Effect of Arsenic on Fluoride Tolerance in Microbacterium paraoxydans Strain IR-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain
2.2. Estimation of Fluoride Content in Soil
2.3. Dose–Response Relationship Evaluation
2.4. Determination of pH
3. Results
3.1. Dose–Response Relationship
3.2. Determination of Inhibitory Concentrations
3.3. Estimation of Toxicity Units of Toxicants
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maity, J.P.; Vithanage, M.; Kumar, M.; Ghosh, A.; Mohan, D.; Ahmad, A.; Bhattacharya, P. Seven 21st Century Challenges of Arsenic-Fluoride Contamination and Remediation. Groundw. Sustain. Dev. 2021, 12, 100538. [Google Scholar] [CrossRef]
- Mondal, P.; Chattopadhyay, A. Environmental Exposure of Arsenic and Fluoride and Their Combined Toxicity: A Recent Update. J. Appl. Toxicol. 2020, 40, 552–566. [Google Scholar] [CrossRef]
- Alarcón-Herrera, M.T.; Martin-Alarcon, D.A.; Gutiérrez, M.; Reynoso-Cuevas, L.; Martín-Domínguez, A.; Olmos-Márquez, M.A.; Bundschuh, J. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Sci. Total Environ. 2020, 698, 134168. [Google Scholar] [CrossRef]
- Li, Y.; Bi, Y.; Mi, W.; Xie, S.; Ji, L. Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk. J. Hazard. Mater. 2021, 406, 124337. [Google Scholar] [CrossRef]
- Chouhan, S.; Flora, S. Arsenic and fluoride: Two major ground water pollutants. Indian J. Exp. Biol. 2010, 48, 666–678. [Google Scholar]
- Kumar, M.; Goswami, R.; Patel, A.K.; Srivastava, M.; Das, N. Scenario, perspectives and mechanism of arsenic and fluoride Co-occurrence in the groundwater: A review. Chemosphere 2020, 249, 126126. [Google Scholar] [CrossRef]
- Wen, D.; Zhang, F.; Zhang, E.; Wang, C.; Han, S.; Zheng, Y. Arsenic, fluoride and iodine in groundwater of China. J. Geochem. Explor. 2013, 135, 1–21. [Google Scholar] [CrossRef]
- Jha, P.K.; Tripathi, P. Arsenic and fluoride contamination in groundwater: A review of global scenarios with special reference to India. Groundw. Sustain. Dev. 2021, 13, 100576. [Google Scholar] [CrossRef]
- Armienta, M.A.; Segovia, N. Arsenic and fluoride in the groundwater of Mexico. Environ. Geochem. Health 2008, 30, 345–353. [Google Scholar] [CrossRef]
- Alarcón-Herrera, M.T.; Bundschuh, J.; Nath, B.; Nicolli, H.B.; Gutierrez, M.; Reyes-Gomez, V.M.; Nuñez, D.; Martín-Dominguez, I.R.; Sracek, O. Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: Genesis, mobility and remediation. J. Hazard. Mater. 2013, 262, 960–969. [Google Scholar] [CrossRef]
- Farooqi, A.; Masuda, H.; Firdous, N. Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environ. Pollut. 2007, 145, 839–849. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Y.; Xing, L.; Jia, Y. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia. Appl. Geochem. 2012, 27, 2187–2196. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, K.; Ko, K.-S.; Kim, Y.; Lee, K.-S. Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments. Chemosphere 2012, 87, 851–856. [Google Scholar] [CrossRef]
- Ahmad, S.; Singh, R.; Arfin, T.; Neeti, K. Fluoride contamination, consequences and removal techniques in water: A review. Environ. Sci. Adv. 2022, 1, 620–661. [Google Scholar] [CrossRef]
- Barbier, O.; Arreola-Mendoza, L.; Del Razo, L.M. Molecular mechanisms of fluoride toxicity. Chem. Biol. Interact. 2010, 188, 319–333. [Google Scholar] [CrossRef]
