Prenatal Exposure to Mercury, Manganese, and Lead and Adverse Birth Outcomes in Suriname: A Population-Based Birth Cohort Study
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Study Design and Setting
2.2. Collection of Maternal Socio-Demographic and Dietary Data
2.3. Collection of Data on Birth Outcomes
2.4. Determination of Blood Concentrations of Mercury, Manganese, and Lead
2.5. Covariates Included in the Study
2.6. Statistical Analyses
3. Results
3.1. Sociodemographic Characteristics
3.2. Adverse Birth Outcomes
3.3. Blood Concentrations of Mercury, Manganese, and Lead
3.4. Covariates
3.5. Associations between Prenatal Exposure to Heavy Metals or Covariates and Adverse Birth Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howson, C.P.; Kinney, M.V.; McDougall, L.; Lawn, J.E. Born Too Soon: Preterm Birth Matters. Reprod. Health 2013, 10, S1. [Google Scholar] [CrossRef] [Green Version]
- Hug, L.; You, D.; Blencowe, H.; Mishra, A.; Wang, Z.; Fix, M.J.; Wakefield, J.; Moran, A.C.; Gaigbe-Togbe, V.; Suzuki, E.; et al. Global, Regional, and National Estimates and Trends in Stillbirths from 2000 to 2019: A Systematic Assessment. Lancet 2021, 398, 772–785. [Google Scholar] [CrossRef]
- Blencowe, H.; Krasevec, J.; de Onis, M.; Black, R.E.; An, X.; Stevens, G.A.; Borghi, E.; Hayashi, C.; Estevez, D.; Cegolon, L.; et al. National, Regional, and Worldwide Estimates of Low Birthweight in 2015, with Trends from 2000: A Systematic Analysis. Lancet Glob. Health 2019, 7, e849–e860. [Google Scholar] [CrossRef] [Green Version]
- Aslam, H.M.; Saleem, S.; Afzal, R.; Iqbal, U.; Saleem, S.M.; Shaikh, M.W.A.; Shahid, N. Risk Factors of Birth Asphyxia. Ital. J. Pediatr. 2014, 40, 94. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Oza, S.; Hogan, D.; Perin, J.; Rudan, I.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, Regional, and National Causes of Child Mortality in 2000-13, with Projections to Inform Post-2015 Priorities: An Updated Systematic Analysis. Lancet 2015, 385, 430–440. [Google Scholar] [CrossRef]
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; et al. National, Regional, and Worldwide Estimates of Preterm Birth Rates in the Year 2010 with Time Trends since 1990 for Selected Countries: A Systematic Analysis and Implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef] [Green Version]
- Chawanpaiboon, S.; Vogel, J.P.; Moller, A.B.; Lumbiganon, P.; Petzold, M.; Hogan, D.; Landoulsi, S.; Jampathong, N.; Kongwattanakul, K.; Laopaiboon, M.; et al. Global, Regional, and National Estimates of Levels of Preterm Birth in 2014: A Systematic Review and Modelling Analysis. Lancet Glob. Health 2019, 7, e37–e46. [Google Scholar] [CrossRef] [Green Version]
- UNICEF; WHO; World Bank Group; United Nations. Levels and Trends in Child Mortality 2020; UNICEF: New York, NY, USA, 2020; ISBN 978-92-806-5147-8.
