, 212, 125–136. [Google Scholar] [CrossRef]
- Ghodbane, I.; Nouri, L.; Hamdaoui, O.; Chiha, M. Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark. J. Hazard. Mater. 2008, 152, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Nikiforova, T.E.; Kozlov, V.A.; Telegin, F.Y. Chemisorption of copper ions in aqueous acidic solutions by modified chitosan. Mater. Sci. Eng. B 2021, 263, 114778. [Google Scholar] [CrossRef]
- Gupta, R.; Layek, S.; Pathak, D.D. Synthesis and characterization of guanine-functionalized mesoporous silica [SBA-16-G]: A metal-free and recyclable solid base catalyst for synthesis of pyran-annulated heterocyclic compounds. Res. Chem. Intermed. 2018, 45, 1619–1637. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548–555. [Google Scholar] [CrossRef] [Green Version]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Gallas, J.P.; Goupil, J.M.; Vimont, A.; Lavalley, J.C.; Gil, B.; Gilson, J.P.; Miserque, O. Quantification of water and silanol species on various silicas by coupling IR spectroscopy and in-situ thermogravimetry. Langmuir 2009, 25, 5825–5834. [Google Scholar] [CrossRef]
- Maria, A.; Zhao, X.; Phys, J. Functionalization of SBA-15 with APTES and Characterization of Functionalized Materials. J. Phys. Chem. B. 2003, 107, 12650–12657. [Google Scholar] [CrossRef]
- Yu, J.; Tong, M.; Sun, X.; Li, B. Enhanced and selective adsorption of Pb2+ and Cu2+ by EDTAD-modified biomass of baker’s yeast. Bioresour. Technol. 2008, 99, 2588–2593. [Google Scholar] [CrossRef] [PubMed]
- Febrianto, J.; Kosasih, A.N.; Sunarso, J.; Ju, Y.H.; Indraswati, N.; Ismadji, S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J. Hazard. Mater. 2009, 162, 616–645. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Ezzeddine, Z.; Batonneau-Gener, I.; Pouilloux, Y.; Hamad, H.; Saad, Z. The applicability of as synthesized mesoporous carbon CMK-3 as a heavy metals adsorbent: Application to real water samples. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 43, 1675–1690. [Google Scholar] [CrossRef]
- Weber, J.; Morris, J. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–60. [Google Scholar] [CrossRef]
- Lin, J.; Zhan, Y.; Zhu, Z. Adsorption characteristics of copper (II) ions from aqueous solution onto humic acid immobilized surfactant-modified zeolite. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 9–16. [Google Scholar] [CrossRef]
- Ji, F.; Li, C.; Tang, B.; Xu, J.; Lu, G.; Liu, P. Preparationof cellulose acetate/zeolite composite fiber and its adsorption behavior for heavymetal ions in aqueous solution. Chem. Eng. J. 2012, 209, 325–333. [Google Scholar] [CrossRef]
- Annadurai, G.; Krishnan, M. Batch equilibrium adsorption of reactive dye on to natural biopolymer. Iran. Polym. J. 1997, 16, 169–172. [Google Scholar]
- Freundlich, H. Uber die adsorption in losungen. Z. Phys. Chem. 1906, 57, 387–470. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surface of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1368. [Google Scholar] [CrossRef] [Green Version]
- Vimonses, V.; Lei, S.; Jin, B.; Chow, C.W.K.; Saint, C. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chem. Eng. J. 2009, 148, 354–364. [Google Scholar] [CrossRef]