- Cao, J.; Bai, X.; Zhao, Y.; Liu, J.; Zhou, D.; Fang, S.; Jia, M.; Wu, J. The relationship of fluorosis and brick tea drinking in Chinese Tibetans. Environ. Health Perspect. 1996, 104, 1340–1343. [Google Scholar] [CrossRef]
- Grandjean, P. Developmental fluoride neurotoxicity: An updated review. Environ. Health 2019, 18, 110. [Google Scholar] [CrossRef]
- Ibarluzea, J.; Gallastegi, M.; Santa-Marina, L.; Jiménez Zabala, A.; Arranz, E.; Molinuevo, A.; Lopez-Espinosa, M.-J.; Ballester, F.; Villanueva, C.M.; Riano, I.; et al. Prenatal exposure to fluoride and neuropsychological development in early childhood: 1-to 4 years old children. Environ. Res. 2022, 207, 112181. [Google Scholar] [CrossRef]
- Veneri, F.; Vinceti, M.; Generali, L.; Giannone, M.E.; Mazzoleni, E.; Birnbaum, L.S.; Consolo, U.; Filippini, T. Fluoride exposure and cognitive neurodevelopment: Systematic review and dose-response meta-analysis. Environ. Res. 2023, 221, 115239. [Google Scholar] [CrossRef]
- Medda, N.; Patra, R.; Ghosh, T.K.; Maiti, S. Neurotoxic Mechanism of Arsenic: Synergistic Effect of Mitochondrial Instability, Oxidative Stress, and Hormonal-Neurotransmitter Impairment. Biol. Trace Elem. Res. 2020, 198, 8–15. [Google Scholar] [CrossRef]
- Rai, A.; Tripathi, P.; Dwivedi, S.; Dubey, S.; Shri, M.; Kumar, S.; Tripathi, P.K.; Dave, R.; Kumar, A.; Singh, R.; et al. Arsenic Tolerances in Rice (Oryza sativa) Have a Predominant Role in Transcriptional Regulation of a Set of Genes Including Sulphur Assimilation Pathway and Antioxidant System. Chemosphere 2011, 82, 986–995. [Google Scholar] [CrossRef] [PubMed]
- González-Alfonso, W.L.; Pavel, P.; Karina, H.-M.; Del Razo, L.M.; Sanchez-Peña, L.C.; Zepeda, A.; Gonsebatt, M.E. Chronic exposure to inorganic arsenic and fluoride induces redox imbalance, inhibits the transsulfuration pathway, and alters glutamate receptor expression in the brain, resulting in memory impairment in adult male mouse offspring. Arch. Toxicol. 2023, 97, 2371–2383. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Yan, X.; Chen, X.; Liu, P.; Sun, Z.; Niu, R. Identifying Serum Metabolites and Gut Bacterial Species Associated with Nephrotoxicity Caused by Arsenic and Fluoride Exposure. Biol. Trace Elem. Res. 2023, 201, 4870–4881. [Google Scholar] [CrossRef] [PubMed]
- Zecchin, S.; Crognale, S.; Zaccheo, P.; Fazi, S.; Amalfitano, S.; Casentini, B.; Callegari, M.; Zanchi, R.; Sacchi, G.A.; Rossetti, S.; et al. Adaptation of Microbial Communities to Environmental Arsenic and Selection of Arsenite-Oxidizing Bacteria from Contaminated Groundwaters. Front. Microbiol. 2021, 12, 634025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, X.; Li, C.; Luo, X.; Wang, Y. Fluoride contributes to the shaping of microbial community in high fluoride groundwater in Qiji County, Yuncheng City, China. Sci. Rep. 2019, 9, 14488. [Google Scholar] [CrossRef]
- Da’ana, D.; Zouari, N.; Ashfaq, M.; Abu-Dieyeh, M.; Khraisheh, M.; Hijji, Y.; Al-Ghouti, M. Removal of Toxic Elements and Microbial Contaminants from Groundwater Using Low-Cost Treatment Options. Curr. Pollut. Rep. 2021, 7, 300–324. [Google Scholar] [CrossRef]