- Godah, M.W.; Beydoun, Z.; Abdul-Khalek, R.A.; Safieddine, B.; Khamis, A.M.; Abdulrahim, S. Maternal Education and Low Birth Weight in Low- and Middle-Income Countries: Systematic Review and Meta-Analysis. Matern. Child Health J. 2021, 25, 1305–1315. [Google Scholar] [CrossRef]
- Guarnizo-Herreño, C.C.; Torres, G.; Buitrago, G. Socioeconomic Inequalities in Birth Outcomes: An 11-Year Analysis in Colombia. PLoS ONE 2021, 16, e0255150. [Google Scholar] [CrossRef]
- Vidiella-Martin, J.; Been, J.V.; Van Doorslaer, E.; García-Gómez, P.; Van Ourti, T. Association Between Income and Perinatal Mortality in the Netherlands Across Gestational Age. JAMA Netw. Open 2021, 4, e2132124. [Google Scholar] [CrossRef]
- Sebayang, S.K.; Dibley, M.J.; Kelly, P.J.; Shankar, A.V.; Shankar, A.H. Determinants of Low Birthweight, Small-for-Gestational-Age and Preterm Birth in Lombok, Indonesia: Analyses of the Birthweight Cohort of the SUMMIT Trial. Trop. Med. Int. Health 2012, 17, 938–950. [Google Scholar] [CrossRef]
- Adane, A.A.; Ayele, T.A.; Ararsa, L.G.; Bitew, B.D.; Zeleke, B.M. Adverse Birth Outcomes among Deliveries at Gondar University Hospital, Northwest Ethiopia. BMC Pregnancy Childbirth 2014, 14, 90. [Google Scholar] [CrossRef] [Green Version]
- Gebremedhin, M.; Ambaw, F.; Admassu, E.; Berhane, H. Maternal Associated Factors of Low Birth Weight: A Hospital Based Cross-Sectional Mixed Study in Tigray, Northern Ethiopia. BMC Pregnancy Childbirth 2015, 15, 222. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zhang, Y.; Liu, Y.; Zhang, R.; Wu, Y.; Huang, Y.; Liu, F.; Li, M.; Sun, S.; Xing, L.; et al. Maternal and Live-Birth Outcomes of Pregnancies Following Assisted Reproductive Technology: A Retrospective Cohort Study. Sci. Rep. 2016, 6, 35141. [Google Scholar] [CrossRef]
- Jaacks, L.M.; Diao, N.; Calafat, A.M.; Ospina, M.; Mazumdar, M.; Ibne Hasan, M.O.S.; Wright, R.; Quamruzzaman, Q.; Christiani, D.C. Association of Prenatal Pesticide Exposures with Adverse Pregnancy Outcomes and Stunting in Rural Bangladesh. Environ. Int. 2019, 133, 105243. [Google Scholar] [CrossRef]
- Yang, L.; Shang, L.; Wang, S.; Yang, W.; Huang, L.; Qi, C.; Gurcan, A.; Yang, Z.; Chung, M.C. The Association between Prenatal Exposure to Polycyclic Aromatic Hydrocarbons and Birth Weight: A Meta-Analysis. PLoS ONE 2020, 15, e0236708. [Google Scholar] [CrossRef]
- Shih, Y.H.; Chen, H.Y.; Christensen, K.; Handler, A.; Turyk, M.E.; Argos, M. Prenatal Exposure to Multiple Metals and Birth Outcomes: An Observational Study within the National Children’s Study Cohort. Environ. Int. 2021, 147, 106373. [Google Scholar] [CrossRef]
- Eskenazi, B.; Kogut, K.; Huen, K.; Harley, K.G.; Bouchard, M.; Bradman, A.; Boyd-Barr, D.; Johnson, C.; Holland, N. Organophosphate Pesticide Exposure, PON1, and Neurodevelopment in School-Age Children from the CHAMACOS Study. Environ. Res. 2014, 134, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Furlong, M.A.; Engel, S.M.; Barr, D.B.; Wolff, M.S. Prenatal Exposure to Organophosphate Pesticides and Reciprocal Social Behavior in Childhood. Environ. Int. 2014, 70, 125–131. [Google Scholar] [CrossRef] [Green Version]
- General Bureau of Statistics. 9th Environment Statistics Publication 2015-2019; General Bureau of Statistics: Paramaribo, Suriname, 2020. [Google Scholar]
- The World Bank Suriname|Data. Available online: https://data.worldbank.org/country/suriname?view=chart (accessed on 23 February 2022).
