Effective Use of Sugarcane-Bagasse-Derived KOH-Activated Biochar for Remediating Norfloxacin-Contaminated Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. One-Step Synthesis of KOH-Modified Biochar
2.2. Batch Adsorption Experiments
2.3. Characterization of Biochars
2.4. Theory of Sorption
2.4.1. Sorption Isotherms
2.4.2. Adsorption Kinetics
3. Results and Discussion
3.1. Characterization
3.1.1. SEM
3.1.2. BET
3.1.3. XRD, Rama and FTIR
3.2. Adsorption Studies
3.2.1. Adsorption of NOR Using Various Materials
3.2.2. Effect of Contact Time
3.2.3. Effect of Adsorbent Dosage
3.2.4. Effect of pH
3.2.5. Effect of the Initial Concentration and Temperature
3.3. Adsorption Kinetic Studies
3.3.1. Adsorption Isotherms
3.3.2. Adsorption Kinetics
3.4. Thermodynamic Study
3.5. Adsorption Mechanism
- Compared with the unmodified biochar B750, KOH treatment promoted NOR adsorption by 3K-SCB750 with the largest specific surface area and large pore volume, implying that Qe of NOR may be related to the surface area and pore volume of the KOH-modified biochar material. Thus, it is speculated that NOR uptake primarily occurred via the pore-filling mechanism.
- In light of the above kinetic analysis, it is apparent that the adsorption of NOR by 3K-SCB750 was in alignment with both pseudo-second-order and intraparticle diffusion kinetic models, suggesting that both chemisorption and diffusion were the rate-controlling steps during the whole adsorption process. For the chemisorption mechanism, the adsorption of NOR occurred mainly by the electrostatic interactions between the positively and the negatively charged surfaces.
- According to the XRD and Raman results, 3K-SCB750 was found to have a graphite structure, which could act as both electron donors and acceptors [42]. Furthermore, FTIR analysis revealed that hydrogen bonds and π−π electron coupling may also play an important role in the adsorption process.
3.6. Regeneration of Biochar
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme. Environmental Dimensions of Antimicrobial Resistance: Summary for Policymakers; UNEP: Nairobi, Kenya, 2022; Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/38373/antimicrobial_R.pdf (accessed on 13 October 2022).
- Weon, J.C.; Sang, J.C. Polyacrylamide Functionalized Graphene Oxide/Alginate Beads for Removing Ciprofloxacin Antibiotics. Toxics 2022, 10, 77. [Google Scholar]
- He, Y.; Yuan, Q.B.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.N.; Alvarez, P.J.J. Antibiotic resistance genes from livestock waste: Occurrence, dissemination, and treatment. NPJ Clean Water 2020, 3, 4. [Google Scholar] [CrossRef]
- Zhou, S.L.; Zhou, S.L.; Zhang, S.; Liu, F.; Liu, J.J.; Xue, J.J.; Yang, D.J.; Chang, C.T. ZnO nanoflowers photocatalysis of norfloxacin: Effect of triangular silver nanoplates and water matrix on degradation rates. J. Photochem. Photobiol. A Chem. 2016, 328, 97–104. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Buschmann, A.H.; Dölz, H.J. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect. Dis. 2016, 16, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Özcan, A.; Özcan, A.A.; Demirci, Y. Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chem. Eng. J. 2016, 304, 518–526. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, Y.S.; Li, F.Y.; Yang, D.Y. Preparation of biochar by simultaneous carbonization, magnetization and activation for norfloxacin removal in water. Bioresour. Technol. 2017, 233, 159–165. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Xiang, Y.; Wang, P.; Zhang, J.; Zhang, F.; Wei, J.; Luo, L.; Lei, M.; Tang, L. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling. Bioresour. Technol. 2017, 245, 266–273. [Google Scholar] [CrossRef]