- Chellaiah, E.R.; Ravi, P.; Uthandakalaipandian, R. High fluoride resistance and virulence profile of environmental Pseudomonas isolated from water sources. Folia Microbiol. 2021, 66, 569–578. [Google Scholar] [CrossRef]
- Chellaiah, E.R.; Ravi, P.; Uthandakalaipandian, R. Isolation and identification of high fluoride resistant bacteria from water samples of Dindigul district, Tamil Nadu, South India. Curr. Res. Microb. Sci. 2021, 2, 100038. [Google Scholar] [CrossRef]
- Tang, X.; Yu, P.; Tang, L.; Zhou, M.; Fan, C.; Lu, Y.; Mathieu, J.; Xiong, W.; Alvarez, P. Bacteriophages from Arsenic-Resistant Bacteria-Transduced Resistance Genes, which Changed Arsenic Speciation and Increased Soil Toxicity. Environ. Sci. Technol. Lett. 2019, 6, 675–680. [Google Scholar] [CrossRef]
- Corsini, P.M.; Walker, K.T.; Santini, J.M. Expression of the arsenite oxidation regulatory operon in Rhizobium sp. str. NT-26 is under the control of two promoters that respond to different environmental cues. Microbiologyopen 2017, 7, e00567. [Google Scholar] [CrossRef]
- Mazumder, P.; Sharma, S.K.; Taki, K.; Kalamdhad, A.S.; Kumar, M. Microbes involved in arsenic mobilization and respiration: A review on isolation, identification, isolates and implications. Environ. Geochem. Health 2020, 42, 3443–3469. [Google Scholar] [CrossRef] [PubMed]
- Suciu, I.; Pamies, D.; Peruzzo, R.; Wirtz, P.H.; Smirnova, L.; Pallocca, G.; Hauck, C.; Cronin, M.T.D.; Hengstler, J.G.; Brunner, T.; et al. G × E Interactions as a Basis for Toxicological Uncertainty. Arch. Toxicol. 2023, 97, 2035–2049. [Google Scholar] [CrossRef] [PubMed]
- Bitton, G.; Koopman, B. Bacterial and enzymatic bioassays for toxicity testing in the environment. Rev. Environ. Contam. Toxicol. 1992, 125, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Fulladosa, E.; Murat, J.C.; Martínez, M.; Villaescusa, I. Effect of pH on arsenate and arsenite toxicity to luminescent bacteria (Vibrio fischeri). Arch. Environ. Contam. Toxicol. 2004, 46, 176–182. [Google Scholar] [CrossRef]
- Kong, I.C.; Bitton, G.; Koopman, B.; Jung, K.H. Heavy metal toxicity testing in environmental samples. Rev. Environ. Contam. Toxicol. 1995, 142, 119–147. [Google Scholar] [CrossRef] [PubMed]
- Strotmann, U.J.; Eglsäer, H.; Pagga, U. Development and evaluation of a growth inhibition test with sewage bacteria for assessing bacterial toxicity of chemical compounds. Chemosphere 1994, 28, 755–766. [Google Scholar] [CrossRef]
- Strotmann, U.J.; Pagga, U. A growth inhibition test with sewage bacteria—Results of an international ring test 1995. Chemosphere 1996, 32, 921–933. [Google Scholar] [CrossRef]
- Zhou, X.; Sang, W.; Liu, S.; Zhang, Y.; Ge, H. Modeling and prediction for the acute toxicity of pesticide mixtures to the freshwater luminescent bacterium Vibrio qinghaiensis sp.-Q67. J. Environ. Sci. 2010, 22, 433–440. [Google Scholar] [CrossRef]
- Bailer, A.J.; Oris, J.T. Estimating inhibition concentrations for different response scales using generalized linear models. Environ. Toxicol. Chem. 1997, 16, 1554–1559. [Google Scholar] [CrossRef]
- Beckon, W.N.; Parkins, C.; Maximovich, A.; Beckon, A.V. A General Approach to Modeling Biphasic Relationships. Environ. Sci. Technol. 2008, 42, 1308–1314. [Google Scholar] [CrossRef]
- Van der Vliet, L.; Ritz, C. Statistics for analyzing ecotoxicity test data. In Encyclopedia of Aquatic Ecotoxicology; Férard, J.-F., Blaise, C., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 1081–1096. ISBN 978-94-007-5704-2. [Google Scholar]
