Composition, Source Apportionment, and Health Risk of PM2.5-Bound Metals during Winter Haze in Yuci College Town, Shanxi, China
Abstract
:1. Introduction
2. Experiments and Methods
2.1. PM2.5 Sample Collection
2.2. Metals Analysis
2.3. PMF Model
2.4. Human Health Risk Assessment
2.5. Air Mass Backward Trajectory
2.6. Network Data Collection
3. Results and Discussion
3.1. Mass Levels of PM2.5
3.2. Concentrations of Heavy Metals in PM2.5
3.3. Source Apportionment of PM2.5-Bound Elements
3.4. Human Health Risk Assessment
3.4.1. Non-Carcinogenic Risk Assessment
3.4.2. Cancer Risk Assessment
3.5. Policy Implication
3.6. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Turner, M.C.; Krewski, D.; Diver, W.R.; Pope, C.A.; Burnett, R.T.; Jerrett, M.; Marshall, J.D.; Gapstur, S.M. Ambient air pollution and cancer mortality in the cancer prevention study II. Environ. Health Perspect. 2017, 125, 087013. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Balde, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Geneva, Switzerland, 2005.
- Soleimani, M.; Amini, N.; Sadeghian, B.; Wang, D.; Fang, L. Heavy metals and their source identification in particulate matter (PM2.5) in Isfahan City, Iran. J. Environ. Sci. 2018, 72, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Abdulaziz, M.; Alshehri, A.; Yadav, I.C.; Badri, H. Pollution level and health risk assessment of heavy metals in ambient air and surface dust from Saudi Arabia: A systematic review and meta-analysis. Air Qual. Atmos. Health 2022, 15, 799–810. [Google Scholar] [CrossRef]
- Zhang, X.; Eto, Y.; Aikawa, M. Risk assessment and management of PM2.5-bound heavy metals in the urban area of Kitakyushu, Japan. Sci. Total Environ. 2021, 795, 148748. [Google Scholar] [CrossRef]
- Li, Z.Y.; Ma, H.Q.; Fan, L.; Zhao, P.; Wang, L.; Jiang, Y.J.; An, C.X.; Liu, A.Q.; Hu, Z.S.; Jin, H. Size distribution of inorganic elements in bottom ashes from seven types of bio-fuels across Beijing-Tianjin-Hebei Region, China. Aerosol Air Qual. Res. 2017, 17, 2450–2462. [Google Scholar] [CrossRef]
- Wu, T.; Liu, P.; He, X.; Xu, H.; Shen, Z. Bioavailability of heavy metals bounded to PM2.5 in Xi’an, China: Seasonal variation and health risk assessment. Environ. Sci. Pollut. Res. 2021, 28, 35844–35853. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Jin, L.; Cui, J.; Luo, X.-S.; Li, J.; Zhang, G.; Li, X.-D. Health risk-oriented source apportionment of PM2.5-associated trace metals. Environ. Pollut. 2020, 262, 114655. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Z.; Bai, H.; Zhang, S.; Mu, L.; Peng, L. Characteristics and health risk assessments of heavy metals in PM2.5 in Taiyuan and Yuci College Town, China. Air Qual. Atmos. Health 2020, 13, 909–919. [Google Scholar] [CrossRef]
- Farahani, V.J.; Soleimanian, E.; Pirhadi, M.; Sioutas, C. Long-term trends in concentrations and sources of PM2.5-bound metals and elements in central Los Angeles. Atmos. Environ. 2021, 253, 118361. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, M.; Liu, Y.; Yan, C.; Liu, J.; Liu, J.; Cheng, Y. Exploring sources and health risks of metals in Beijing PM2.5: Insights from long-term online measurements. Sci. Total Environ. 2022, 814, 151954. [Google Scholar] [CrossRef] [PubMed]
- Sofowote, U.M.; Su, Y.; Dabek-Zlotorzynska, E.; Rastogi, A.K.; Brook, J.; Hopke, P.K. Sources and temporal variations of constrained PMF factors obtained from multiple-year receptor modeling of ambient PM2.5 data from five speciation sites in Ontario, Canada. Atmos. Environ. 2015, 108, 140–150. [Google Scholar] [CrossRef]
- Swietlik, R.; Trojanowska, M. Chemical fractionation in environmental studies of potentially toxic particulate-bound elements in urban air: A critical review. Toxics 2022, 10, 124. [Google Scholar] [CrossRef]
- MEEC (Ministry of Ecology and Environment of China). List of Toxic and Hazardous Air Pollutants (2018); Ministry of Ecology and Environment of China and National Health Commission of China: Beijing, China, 2019; (In Chinese). Available online: https://www.gov.cn/xinwen/2019-2002/2005/content_5364004.htm (accessed on 16 April 2022).