- Luo, J.; Li, X.; Ge, C.; Müller, K.; Yu, H.; Huang, P.; Li, J.; Tsang, D.C.; Bolan, N.S.; Rinklebe, J.; et al. Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems. Bioresour. Technol. 2018, 263, 385–392. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Nguyen, T.B.; Dat, N.D.; Huu, B.T.; Nguyen, X.C.; Tran, T.; Bui, M.H.; Dong, C.D.; Bui, X.T. Adsorption of norfloxacin from aqueous solution on biochar derived from spent coffee ground: Master variables and response surface method optimized adsorption process. Chemosphere 2022, 288, 132577. [Google Scholar] [CrossRef]
- Zhao, H.; Lang, Y. Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar. J. Taiwan Inst. Chem. Eng. 2018, 88, 152–160. [Google Scholar] [CrossRef]
- Wei, Z.; Yan, L.G.; Wang, Q.D.; Li, X.G.; Guo, Y.X.; Song, W.; Li, Y.F. Ball milling boosted the activation of peroxymonosulfate by biochar for tetracycline removal. J. Environ. Chem. Eng. 2021, 9, 106870. [Google Scholar]
- Nahieh, T.M.; Ingrid, L.M.; Rubens, M.F.; Maria, R.W.M. Sugarcane bagasse pyrolysis: A review of operating conditions and products properties. Renew. Sustain. Energy Rev. 2021, 149, 111394. [Google Scholar]
- Zhou, Y.; Shi, J.J.; Qian, G.J.; Hu, J.P.; Chen, Z.L. Removal of amoxicillin from aqueous solution using Chineses sugarcane bagasse biochar. J. Saf. Environ. 2023, 23, 268–277. [Google Scholar]
- Zhou, Y.; Li, J.; Hu, S.L.; Qian, G.J.; Shi, J.J.; Zhao, S.Y.; Wang, Y.L.; Wang, C.; Lian, J.B. Sawdust-Derived Activated Carbon with Hierarchical Pores for High-Performance Symmetric Supercapacitors. Nanomaterials 2022, 12, 810. [Google Scholar] [CrossRef] [PubMed]
- Hui, T.S.; Zaini, M.A.A. Potassium hydroxide activation of activated carbon: A commentary. Carbon Lett. 2015, 16, 275–280. [Google Scholar] [CrossRef]
- Qu, J.; Wang, Y.; Tian, X.; Jiang, Z.; Deng, F.; Tao, Y.; Jiang, Q.; Wang, L.; Zhang, Y. KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. J. Hazard. Mater. 2021, 401, 123292. [Google Scholar] [CrossRef]
- Reis, G.S.D.; Cazacliu, B.G.; Correa, C.R.; Ovsyannikova, E.; Kruse, A.; Sampaio, C.H.; Lima, E.C.; Dotto, G.L. Adsorption and recovery of phosphate from aqueous solution by the construction and demolition wastes sludge and its potential use as phosphate-based fertiliser. J. Environ. Chem. Eng. 2020, 8, 103605. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, X.Y.; Lin, H.F.; Chen, Z.L. Synthesis, characterization and potential application of organobentonite in removing 2, 4-DCP from industrial wastewater. Chem. Eng. J. 2011, 166, 176–183. [Google Scholar] [CrossRef]
- Cheng, H.; Bian, Y.R.; Wang, F.; Jiang, X.; Ji, R.T.; Gu, C.G.; Yang, X.L.; Song, Y. Green conversion of crop residues into porous carbons and their application to efficiently remove polycyclic aromatic hydrocarbons from water: Sorption kinetics, isotherms and mechanism. Bioresour. Technol. 2019, 284, 1–8. [Google Scholar] [CrossRef]
- Zha, S.X.; Zhou, Y.; Jin, X.Y.; Chen, Z.L. The removal of amoxicillin from wastewater using organobentonite. J. Environ. Manag. 2013, 129, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.H.; Zaini, M.A.A. Microporous activated carbon prepared from yarn processing sludge via composite chemical activation for excellent adsorptive removal of malachite green. Surf. Interfaces 2021, 22, 100832. [Google Scholar] [CrossRef]