- Barata, C.; Baird, D.J.; Nogueira, A.J.A.; Soares, A.M.V.M.; Riva, M.C. Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquat. Toxicol. 2006, 78, 1–14. [Google Scholar] [CrossRef]
- Bliss, C.I. The Toxicity of Poisons Applied Jointly. Ann. Appl. Biol. 2008, 26, 585–615. [Google Scholar] [CrossRef]
- Loewe, S.; Muischnek, H. Über Kombinationswirkungen. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 1926, 114, 313–326. [Google Scholar] [CrossRef]
- Altenburger, R.; Backhaus, T.; Boedeker, W.; Faust, M.; Scholze, M.; Grimme, L.H. Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: Mixtures composed of similarly acting chemicals. Environ. Toxicol. Chem. 2000, 19, 2341–2347. [Google Scholar] [CrossRef]
- Backhaus, T.; Faust, M. Predictive Environmental Risk Assessment of Chemical Mixtures: A Conceptual Framework. Environ. Sci. Technol. 2012, 46, 2564–2573. [Google Scholar] [CrossRef] [PubMed]
- Ginebreda, A.; Kuzmanovic, M.; Guasch, H.; de Alda, M.L.; López-Doval, J.C.; Muñoz, I.; Ricart, M.; Romaní, A.M.; Sabater, S.; Barceló, D. Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: Compound prioritization, mixture characterization and relationships with biological descriptors. Sci. Total Environ. 2014, 468–469, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Shao, Z. Isolation and diversity analysis of arsenite-resistant bacteria in communities enriched from deep-sea sediments of the Southwest Indian Ocean Ridge. Extremophiles 2009, 13, 39–48. [Google Scholar] [CrossRef]
- Mukherjee, S.; Yadav, V.; Mondal, M.; Banerjee, S.; Halder, G. Characterization of a fluoride-resistant bacterium Acinetobacter sp. RH5 towards assessment of its water defluoridation capability. Appl. Water Sci. 2017, 7, 1923–1930. [Google Scholar] [CrossRef]
- Kaushik, P.; Rawat, N.; Mathur, M.; Raghuvanshi, P.; Bhatnagar, P.; Swarnkar, H.; Flora, S. Arsenic Hyper-tolerance in Four Microbacterium Species Isolated from Soil Contaminated with Textile Effluent. Toxicol. Int. 2012, 19, 188–194. [Google Scholar] [CrossRef]
- Aniszewski, E.; Peixoto, R.S.; Mota, F.F.; Leite, S.G.F.; Rosado, A.S. Bioemulsifier production by Microbacterium sp. strains isolated from mangrove and their application to remove cadmiun and zinc from hazardous industrial residue. Braz. J. Microbiol. 2010, 41, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Heidari, P.; Sanaeizade, S. Optimization and Characterization of Lead Bioremediation by Strains of Microbacterium oxydans. Soil Sediment Contam. Int. J. 2020, 29, 901–913. [Google Scholar] [CrossRef]
- Henson, M.W.; Santo Domingo, J.W.; Kourtev, P.S.; Jensen, R.V.; Dunn, J.A.; Learman, D.R. Metabolic and genomic analysis elucidates strain-level variation in Microbacterium spp. isolated from chromate contaminated sediment. PeerJ 2015, 3, e1395. [Google Scholar] [CrossRef]
- Learman, D.R.; Ahmad, Z.; Brookshier, A.; Henson, M.W.; Hewitt, V.; Lis, A.; Morrison, C.; Robinson, A.; Todaro, E.; Wologo, E.; et al. Comparative genomics of 16 Microbacterium spp. that tolerate multiple heavy metals and antibiotics. PeerJ 2019, 6, e6258. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Liu, H.; Liu, A. Biodegradation of dicofol by Microbacterium sp. D-2 isolated from pesticide-contaminated agricultural soil. Appl. Biol. Chem. 2019, 62, 72. [Google Scholar] [CrossRef]