- IARC (International Agency for Research on Cancer). Agents Classified by the IARC Monographs, Volumes 1–130. 2021. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 18 April 2022).
- Dong, Y.; Zhou, H.; Fu, Y.; Li, X.; Geng, H. Wavelet periodic and compositional characteristics of atmospheric PM2.5 in a typical air pollution event at Jinzhong city, China. Atmos. Pollut. Res. 2021, 12, 245–254. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- MEEC (Ministry of Ecology and Environment of China). Determination of Atmospheric Articles PM10 and PM2.5 in Ambient Air by Gravimetric Method; China Environmental Press: Beijing, China, 2011. (In Chinese)
- NEPSC (National Environmental Protection Standards of China). Ambient Air and Stationary Sourc Emission: Determination of Metals in Ambient Particulate Matter–Inductively Coupled Plasma/Mass Spectrometry (ICP-MS); China Environmental Science Press NEPSC: Beijing, China, 2013. (In Chinese) [Google Scholar]
- US EPA. Regional Screening Levels (RSLs)-Generic Tables as of November 2021. 2021. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 16 April 2022).
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; EPA/600/R-14/108; U.S. Environmental Protection Agency: Washington, DC, USA, 2014; pp. 1–136. [Google Scholar]
- US EPA. Risk Assessment Guidance for Superfund: Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); U.S. Environmental Protection Agency, Office of Emergency and Remedial Response: Washington, DC, USA, 2009.
- Oosthuizen, M.; Wright, C.Y.; Matooane, M.; Phala, N. Human health risk assessment of airborne metals to a potentially exposed community: A screening exercise. Clean Air J. 2015, 25, 51–57. [Google Scholar] [CrossRef]
- State of Michigan, USA. Chemical Update Worksheet. Michigan Department of Environmental Quality. 2016. Available online: https://www.michigan.gov/documents/deq/deq-rrd-chem-LeadDatasheet_527864_527867.pdf (accessed on 16 April 2022).
- NOAA (National Oceanic and Atmospheric Administration). Available online: https://www.ready.noaa.gov/HYSPLIT.php (accessed on 20 July 2022).
- SSY (Shanxi Statistics Yearbook). (In Chinese). Available online: http://www.shanxi.gov.cn/sj/tjnj/ (accessed on 18 April 2022).
- MEPC (Ministry of Environmental Protection of China). Ambient Air Quality Standards (GB 3095-2012), National Standards of the People’s Republic of China; China Environmental Press: Beijing, China, 2012. (In Chinese)
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide: Executive Summary; WHO Regional Office for Europe: Copenhagen, Denmark, 2021. Available online: https://www.who.int/publications/i/item/9789240034433 (accessed on 18 April 2022).