- Strategic Environmental Advice; Tropenbos International Suriname. Report of the Strategic Environmental and Social Assessment (SESA) Accompanying the Development of the National REDD+ Strategy of the Republic of Suriname; REDD+ Program Management Unit: Paramaribo, Suriname, 2017. [Google Scholar]
- Heemskerk, M.; Negulic, E.; Duijves, C. Reducing the Use and Release of Mercury by Artisanal and Small- Scale Gold Miners in Suriname; Social Solutions: Paramaribo, Suriname, 2016. [Google Scholar]
- Ouboter, P.; Landburg, G.; Hawkins, W.; Taylor, R.; Lichtveld, M.Y.; Harville, E.W.; Zijlmans, C.; MacDonald-Ottevanger, S.; Drury, S.; Wickliffe, J. Mercury Levels in Women and Children from Suriname. ISEE Conf. Abstr. 2018, 2018, isesisee.2018.P02.2340. [Google Scholar] [CrossRef]
- Wickliffe, J.K.; Lichtveld, M.Y.; Zijlmans, C.W.; MacDonald-Ottevanger, S.; Shafer, M.; Dahman, C.; Harville, E.W.; Drury, S.; Landburg, G.; Ouboter, P.; et al. Exposure to Total and Methylmercury among Pregnant Women in Suriname: Sources and Public Health Implications. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 117–125. [Google Scholar] [CrossRef]
- Ouboter, P.E.; Landburg, G.A.; Quik, J.H.M.; Mol, J.H.A.; Van Der Lugt, F. Mercury Levels in Pristine and Gold Mining Impacted Aquatic Ecosystems of Suriname, South America. Ambio 2012, 41, 873. [Google Scholar] [CrossRef]
- Ouboter, P.; Landburg, G.; Satnarain, G.; Starke, S.; Nanden, I.; Simon-Friedt, B.; Hawkins, W.; Taylor, R.; Lichtveld, M.; Harville, E.; et al. Mercury Levels in Women and Children from Interior Villages in Suriname, South America. Int. J. Environ. Res. Public Health 2018, 15, 1007. [Google Scholar] [CrossRef] [Green Version]
- Gullino, M.L.; Tinivella, F.; Garibaldi, A.; Kemmitt, G.M.; Bacci, L.; Sheppard, B. Mancozeb: Past, Present, and Future. Plant Dis. 2010, 94, 1076–1087. [Google Scholar] [CrossRef] [Green Version]
- Abdoel Wahid, F.; Wickliffe, J.; Wilson, M.; Van Sauers, A.; Bond, N.; Hawkins, W.; Mans, D.; Lichtveld, M. Presence of Pesticide Residues on Produce Cultivated in Suriname. Environ. Monit. Assess. 2017, 189, 303. [Google Scholar] [CrossRef]
- Ministry of Agriculture Animal Husbandry and Fisheries Mancozeb Import Statistics; Ministry of Agriculture Animal Husbandry and Fisheries: Paramaribo, Suriname, 2019.
- Rimbaud, D.; Restrepo, M.; Louison, A.; Boukhari, R.; Ardillon, V.; Carles, G.; Lambert, V.; Jolivet, A. Blood Lead Levels and Risk Factors for Lead Exposure among Pregnant Women in Western French Guiana: The Role of Manioc Consumption. J. Toxicol. Environ. Health A 2017, 80, 382–393. [Google Scholar] [CrossRef] [Green Version]
- Ohiagu, F.O.; Lele, K.C.; Chikezie, P.C.; Verla, A.W.; Enyoh, C.E. Bioaccumulation and Health Risk Assessment of Heavy Metals in Musa Paradisiaca, Zea Mays, Cucumeropsis Manii and Manihot Esculenta Cultivated in Onne, Rivers State, Nigeria. Environ. Health Toxicol. 2020, 35, e2020011. [Google Scholar] [CrossRef]
- Suriname Water Company Resultaten SWM Waterkwaliteit Na de Zuivering 2019; Suriname Water Company: Paramaribo, Suriname, 2019.