- Nowicka, D.; Ginter-Kramarczyk, D.; Holderna-Odachowska, A.; Budnik, I.; Kaczorek, E.; Lukaszewski, Z. Biodegradation of oxyethylated fatty alcohols by bacteria Microbacterium strain E19. Ecotoxicol. Environ. Saf. 2013, 91, 32–38. [Google Scholar] [CrossRef]
- Chouhan, S.; Tuteja, U.; Flora, S.J.S. Isolation, identification and characterization of fluoride resistant bacteria: Possible role in bioremediation. Prikl. Biokhim. Mikrobiol. 2012, 48, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Singh, U.; Pandey, C.M.; Mishra, P.; Pandey, G. Application of Student’s t-test, Analysis of Variance, and Covariance. Ann. Card. Anaesth. 2019, 22, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Ince, N.H.; Dirilgen, N.; Apikyan, I.G.; Tezcanli, G.; Ustun, B. Assessment of toxic interactions of heavy metals in binary mixtures: A statistical approach. Arch. Environ. Contam. Toxicol. 1999, 36, 365–372. [Google Scholar] [CrossRef]
- Buck, R.P.; Rondinini, S.; Covington, A.K.; Baucke, F.G.K.; Brett, C.M.A.; Camões, M.F.; Milton, M.J.T.; Mussini, T.; Naumann, R.; Pratt, K.W.; et al. IUPAC Recommendations 2002. Pure Appl. Chem. 2002, 74, 2169–2200. [Google Scholar] [CrossRef]
- Naumann, R.; Alexander-Weber, C.; Eberhardt, R.; Giera, J.; Spitzer, P. Traceability of pH measurements by glass electrode cells: Performance characteristic of pH electrodes by multi-point calibration. Anal. Bioanal. Chem. 2002, 374, 778–786. [Google Scholar] [CrossRef]
- Marquis, R.E.; Clock, S.A.; Mota-Meira, M. Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol. Rev. 2003, 26, 493–510. [Google Scholar] [CrossRef]
- Ji, C.; Stockbridge, R.B.; Miller, C. Bacterial fluoride resistance, Fluc channels, and the weak acid accumulation effect. J. Gen. Physiol. 2014, 144, 257–261. [Google Scholar] [CrossRef]
- Ochoa-Herrera, V.; Banihani, Q.; León, G.; Khatri, C.; Field, J.A.; Sierra-Alvarez, R. Toxicity of fluoride to microorganisms in biological wastewater treatment systems. Water Res. 2009, 43, 3177–3186. [Google Scholar] [CrossRef]
- Li, C.; Qi, C.; Yang, S.; Li, Z.; Ren, B.; Li, J.; Zhou, X.; Cai, H.; Xu, X.; Peng, X. F0F1-ATPase Contributes to the Fluoride Tolerance and Cariogenicity of Streptococcus mutans. Front. Microbiol. 2022, 12, 777504. [Google Scholar] [CrossRef]
- Baker, J.L.; Sudarsan, N.; Weinberg, Z.; Roth, A.; Stockbridge, R.B.; Breaker, R.R. Widespread Genetic Switches and Toxicity Resistance Proteins for Fluoride. Science 2012, 335, 233–235. [Google Scholar] [CrossRef]
- Mittal, M.; Flora, S.J.S. Vitamin E supplementation protects oxidative stress during arsenic and fluoride antagonism in male mice. Drug Chem. Toxicol. 2007, 30, 263–281. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Xu, Y.; Yu, X.; Yang, J.; Hong, F.; Zhang, A. The combined effects of fluorine and arsenic on renal function in a Chinese population. Toxicol. Res. 2014, 3, 359–366. [Google Scholar] [CrossRef]
- Mondal, P.; Shaw, P.; Dey Bhowmik, A.; Bandyopadhyay, A.; Sudarshan, M.; Chakraborty, A.; Chattopadhyay, A. Combined effect of arsenic and fluoride at environmentally relevant concentrations in zebrafish (Danio rerio) brain: Alterations in stress marker and apoptotic gene expression. Chemosphere 2021, 269, 128678. [Google Scholar] [CrossRef] [PubMed]