- Liu, J.; Cao, H.; Zhang, Y.; Chen, H. Potential years of life lost due to PM2.5-bound toxic metal exposure: Spatial patterns across 60 cities in China. Sci. Total Environ. 2022, 812, 152593. [Google Scholar] [CrossRef]
- Duan, X.; Yan, Y.; Li, R.; Deng, M.; Hu, D.; Peng, L. Seasonal variations, source apportionment, and health risk assessment of trace metals in PM2.5 in the typical industrial city of Changzhi, China. Atmos. Pollut. Res. 2021, 12, 365–374. [Google Scholar] [CrossRef]
- Zhao, S.; Tian, H.; Luo, L.; Liu, H.; Wu, B.; Liu, S.; Bai, X.; Liu, W.; Liu, X.; Wu, Y.; et al. Temporal variation characteristics and source apportionment of metal elements in PM2.5 in urban Beijing during 2018-2019. Environ. Pollut. 2021, 268, 115856. [Google Scholar] [CrossRef]
- Qu, Y.; Gao, T.; Yang, C. Elemental characterization and source identification of the near-road PM2.5 using EDXRF in Chengdu, China. X-ray Spectrom. 2019, 48, 232–241. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, B.; Duan, K.; Cai, J.; Niu, W.; Dong, X. Contamination characteristics, mass concentration, and source analysis of metal elements in PM2.5 in Lanzhou, China. Elem. Sci. Anthr. 2021, 9, 00125. [Google Scholar] [CrossRef]
- Seibert, R.; Nikolova, I.; Volná, V.; Krejčí, B.; Hladký, D. Air pollution sources’ contribution to PM2.5 concentration in the northeastern part of the Czech Republic. Atmosphere 2020, 11, 522. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Z.; Zhou, J.; Che, H.; Tian, M.; Wang, H.; Shi, G.; Yang, F.; Zhang, S.; Chen, Y. PM2.5-bound heavy metals in southwestern China: Characterization, sources, and health risks. Atmosphere 2021, 12, 929. [Google Scholar] [CrossRef]
- Chen, R.; Jia, B.; Tian, Y.; Feng, Y. Source-specific health risk assessment of PM2.5-bound heavy metals based on high time-resolved measurement in a Chinese megacity: Insights into seasonal and diurnal variations. Ecotoxicol. Environ. Saf. 2021, 216, 112167. [Google Scholar] [CrossRef] [PubMed]
- Galon-Negru, A.G.; Olariu, R.I.; Arsene, C. Size-resolved measurements of PM2.5 water-soluble elements in Iasi, north-eastern Romania: Seasonality, source apportionment and potential implications for human health. Sci. Total Environ. 2019, 695, 133839. [Google Scholar] [CrossRef] [PubMed]
- Kermani, M.; Jonidi Jafari, A.; Gholami, M.; Arfaeinia, H.; Shahsavani, A.; Fanaei, F. Characterization, possible sources and health risk assessment of PM2.5-bound heavy metals in the most industrial city of Iran. J. Environ. Health Sci. Eng. 2021, 19, 151–163. [Google Scholar] [CrossRef]
- Mitra, S.; Das, R. Health risk assessment of construction workers from trace metals in PM2.5 from Kolkata, India. Arch. Environ. Occup. Health 2022, 77, 125–140. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, L.; Jiang, X.; Gao, P. Comparison of chemical composition and airborne bacterial community structure in PM2.5 during haze and non-haze days in the winter in Guilin, China. Sci. Total Environ. 2019, 655, 202–210. [Google Scholar] [CrossRef]
- Cai, A.; Zhang, H.; Wang, L.; Wang, Q.; Wu, X. Source apportionment and health risk assessment of heavy metals in PM2.5 in Handan: A typical heavily polluted city in North China. Atmosphere 2021, 12, 1232. [Google Scholar] [CrossRef]
- Xue, H.; Liu, G.; Zhang, H.; Hu, R.; Wang, X. Similarities and differences in PM10 and PM2.5 concentrations, chemical compositions and sources in Hefei City, China. Chemosphere 2019, 220, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Ledoux, F.; Kfoury, A.; Delmaire, G.; Roussel, G.; El Zein, A.; Courcot, D. Contributions of local and regional anthropogenic sources of metals in PM2.5 at an urban site in northern France. Chemosphere 2017, 181, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Hulskotte, J.H.J.; Roskam, G.D.; Denier van der Gon, H.A.C. Elemental composition of current automotive braking materials and derived air emission factors. Atmos. Environ. 2014, 99, 436–445. [Google Scholar] [CrossRef]