- Murcia, M.; Ballester, F.; Enning, A.M.; Iñiguez, C.; Valvi, D.; Basterrechea, M.; Rebagliato, M.; Vioque, J.; Maruri, M.; Tardon, A.; et al. Prenatal Mercury Exposure and Birth Outcomes. Environ. Res. 2016, 151, 11–20. [Google Scholar] [CrossRef]
- Ashrap, P.; Watkins, D.J.; Mukherjee, B.; Boss, J.; Richards, M.J.; Rosario, Z.; Vélez-Vega, C.M.; Alshawabkeh, A.; Cordero, J.F.; Meeker, J.D. Maternal Blood Metal and Metalloid Concentrations in Association with Birth Outcomes in Northern Puerto Rico. Environ. Int. 2020, 138, 105606. [Google Scholar] [CrossRef]
- Debes, F.; Budtz-Jørgensen, E.; Weihe, P.; White, R.F.; Grandjean, P. Impact of Prenatal Methylmercury Exposure on Neurobehavioral Function at Age 14 Years. Neurotoxicol. Teratol. 2006, 28, 536–547. [Google Scholar] [CrossRef] [Green Version]
- Zota, A.R.; Ettinger, A.S.; Bouchard, M.; Amarasiriwardena, C.J.; Schwartz, J.; Hu, H.; Wright, R.O. Maternal Blood Manganese Levels and Infant Birth Weight. Epidemiology 2009, 20, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Ashley-Martin, J.; Dodds, L.; Arbuckle, T.E.; Ettinger, A.S.; Shapiro, G.D.; Fisher, M.; Monnier, P.; Morisset, A.S.; Fraser, W.D.; Bouchard, M.F. Maternal and Cord Blood Manganese (Mn) Levels and Birth Weight: The MIREC Birth Cohort Study. Int. J. Hyg. Environ. Health 2018, 221, 876–882. [Google Scholar] [CrossRef]
- Eum, J.-H.; Cheong, H.-K.; Ha, E.-H.; Ha, M.; Kim, Y.; Hong, Y.-C.; Park, H.; Chang, N. Maternal Blood Manganese Level and Birth Weight: A MOCEH Birth Cohort Study. Environ. Health 2014, 13, 31. [Google Scholar] [CrossRef] [Green Version]
- Perkins, M.; Wright, R.O.; Amarasiriwardena, C.J.; Jayawardene, I.; Rifas-Shiman, S.L.; Oken, E. Very Low Maternal Lead Level in Pregnancy and Birth Outcomes in an Eastern Massachusetts Population. Ann. Epidemiol. 2014, 24, 915–919. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; DiBari, J.; Bind, E.; Steffens, A.M.; Mukherjee, J.; Azuine, R.E.; Singh, G.K.; Hong, X.; Ji, Y.; Ji, H.; et al. Association Between Maternal Exposure to Lead, Maternal Folate Status, and Intergenerational Risk of Childhood Overweight and Obesity. JAMA Netw. Open 2019, 2, e1912343. [Google Scholar] [CrossRef]
- Kodan, L.R.; Verschueren, K.J.C.; Paidin, R.; Paidin, R.; Browne, J.L.; Bloemenkamp, K.W.M.; Rijken, M.J. Trends in Maternal Mortality in Suriname: 3 Confidential Enquiries in 3 Decades. AJOG Glob. Rep. 2021, 1, 100004. [Google Scholar] [CrossRef]
- Verschueren, K.J.C.C.; Prüst, Z.D.; Paidin, R.R.; Kodan, L.R.; Bloemenkamp, K.W.M.M.; Rijken, M.J.; Browne, J.L. Childbirth Outcomes and Ethnic Disparities in Suriname: A Nationwide Registry-Based Study in a Middle-Income Country. Reprod. Health 2020, 17, 62. [Google Scholar] [CrossRef]
- Zijlmans, W.; Wickliffe, J.; Hindori-Mohangoo, A.; MacDonald-Ottevanger, S.; Ouboter, P.; Landburg, G.; Codrington, J.; Roosblad, J.; Baldewsingh, G.; Ramjatan, R.; et al. Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH) Cohort Study: Influences of Complex Environmental Exposures on Maternal and Child Health in Suriname. BMJ Open 2020, 10, e034702. [Google Scholar] [CrossRef]
- Belay, D.M.; Bayih, W.A.; Alemu, A.Y.; Sinshaw, A.E.; Mekonen, D.K.; Ayele, A.S.; Belayneh, W.H.; Tegared, H.A.; Birihane, B.M. Adverse Birth Outcome and Associated Factors among Diabetic Pregnant Women in Ethiopia: Systematic Review and Meta-Analysis. PLoS ONE 2020, 15, e0241811. [Google Scholar] [CrossRef]