- Mao, W.; Yue, W.; Xu, Z.; Chang, S.; Hu, Q.; Pei, F.; Huang, X.; Zhang, J.; Li, D.; Liu, G.; et al. Development of a synergistic activation strategy for the pilot-scale construction of hierarchical porous graphitic carbon for energy storage applications. ACS Nano 2020, 14, 4741–4754. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Wu, Q.; Xu, H.; Shao, D.; Tan, X.; Shi, W.; Chen, C.; Li, J.; Chai, Z.; Hayat, T.; et al. New Insight into GO, Cadmium(II), Phosphate Interaction and Its Role in GO Colloidal Behavior. Environ. Sci. Technol. 2016, 50, 9361–9369. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liang, Y.; Hu, H.; Liu, S.; Cai, Y.; Dong, H.; Zheng, M.; Xiao, Y.; Liu, Y. Ultrahigh-surface-area hierarchical porous carbon from chitosan: Acetic acid mediated efficient synthesis and its application in superior supercapacitors. J. Mater. Chem. A 2017, 5, 24775–24781. [Google Scholar] [CrossRef]
- Yang, F.; Sun, L.L.; Xie, W.L.; Jiang, Q.; Gao, Y.; Zhang, W.; Zhang, Y. Nitrogen-functionalization biochars derived from wheat straws via molten salt synthesis: An efficient adsorbent for atrazine removal. Sci. Total Environ. 2017, 607–608, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.Z.; Yue, R.Y.; Sun, X.F.; Song, C.; Wang, S.G. Enhanced removal of ciprofloxacin using humic acid modified hydrogel beads. J. Colloid Interface Sci. 2019, 543, 76–83. [Google Scholar] [CrossRef]
- Xin, S.S.; Huo, S.Y.; Zhang, C.L.; Ma, X.M.; Liu, W.J.; Xin, Y.J.; Gao, M.C. Coupling nitrogen/oxygen self-doped biomass porous carbon cathode catalyst with CuFeO2/biochar particle catalyst for the heterogeneous visible-light driven photo-electro-Fenton degradation of tetracycline. Appl. Catal. B Environ. 2022, 305, 121024. [Google Scholar] [CrossRef]
- Su, F.B.; Poh, C.K.; Chen, J.S.; Xu, G.G.; Wang, D.; Lin, Q.; Lin, J.Y.; Lou, X.W. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 2011, 4, 717–724. [Google Scholar] [CrossRef]
- Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Souza, L.S.; Martins, A.C.; Silva, T.L.; Júnior, O.O.S.; Visentainer, J.V.; Almeida, V.C. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem. Eng. J. 2016, 288, 778–788. [Google Scholar] [CrossRef]
- Torrellas, S.Á.; Lovera, R.G.; Escalona, N.; Sepulveda, C.; Sotelo, J.L.; Garcia, J. Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions. Chem. Eng. J. 2015, 279, 788–798. [Google Scholar] [CrossRef]
- Qin, T.T.; Wang, Z.W.; Xie, X.Y.; Xie, C.R.; Zhu, J.M.; Li, Y. A novel biochar derived from cauliflower (Brassica oleracea L.) roots could remove norfloxacin and chlortetracycline efficiently. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2017, 76, 3307–3318. [Google Scholar] [CrossRef] [PubMed]
- Sumalinog, D.A.G.; Capareda, S.C.; Luna, M.D.G.d. Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes. J. Environ. Manag. 2018, 210, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.B.; Lu, Y.P.; Zheng, F.F.; Xue, X.X.; Li, N.; Liu, D.M. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube. Chem. Eng. J. 2011, 179, 112–118. [Google Scholar] [CrossRef]
- Martins, A.C.; Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Yamazaki, D.A.; Bandoch, G.F.; Asefa, T.; Visentainer, J.V.; Almeida, V.C. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chem. Eng. J. 2015, 260, 291–299. [Google Scholar] [CrossRef]
- Phuong, D.T.M.; Loc, N.X. Rice Straw Biochar and Magnetic Rice Straw Biochar for Safranin O Adsorption from Aqueous Solution. Water 2022, 14, 186. [Google Scholar]
- Loc, N.X.; Tuyen, P.T.T.; Mai, L.C.; Phuong, D.T.M. Chitosan-Modified Biochar and Unmodified Biochar for Methyl Orange: Adsorption Characteristics and Mechanism Exploration. Toxics 2022, 10, 500. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Deng, J.; Wu, Z.; Lei, T.; Tan, M.; Wu, Z.; Qin, X.; Li, H. Mechanism of sulfamic acid modified biochar for highly efficient removal of tetracycline. J. Anal. Appl. Pyrolysis 2021, 158, 105247. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Xu, J.; Fan, S.S.; Xu, H.C. Facile preparation of magnetic porous biochars from tea waste for the removal of tetracycline from aqueous solutions: Effect of pyrolysis temperature. Chemosphere 2021, 291, 132713. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Zhao, B.L.; Guo, Y.P.; Guo, Y.J.; Pak, T.; Li, G.T. Preparation of mesoporous batatas biochar via soft-template method for high efficiency removal of tetracycline. Sci. Total Environ. 2021, 787, 147397. [Google Scholar] [CrossRef]