- Xu, M.; Yan, R.; Zheng, C.; Qiao, Y.; Han, J.; Sheng, C. Status of trace element emission in a coal combustion process: A review. Fuel Process. Technol. 2004, 85, 215–237. [Google Scholar] [CrossRef]
- Cao, X. Policy and regulatory responses to coalmine closure and coal resources consolidation for sustainability in Shanxi, China. J. Clean. Prod. 2017, 145, 199–208. [Google Scholar] [CrossRef]
- Liu, X.; Bai, Z.; Shi, H.; Zhou, W.; Liu, X. Heavy metal pollution of soils from coal mines in China. Nat. Hazards 2019, 99, 1163–1177. [Google Scholar] [CrossRef]
- Lin, B.; Shi, L. Do environmental quality and policy changes affect the evolution of consumers’ intentions to buy new energy vehicles. Appl. Energy 2022, 310, 118582. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef]
- Tsai, P.J.; Young, L.H.; Hwang, B.F.; Lin, M.Y.; Chen, Y.C.; Hsu, H.T. Source and health risk apportionment for PM2.5 collected in Sha-Lu area, Taiwan. Atmos. Pollut. Res. 2020, 11, 851–858. [Google Scholar] [CrossRef]
- Yan, R.-H.; Peng, X.; Lin, W.; He, L.-Y.; Wei, F.-H.; Tang, M.-X.; Huang, X.-F. Trends and challenges regarding the source-specific health risk of PM2.5-bound metals in a Chinese megacity from 2014 to 2020. Environ. Sci. Technol. 2022, 56, 6996–7005. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yan, C.; Wang, C.; Ma, J.; Li, W.; Liu, J.; Liu, Y. PM2.5-bound elements in Hebei Province, China: Pollution levels, source apportionment and health risks. Sci. Total Environ. 2022, 806, 150440. [Google Scholar] [CrossRef]
- Lin, X.; Gu, Y.; Zhou, Q.; Mao, G.; Zou, B.; Zhao, J. Combined toxicity of heavy metal mixtures in liver cells. J. Appl. Toxicol. 2016, 36, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, Y.; Wang, Y.; Wang, Y. Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay. Toxicol. Vitr. 2011, 25, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Alsop, D.; Wood, C.M. Metal and pharmaceutical mixtures: Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish? Aquat. Toxicol. 2013, 140, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Gebara, R.C.; Alho, L.d.O.G.; Rocha, G.S.; da Silva Mansano, A.; Melão, M.d.G.G. Zinc and aluminum mixtures have synergic effects to the algae Raphidocelis subcapitata at environmental concentrations. Chemosphere 2020, 242, 125231. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Wu, Z.-F.; Li, J.; Wang, G.-X. Single and joint action toxicity of heavy metals on early developmental stages of Chinese rare minnow (Gobiocypris rarus). Ecotoxicol. Environ. Saf. 2011, 74, 2193–2202. [Google Scholar] [CrossRef] [PubMed]
- Mebane, C.A.; Dillon, F.S.; Hennessy, D.P. Acute toxicity of cadmium, lead, zinc, and their mixtures to stream-resident fish and invertebrates. Environ. Toxicol. Chem. 2012, 31, 1334–1348. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gao, W.; Yu, Y.; Hu, B.; Xin, J.; Sun, Y.; Wang, L.; Wang, G.; Bi, X.; Zhang, G. Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: Emerging results from the CARE-China network. Atmos. Chem. Phys. 2018, 18, 8849–8871. [Google Scholar] [CrossRef]
- SSY. Table 6–15: Consumption and Composition of End-Use Energy in 2013; Shanxi Statistics Yearbook. 2014. Available online: http://tjj.shanxi.gov.cn/tjsj/tjnj/nj2014/html/njcx.htm (accessed on 25 June 2022).
- SSY. Table 6–13: Consumption and Composition of End-Use Energy in 2014; Shanxi Statistics Yearbook. 2015. Available online: http://tjj.shanxi.gov.cn/tjsj/tjnj/nj2015/indexch.htm (accessed on 25 June 2022).
- SSY. Table 6–13: Consumption and Composition of End-Use Energy in 2015; Shanxi Statistics Yearbook. 2016. Available online: http://tjj.shanxi.gov.cn/tjsj/tjnj/nj2016/indexch.htm (accessed on 25 June 2022).