- Bidhendi Yarandi, R.; Vaismoradi, M.; Panahi, M.H.; Gåre Kymre, I.; Behboudi-Gandevani, S. Mild Gestational Diabetes and Adverse Pregnancy Outcome: A Systemic Review and Meta-Analysis. Front. Med. 2021, 8, 993. [Google Scholar] [CrossRef]
- Prüst, Z.D.; Kodan, L.R.; van den Akker, T.; Bloemenkamp, K.W.M.; Rijken, M.J.; Verschueren, K.J.C. The Burden of Severe Hypertensive Disorders of Pregnancy on Perinatal Outcomes: A Nationwide Case-Control Study in Suriname. AJOG Glob. Rep. 2021, 1, 100027. [Google Scholar] [CrossRef]
- Lin, L.; Wei, Y.; Zhu, W.; Wang, C.; Su, R.; Feng, H.; Yang, H. Prevalence, Risk Factors and Associated Adverse Pregnancy Outcomes of Anaemia in Chinese Pregnant Women: A Multicentre Retrospective Study. BMC Pregnancy Childbirth 2018, 18, 111. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Khan, M.N.; Rahman, M.M. Maternal Anaemia and Risk of Adverse Obstetric and Neonatal Outcomes in South Asian Countries: A Systematic Review and Meta-Analysis. Public Health Pract. 2020, 1, 100021. [Google Scholar] [CrossRef]
- Frick, A.P. Advanced Maternal Age and Adverse Pregnancy Outcomes. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 70, 92–100. [Google Scholar] [CrossRef]
- Londero, A.P.; Rossetti, E.; Pittini, C.; Cagnacci, A.; Driul, L. Maternal Age and the Risk of Adverse Pregnancy Outcomes: A Retrospective Cohort Study. BMC Pregnancy Childbirth 2019, 19, 261. [Google Scholar] [CrossRef]
- Hinkle, S.N.; Albert, P.S.; Mendola, P.; Sjaarda, L.A.; Yeung, E.; Boghossian, N.S.; Laughon, S.K. The Association between Parity and Birthweight in a Longitudinal Consecutive Pregnancy Cohort. Paediatr. Perinat. Epidemiol. 2014, 28, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Schimmel, M.S.; Bromiker, R.; Hammerman, C.; Chertman, L.; Ioscovich, A.; Granovsky-Grisaru, S.; Samueloff, A.; Elstein, D. The Effects of Maternal Age and Parity on Maternal and Neonatal Outcome. Arch. Gynecol. Obstet. 2015, 291, 793–798. [Google Scholar] [CrossRef]
- McDonald, B.W.; Watson, P.E. Maternal Alcohol Intakes before and during Pregnancy: Impact on the Mother and Infant Outcome to 18 Months. Nord. Alkohol. Nark. 2020, 37, 153–171. [Google Scholar] [CrossRef] [Green Version]
- Nykjaer, C.; Alwan, N.A.; Greenwood, D.C.; Simpson, N.A.B.; Hay, A.W.M.; White, K.L.M.; Cade, J.E. Maternal Alcohol Intake Prior to and during Pregnancy and Risk of Adverse Birth Outcomes: Evidence from a British Cohort. J. Epidemiol. Community Health 2014, 68, 542–549. [Google Scholar] [CrossRef] [Green Version]
- Regan, A.K.; Bombard, J.M.; O’Hegarty, M.M.; Smith, R.A.; Tong, V.T. Adverse Birth Outcomes Associated With Prepregnancy and Prenatal Electronic Cigarette Use. Obstet. Gynecol. 2021, 138, 85–94. [Google Scholar] [CrossRef]
- Wojtyla, C.; Wojtyla-Buciora, P.; Ciebiera, M.; Orzechowski, S.; Wojtyla, A. The Effect of Active and Passive Maternal Smoking before and during Pregnancy on Neonatal Weight at Birth. Arch. Med. Sci. 2021, 17, 352–360. [Google Scholar] [CrossRef]
- Sujan, A.C.; Rickert, M.E.; Quinn, P.D.; Ludema, C.; Wiggs, K.K.; Larsson, H.; Lichtenstein, P.; Almqvist, C.; Öberg, A.S.; D’Onofrio, B.M. A Population-Based Study of Concurrent Prescriptions of Opioid Analgesic and Selective Serotonin Reuptake Inhibitor Medications during Pregnancy and Risk for Adverse Birth Outcomes. Paediatr. Perinat. Epidemiol. 2021, 35, 184–193. [Google Scholar] [CrossRef]
- World Health Organization Reproductive Health Indicators Reproductive Health and Research Guidelines for Their Generation, Interpretation and Analysis for Global Monitoring; World Health Organization: Geneva, Switzerland, 2006; ISBN 92 4 156315 X.