- Sun, K.; Jin, J.; Keiluweit, M.; Kleber, M.; Wang, Z.Y.; Pan, Z.Z.; Xing, B.S. Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresour. Technol. 2012, 118, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Kano, N.; Mishima, K.; Okawa, H. Adsorption and Desorption Mechanisms of Rare Earth Elements (REEs) by Layered Double Hydroxide (LDH) Modified with Chelating Agents. Appl. Sci. 2019, 9, 4805. [Google Scholar] [CrossRef]
- Huang, D.; Wang, X.; Zhang, C.; Zeng, G.; Peng, Z.; Zhou, J.; Cheng, M.; Wang, R.; Hu, Z.; Qin, X. Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: Influencing factors and mechanism. Chemosphere 2017, 186, 414–421. [Google Scholar] [CrossRef]
- Xu, Q.; Zhou, Q.; Pan, M.M.; Dai, L.C. Interaction between chlortetracycline and calcium-rich biochar: Enhanced removal by adsorption coupled with flocculation. Chem. Eng. J. 2020, 382, 122705. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.W.; Xie, X.Y.; Zhu, J.M.; Li, R.N.; Qin, T.T. Removal of Norfloxacin from aqueous solution by clay-biochar composite prepared from potato stem and natural attapulgite. Colloids Surf. A Physicochem. Eng. Asp. 2017, 514, 126–136. [Google Scholar] [CrossRef]
- Zhang, T.; Yin, G.; Wang, C.; Wang, H.; Wang, M.; Guo, P.; Sun, Y.; Yang, D. Engineering mesoporous algal-based biochars for efficient remediation of norfloxacin pollution in marine environment. Environ. Adv. 2022, 9, 100302. [Google Scholar] [CrossRef]
Sample | SBET (m2·g−1) | Vtotal (cm3·g−1) | Vmicro (cm3·g−1) | Average Pore Size (nm) |
---|---|---|---|---|
B750 | 513 | 0.23 | 0.17 | 1.76 |
3K-SCB750 | 1039 | 0.50 | 0.26 | 1.94 |
Temperature (K) | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|
Qm (mg·g−1) | KL | RL2 | 1/n | KF | RF2 | |
283 | 122.60 | 0.596 | 0.9999 | 0.132 | 58.029 | 0.927 |
298 | 145.71 | 0.804 | 0.9999 | 0.133 | 69.678 | 0.921 |
313 | 157.45 | 1.103 | 0.9992 | 0.119 | 81.484 | 0.701 |
C0 (mg·L−1) | Qe (mg·g−1) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
Q1 (mg·g−1) | k1 | R12 | Q2 | k2 | R22 | ||
300 | 120.08 | 20.330 | 0.046 | 0.975 | 122.985 | 0.007 | 0.9999 |
C0 (mg·L−1) | Step1 (1–5 min) | Step2 (10–60 min) | Step3 (120–240 min) | ||||||
---|---|---|---|---|---|---|---|---|---|
C1 | Kid1 | R12 | C2 | Kid2 | R22 | C3 | Kid3 | R32 | |
300 | 80.74 | 10.78 | 0.9971 | 101.25 | 2.73 | 0.9657 | 122.21 | 10−13 | 0.9999 |
ΔH0 (kJ·mol−1) | ΔS0 (J·mol−1·K−1) | ΔG0 (kJ·mol−1) | ||
---|---|---|---|---|
10 °C | 25 °C | 40 °C | ||
15.089 | 48.883 | 1.24 | 0.50 | −0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Lan, Y.; Short, M.D.; Shi, J.; Zhang, Q.; Xu, J.; Qian, G. Effective Use of Sugarcane-Bagasse-Derived KOH-Activated Biochar for Remediating Norfloxacin-Contaminated Water. Toxics 2023, 11, 908. https://doi.org/10.3390/toxics11110908
Zhou Y, Lan Y, Short MD, Shi J, Zhang Q, Xu J, Qian G. Effective Use of Sugarcane-Bagasse-Derived KOH-Activated Biochar for Remediating Norfloxacin-Contaminated Water. Toxics. 2023; 11(11):908. https://doi.org/10.3390/toxics11110908
Chicago/Turabian StyleZhou, Yan, Yongtao Lan, Michael Douglas Short, Juanjuan Shi, Qiugui Zhang, Junhao Xu, and Gujie Qian. 2023. "Effective Use of Sugarcane-Bagasse-Derived KOH-Activated Biochar for Remediating Norfloxacin-Contaminated Water" Toxics 11, no. 11: 908. https://doi.org/10.3390/toxics11110908