- Hameed, B.H. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. J. Hazard. Mater. 2008, 154, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Agboola, O.D.; Benson, N.U. Physisorption and chemisorption mechanisms influencing micro (nano) plastics-organic chemical contaminants interactions: A review. Front. Environ. Sci. 2021, 9, 167. [Google Scholar] [CrossRef]
- Umpleby II, R.J.; Baxter, S.C.; Bode, M.; Berch, J.K., Jr.; Shah, R.N.; Shimizu, K.D. Application of the Freundlich adsorption isotherm in the characterization of molecularly imprinted polymers. Anal. Chim. Acta 2001, 435, 35–42. [Google Scholar] [CrossRef]
- Ezzeddine, Z.; Abdallah, L.; Hamad, H. Heavy Metals Adsorption on Cyanex-272 Modified Activated Carbon: Efficacy and Selectivity. Univers. J. CarbonRes. 2023, 1, 22–37. [Google Scholar]
- Zhu, S.; Khan, M.A.; Kameda, T.; Xu, H.; Wang, F.; Xia, M.; Yoshioka, T. New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide based material. J. Hazard. Mater. 2022, 426, 128062. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, Y.; Khan, M.A.; Xu, H.; Wang, F.; Xia, M. In-depth study of heavy metal removal by an etidronic acid-functionalized layered double hydroxide. ACS Appl. Mater. Interfaces 2022, 14, 7450–7463. [Google Scholar] [CrossRef]
Sample | SBET a (m2 g−1) | Pore Size b (nm) | Mesopore Volume c (cm3 g−1) | Micropore Volume (cm3 g−1) |
---|---|---|---|---|
SBA-16 | 954.8 | 4.43 | 0.485 | 0.122 |
SBA-16-NH2 | 567.8 | 4.14 | 0.223 | 0 |
SBA-16-EDTA | 330.5 | 3.98 | 0.189 | 0 |
SBA-15 | 860.3 | 6.81 | 0.782 | 0.104 |
SBA-15-NH2 | 422.2 | 6.01 | 0.587 | 0 |
SBA-15-EDTA | 229.03 | 4.76 | 0.336 | 0 |
qe exp (mg g−1) | First-Order Kinetic Model | Second-Order Kinetic Model | |||||
---|---|---|---|---|---|---|---|
k1 (min−1) | qecal (mg g−1) | R2 | qecal (mg g−1) | k2 (g mg min−1) | R2 | ||
SBA-16-EDTA | 29.9 | 0.031 | 5.7 | 0.826 | 30.3 | 0.014 | 0.999 |
SBA-15-EDTA | 24 | 0.102 | 15.83 | 0.992 | 24.7 | 0.008 | 0.998 |
kid1 (mg g−1min−1/2) | C1 (mg g−1) | R2 | kid2 (mg g−1min−1/2) | C2 (mg g−1) | R2 | |
---|---|---|---|---|---|---|
SBA-16-EDTA | 3.5 | 12.2 | 0.981 | 0.114 | 28.4 | 0.991 |
SBA-15-EDTA | 4.8 | - | 0.994 | 0.196 | 21.5 | 0.925 |
Langmuir Model | Freundlich Model | ||||||
---|---|---|---|---|---|---|---|
qexpmax (mg g−1) | KL (L mg−1) | R2 | n | Kf (mg g−1) | R2 | ||
SBA-16 | 184.1 | 0.1 | 0.964 | 3.32 | 25.12 | 0.974 | |
SBA-15 | 107 | 0.03 | 0.682 | 1.28 | 4 | 0.985 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezzeddine, Z.; Batonneau-Gener, I.; Pouilloux, Y. Zinc Removal from Water via EDTA-Modified Mesoporous SBA-16 and SBA-15. Toxics 2023, 11, 205. https://doi.org/10.3390/toxics11030205
Ezzeddine Z, Batonneau-Gener I, Pouilloux Y. Zinc Removal from Water via EDTA-Modified Mesoporous SBA-16 and SBA-15. Toxics. 2023; 11(3):205. https://doi.org/10.3390/toxics11030205
Chicago/Turabian StyleEzzeddine, Zeinab, Isabelle Batonneau-Gener, and Yannick Pouilloux. 2023. "Zinc Removal from Water via EDTA-Modified Mesoporous SBA-16 and SBA-15" Toxics 11, no. 3: 205. https://doi.org/10.3390/toxics11030205