- General Bureau of Statistics. Statistisch Jaarboek 2018-2019 Suriname; General Bureau of Statistics: Paramaribo, Suriname, 2020. [Google Scholar]
- Smith, L.K.; Hindori-Mohangoo, A.D.; Delnord, M.; Durox, M.; Szamotulska, K.; Macfarlane, A.; Alexander, S.; Barros, H.; Gissler, M.; Blondel, B.; et al. Quantifying the Burden of Stillbirths before 28 Weeks of Completed Gestational Age in High-Income Countries: A Population-Based Study of 19 European Countries. Lancet 2018, 392, 1639–1646. [Google Scholar] [CrossRef]
- Da Silva, F.T.; Gonik, B.; McMillan, M.; Keech, C.; Dellicour, S.; Bhange, S.; Tila, M.; Harper, D.M.; Woods, C.; Kawai, A.T.; et al. Stillbirth: Case Definition and Guidelines for Data Collection, Analysis, and Presentation of Maternal Immunization Safety Data. Vaccine 2016, 34, 6057–6068. [Google Scholar] [CrossRef] [Green Version]
- Gissler, M.; Durox, M.; Smith, L.; Blondel, B.; Broeders, L.; Hindori-Mohangoo, A.; Kearns, K.; Kolarova, R.; Loghi, M.; Rodin, U.; et al. Clarity and Consistency in Stillbirth Reporting in Europe: Why Is It so Hard to Get This Right? Eur. J. Public Health 2022, 32, 200–206. [Google Scholar] [CrossRef]
- PeriNed Perinatale Zorg in Nederland 2017; Perined: Utrecht, The Netherlands, 2019.
- World Health Organization Preterm Birth. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth (accessed on 23 February 2022).
- World Health Organization 2018 Global Reference List of 100 Core Health Indicators (plus Health-Related SDGs). World Health Organ. 2018, 1, 123–127.
- American College of Obstetrics and Gynecology The Apgar Score|ACOG. Available online: https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2015/10/the-apgar-score (accessed on 23 February 2022).
- Mahaffey, K.R.; Clickner, R.P.; Bodurow, C.C. Blood Organic Mercury and Dietary Mercury Intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ. Health Perspect. 2004, 112, 562–570. [Google Scholar]
- National Research Council. Toxicological Effects of Methylmercury; National Academies Press: Washington, DC, USA, 2000; ISBN 978-0-309-07140-6. [Google Scholar]
- Lucchini, R.G.; Aschner, M.; Kim, Y.; Šarić, M. Manganese. In Handbook on the Toxicology of Metals; Elsevier: Amsterdam, The Netherlands, 2015; Volume 1, pp. 975–1011. ISBN 9780123973399. [Google Scholar]
- CDC (National Center for Environmental Health) Blood Lead Reference Value | Lead | CDC. Available online: https://www.cdc.gov/nceh/lead/data/blood-lead-reference-value.htm (accessed on 12 April 2022).
- World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation. 1.Diabetes; World Health Organization: Geneva, Switzerland, 2006; ISBN 9789241594936.