- SSY. Table 6–13: Consumption and Composition of End-Use Energy in 2016; Shanxi Statistics Yearbook. 2017. Available online: http://tjj.shanxi.gov.cn/tjsj/tjnj/nj2017/indexch.htm (accessed on 25 June 2022).
- SSY. Table 6–13: Consumption and Composition of End-Use Energy in 2017; Shanxi Statistics Yearbook. 2018. Available online: http://tjj.shanxi.gov.cn/tjsj/tjnj/nj2018/indexch.htm (accessed on 25 June 2022).
- SSY. Table 6–13: Consumption and Composition of End-Use Energy in 2018; Shanxi Statistics Yearbook. 2020. Available online: http://tjj.shanxi.gov.cn/tjsj/tjnj/nj2019/zk/indexch.htm (accessed on 25 June 2022).
- SSY. Table 6–14: Consumption and Composition of End-Use Energy in 2019; Shanxi Statistics Yearbook. 2020. Available online: http://tjj.shanxi.gov.cn/tjsj/tjnj/nj2020/zk/indexch.htm (accessed on 25 June 2022).
- SSY. Table 6–13: Consumption and Composition of End-Use Energy in 2020; Shanxi Statistics Yearbook. 2021. Available online: http://tjj.shanxi.gov.cn/tjsj/tjnj/nj2021/zk/indexch.htm (accessed on 25 June 2022).
Contaminants | Class a | RfCi b | IUR b | |
---|---|---|---|---|
WHO | μg·m−3 | (μg·m−3)−1 | ||
As | Arsenic | 1 | 0.015 | 0.0043 |
Cd | Cadmium | 1 | 0.01 | 0.0018 |
Co | Cobalt | 2B | 0.006 | 0.009 |
Cr (VI) | Chromium | 1 | 0.1 | 0.084 |
Cu | Copper | - c | 1000 d | - |
Ni | Nickel | 2B | 0.014 | 0.00026 |
Pb | Lead | 2B | 0.15 e | 0.000012 |
Zn | Zinc | - | 300 | - |
PM2.5 | As | Cd | Co | Cr (VI) | Cu | Ni | Pb | Zn | Sum | |
---|---|---|---|---|---|---|---|---|---|---|
Min | 17 | 0.43 | 0.04 | 0.01 | 0.39 | 0.69 | 0.22 | 1.04 | 0.71 | 27.92 |
Median | 74 | 4.22 | 0.68 | 0.15 | 0.99 | 12.82 | 1.48 | 15.19 | 164.02 | 196.46 |
Max | 174 | 11.36 | 4.88 | 1.61 | 2.91 | 67.15 | 6.82 | 40.52 | 823.39 | 905.26 |
Mean | 81 | 4.71 | 0.89 | 0.29 | 1.31 | 20.04 | 1.82 | 14.95 | 191.87 | 235.87 |
SD a | 35 | 2.70 | 0.86 | 0.38 | 0.77 | 17.35 | 1.48 | 9.09 | 145.92 | 161.88 |
WHO guideline value b | 25 | 6.6 | 5 | - | 0.25 | - | 25 | 500 | - | |
Grade II threshold c | 75 | 6 | 5 | - d | 0.025 | - | - | 500 | - |
Country | Areas | Year | PM2.5 | As | Cd | Co | Cr (VI) | Cu | Ni | Pb | Zn | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Czech Republic | Třinec-Kosmos | 2020 | 28 | 1.3 | 0.26 | 0.05 | 1.1/7 d | 4.6 | 0.81 | 11 | 34 | [36] |
Romania | Iasi | 2016 | 20 | 5.70 | 0.33 | 0.09 | 1.78/7 | 7.70 | 24.3 | 1.99 | 33.9 | [39] |
India | Kolkata | 2019 | 111.7 | - | 1.2 | 0.3 | 6.9/7 | 15 | 8.1 | 36 | 370 | [41] |
Iran | Isfahan | 2015 | - a | 32.47 d | 5.77 | - | 57.4/7 | 13.76 | 7.43 | 46.72 | - | [5] |