- Flora, S.J.S.; Mittal, M.; Pachauri, V.; Dwivedi, N. A possible mechanism for combined arsenic and fluoride induced cellular and DNA damage in mice. Metallomics 2012, 4, 78–90. [Google Scholar] [CrossRef] [PubMed]
Groups | Toxicants | Doses of Toxicants Added in Nutrient Broth |
---|---|---|
Control | No toxicant | Bacterium grown without any toxicant |
Group I | Sodium arsenite (NaAsO2) (Himedia) | 0–9 g/L |
Group II | Sodium fluoride (NaF) (Himedia) | 0–9 g/L |
Group III Combination group | Combination (F + As):
| 0–11 g/L 2.5 g/L (Constant) |
Groups | Toxicant | MIC (g/L) | IC50 (g/L) | CV (%) | TU |
---|---|---|---|---|---|
Control | No toxicant | - | - | - | - |
Group I | As (0–9 g/L) | 9 | 4.83 ± 0.025 | 0.88 | 1.86 ± 0.01 |
Group II | F (0–9 g/L) | 9 | 5.91 ± 0.01 | 0.33 | 1.52 ± 0.003 |
Group III | As (2.5 g/L) + F (0–11 g/L) | 11 | 6.32 ± 0.028 | 0.77 | 1.42 ± 0.006 |
TUexp | TUobs | TUdiff | S.E.diff | t-Value | Table Value at df = 6 | Inference p < 0.001 |
---|---|---|---|---|---|---|
21.60 ± 0.12 | 20.32 ± 0.09 | 1.47 | 0.15 | 8.71 | 5.96 | Antagonistic |
Toxicant | Doses of NaF (g/L) Supplemented in Nutrient Broth | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
pH (without IR-1) | NaF | 7.41 ± 0.20 b | 7.46 ± 0.24 | 7.44 ± 0.13 b | 7.49 ± 0.2 | 7.64 ± 0.15 b | 7.65 ± 0.14 | 7.63 ± 0.12 | 7.97 ± 0.21 | 7.78 ± 0.05 b | 7.88 ± 0.08 | 7.85 ± 0.12 |
NaF + As | 8.39 ± 0.23 | 8.38 ± 0.09 | 8.37 ± 0.02 b | 8.53 ± 0.18 | 8.67 ± 0.13 b | 8.70 ± 0.26 | 8.88 ± 0.02 a | 8.85 ± 0.121 | 8.96 ± 0.07 b | 8.93 ± 0.23 | 8.90 ± 0.02 a | |
pH (with IR-1) | NaF | 7.87 ± 0.07 a,b | 7.79 ± 0.12 a | 7.85 ± 0.15 a,b | 7.85 ± 0.28 a | 7.93 ± 0.08 a,b | 7.92 ± 0.17 a | 7.91 ± 0.13 a | 7.82 ± 0.16 a | 7.91 ± 0.04 a,b | 7.87 ± 0.02 a | 7.92 ± 0.11 a |
NaF + As | 8.45 ± 0.17 a | 8.70 ± 0.24 a | 8.48 ± 0.06 a,b | 8.8 ± 0.09 a | 9.04 ± 0.12 a,b | 9.14 ± 0.12 a | 9.15 ± 0.07 a | 9.04 ± 0.14 a | 9.31 ± 0.18 a,b | 9.27 ± 0.17 a | 9.17 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathur, M.; Rawat, N.; Saxena, T.; Khandelwal, R.; Jain, N.; Sharma, M.K.; Mohan, M.K.; Bhatnagar, P.; Flora, S.J.S.; Kaushik, P. Effect of Arsenic on Fluoride Tolerance in Microbacterium paraoxydans Strain IR-1. Toxics 2023, 11, 945. https://doi.org/10.3390/toxics11110945
Mathur M, Rawat N, Saxena T, Khandelwal R, Jain N, Sharma MK, Mohan MK, Bhatnagar P, Flora SJS, Kaushik P. Effect of Arsenic on Fluoride Tolerance in Microbacterium paraoxydans Strain IR-1. Toxics. 2023; 11(11):945. https://doi.org/10.3390/toxics11110945
Chicago/Turabian StyleMathur, Megha, Neha Rawat, Tanushree Saxena, Renu Khandelwal, Neha Jain, Mukesh K. Sharma, Medicherla K. Mohan, Pradeep Bhatnagar, Swaran J. S. Flora, and Pallavi Kaushik. 2023. "Effect of Arsenic on Fluoride Tolerance in Microbacterium paraoxydans Strain IR-1" Toxics 11, no. 11: 945. https://doi.org/10.3390/toxics11110945
APA StyleMathur, M., Rawat, N., Saxena, T., Khandelwal, R., Jain, N., Sharma, M. K., Mohan, M. K., Bhatnagar, P., Flora, S. J. S., & Kaushik, P. (2023). Effect of Arsenic on Fluoride Tolerance in Microbacterium paraoxydans Strain IR-1. Toxics, 11(11), 945. https://doi.org/10.3390/toxics11110945