- World Health Organization. Clinical Guidelines for the Management of Hypertension; World Health Organization: Geneva, Switzerland, 2005; ISBN 978-92-9021-407-6.
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; World Health Organization: Geneva, Switzerland, 2011.
- The Global Nutrition Report Global Nutrition Report|Country Nutrition Profiles—Global Nutrition Report. Available online: https://globalnutritionreport.org/resources/nutrition-profiles/latin-america-and-caribbean/south-america/suriname/ (accessed on 1 February 2022).
- Knoema Demographics—Suriname—Knoema.Com. Available online: https://knoema.com/atlas/Suriname/topics/Demographics#Fertility (accessed on 24 February 2022).
- General Bureau of Statistics. Demografische Statistieken 2015–2018; General Bureau of Statistics: Paramaribo, Suriname, 2019. [Google Scholar]
- The World Bank Literacy Rate, Adult Female (% of Females Ages 15 and above) - Suriname | Data. Available online: https://data.worldbank.org/indicator/SE.ADT.LITR.FE.ZS?end=2018&locations=SR&start=2018&view=bar (accessed on 24 February 2022).
- Prüst, Z.D.; Verschueren, K.J.C.; Bhikha-Kori, G.A.A.; Kodan, L.R.; Bloemenkamp, K.W.M.; Browne, J.L.; Rijken, M.J. Investigation of Stillbirth Causes in Suriname: Application of the WHO ICD-PM Tool to National-Level Hospital Data. Glob. Health Action 2020, 13, 1794105. [Google Scholar] [CrossRef]
- McElroy, S.; Ilango, S.; Dimitrova, A.; Gershunov, A.; Benmarhnia, T. Extreme Heat, Preterm Birth, and Stillbirth: A Global Analysis across 14 Lower-Middle Income Countries. Environ. Int. 2022, 158, 106902. [Google Scholar] [CrossRef]
- Abdoel Wahid, F.Z.; Wickliffe, J.; Wilson, M.; Hawkins, W.B.; Van Sauers, A.M.; Lichtveld, M.Y. Dietary Exposure of Pregnant Women in Suriname to Pesticides in Produce. Ann. Glob. Health 2017, 83, 8. [Google Scholar] [CrossRef] [Green Version]
- Abdoel Wahid, F.; Hindori-Mohangoo, A.; Wickliffe, J.; Wilson, M.; Zijlmans, C.; Lichtveld, M.Y. Dietary Exposure to Pesticides in Tannia in Pregnant Surinamese Women. ISEE Conf. Abstr. 2018, 2018, isesisee.2018.P01.2380. [Google Scholar] [CrossRef]
- Carneiro, M.F.H.; de B. Evangelista, F.S.; Barbosa, F. Manioc Flour Consumption as a Risk Factor for Lead Poisoning in the Brazilian Amazon. J. Toxicol. Environ. Health Part A 2013, 76, 206–216. [Google Scholar] [CrossRef]
- CDC (National Center for Environmental Health) Sources of Lead|Lead|CDC. Available online: https://www.cdc.gov/nceh/lead/prevention/sources.htm (accessed on 2 February 2022).
- Kasumba, J.; Hettick, B.; French, A.; Wickliffe, J.K.; Lichtveld, M.Y.; Hawkins, W.B.; van Sauers-Muller, A.; Klein, D. Analysis of Pesticides and Toxic Heavy Metals Contained in Mosquito Coils. Bull. Environ. Contam. Toxicol. 2016, 97, 614–618. [Google Scholar] [CrossRef]
- Hassoon, H.A. Determination of Lead Levels in Fuel Used for Vehicles in Baghdad City. Iraqi J. Sci. 2019, 60, 2629–2635. [Google Scholar] [CrossRef]
- U.S Food and Drug Administration Lead in Cosmetics|FDA. Available online: https://www.fda.gov/cosmetics/potential-contaminants-cosmetics/lead-cosmetics (accessed on 3 February 2022).