Iran | Karaj | 2019 | 67 | 32.1 | 84 | - | 49.5/7 | 203 | 60.8 | 133 | 242 | [40] |
Japan | Kitakyushu | 2019 | 21.3 | 1.4 | - | - | 3.0/7 | 3.6 | 3.3 | 10.5 | 29.5 | [7] |
Saudi Arabia | 2020 | - | 83 | 17 | - | 8/7 | 9 | 10 | 119 | 31 | [6] | |
USA | Los Angeles | 2018 | 13.8 | - | 6 | 1 | 3/7 | 10 | 3 | 5 | 10 | [12] |
China | Beijing | 2019 | - | 4.02 | - | - | 1.79/7 | 7.37 | 0.77 | 21.13 | 78.99 | [33] |
Chengdu | 2018 | 113.2 | 4.5 | - | - | - | 7.5 | 7.7 | 21.9 | 60.8 | [34] | |
Chongqing | 2019 | 97.1 | 7.56 | - | - | 4.29/7 | 15.83 | 1.39 | 37.93 | 94.22 | [37] | |
Guangzhou | 2017 | 55 | 4.39 | 0.74 | 0.53 | 10.1/7 | 16.37 | 5.72 | 25.52 | 127.31 | [10] | |
Guilin (haze) | 2017 | 144 | - | 19.0 | - | 11.5/7 | 17.4 | - | 78.8 | 300.7 | [42] | |
Handan | 2017 | - | 11.94 | 2.74 | - | 11.1/7 | 23.17 | 2.11 | 104.3 | 286.9 | [43] | |
Hefei | 2017 | 81 | - | - | - | 10/7 | 11.29 | - | 12.64 | 273.5 | [44] | |
Lanzhou | 2018 | 73 | 3 | 1 | 1.3 | - | 29 | - | 407 | - | [35] | |
Xi’an | 2016 | 50.1 | 117.2 | 16.3 | - | 343/7 | - | 11.3 | 35.0 | 267.1 | [9] | |
Xuanwu | 2016 | 61.1 | 6.44 | 1.88 | 0.29 | 77.5/7 | 20.99 | 3.73 | 54.72 | 212.76 | [10] | |
Shanxi, | Changzhi | 2018 | 56.1 | 4.9 | 0.7 | 0.2 | 14.3/7 | 7.8 | 4.2 | 30.8 | 82.3 | [32] |
China | Taiyuan | 2017 | - | 8.15 | 1.07 | 1.20 | 29.9/7 | 29.56 | 12.69 | 94.36 | 230.57 | [11] |
Yuci | 2017 | - | 9.45 | 1.12 | 0.70 | 11.7/7 | 14.66 | 3.56 | 91.29 | 263.26 | [11] | |
Yuci | 2020 | 80.65 | 4.71 | 0.89 | 0.29 | 1.31 | 20.04 | 1.82 | 14.95 | 191.87 | This study | |
WHO guideline value b | 25 | 6.6 | 5 | - | 0.25 | - | 25 | 500 | - | |||
Grade II threshold c | 75 | 6 | 5 | - | 0.025 | - | - | 500 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Qi, H.; Li, X. Composition, Source Apportionment, and Health Risk of PM2.5-Bound Metals during Winter Haze in Yuci College Town, Shanxi, China. Toxics 2022, 10, 467. https://doi.org/10.3390/toxics10080467
Li L, Qi H, Li X. Composition, Source Apportionment, and Health Risk of PM2.5-Bound Metals during Winter Haze in Yuci College Town, Shanxi, China. Toxics. 2022; 10(8):467. https://doi.org/10.3390/toxics10080467
Chicago/Turabian StyleLi, Lihong, Hongxue Qi, and Xiaodong Li. 2022. "Composition, Source Apportionment, and Health Risk of PM2.5-Bound Metals during Winter Haze in Yuci College Town, Shanxi, China" Toxics 10, no. 8: 467. https://doi.org/10.3390/toxics10080467
APA StyleLi, L., Qi, H., & Li, X. (2022). Composition, Source Apportionment, and Health Risk of PM2.5-Bound Metals during Winter Haze in Yuci College Town, Shanxi, China. Toxics, 10(8), 467. https://doi.org/10.3390/toxics10080467