- Liu, W.; Xin, Y.; Li, Q.; Shang, Y.; Ping, Z.; Min, J.; Cahill, C.M.; Rogers, J.T.; Wang, F. Biomarkers of Environmental Manganese Exposure and Associations with Childhood Neurodevelopment: A Systematic Review and Meta-Analysis. Environ. Health 2020, 19, 104. [Google Scholar] [CrossRef]
- Lozano, M.; Murcia, M.; Soler-Blasco, R.; González, L.; Iriarte, G.; Rebagliato, M.; Lopez-Espinosa, M.J.; Esplugues, A.; Ballester, F.; Llop, S. Exposure to Mercury among 9-Year-Old Children and Neurobehavioural Function. Environ. Int. 2021, 146, 106173. [Google Scholar] [CrossRef]
- Patel, N.B.; Xu, Y.; McCandless, L.C.; Chen, A.; Yolton, K.; Braun, J.; Jones, R.L.; Dietrich, K.N.; Lanphear, B.P. Very Low-Level Prenatal Mercury Exposure and Behaviors in Children: The HOME Study. Environ. Health 2019, 18, 4. [Google Scholar] [CrossRef] [Green Version]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Lu, J.; Lan, J.; Li, X.; Zhu, Z. Blood Lead and Cadmium Levels Are Negatively Associated with Bone Mineral Density in Young Female Adults. Arch. Public Health 2021, 79, 116. [Google Scholar] [CrossRef]
- Wu, C.; Woo, J.G.; Zhang, N. Association between Urinary Manganese and Blood Pressure: Results from National Health and Nutrition Examination Survey (NHANES), 2011-2014. PLoS ONE 2017, 12, e0188145. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.; Carocci, A.; Lauria, G.; Catalano, A. Mercury Exposure and Heart Diseases. Int. J. Environ. Res. Public Health 2017, 14, 74. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Tsui, M.T.-K.; Lee, E.; Fowler, J.; Jia, Z. Uptake, Efflux, and Toxicity of Inorganic and Methyl Mercury in the Endothelial Cells (EA.Hy926). Sci. Rep. 2020, 10, 9023. [Google Scholar] [CrossRef]
- Euro-Peristat Project. Core Indicators of the Health and Care of Pregnant Women and Babies in Europe in 2015; Euro Peristat: Paris, France, 2018. [Google Scholar]
- Berhe, A.K.; Ilesanmi, A.O.; Aimakhu, C.O.; Mulugeta, A. Effect of Pregnancy Induced Hypertension on Adverse Perinatal Outcomes in Tigray Regional State, Ethiopia: A Prospective Cohort Study. BMC Pregnancy Childbirth 2019, 20, 7. [Google Scholar] [CrossRef] [Green Version]
- Crump, C.; Sundquist, J.; Sundquist, K. Preterm Birth and Risk of Type 1 and Type 2 Diabetes: A National Cohort Study. Diabetologia 2020, 63, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Zhao, M.; Liang, Y.; Liu, F.; Xi, B. Maternal Age at Birth and Neonatal Mortality: Associations from 67 Low-Income and Middle-Income Countries. Paediatr. Perinat. Epidemiol. 2021, 35, 318–327. [Google Scholar] [CrossRef]
- Liu, Y.; Li, N.; An, H.; Li, Z.; Zhang, L.; Li, H.; Zhang, Y.; Ye, R. Impact of Gestational Hypertension and Preeclampsia on Low Birthweight and Small-for-Gestational-Age Infants in China: A Large Prospective Cohort Study. J. Clin. Hypertens. 2021, 23, 835–842. [Google Scholar] [CrossRef]
- Oh, S.S.; Park, S.; You, Y.-A.; Jee, Y.; Ansari, A.; Kim, S.M.; Lee, G.; Kim, Y.J. Prenatal Exposure to Alcohol, Tobacco, and Coffee: Associated Congenital Complications and Adverse Birth Outcomes. Int. J. Environ. Res. Public Health 2021, 18, 3140. [Google Scholar] [CrossRef]
- Serdar, C.C.; Cihan, M.; Yücel, D.; Serdar, M.A. Sample Size, Power and Effect Size Revisited: Simplified and Practical Approaches in Pre-Clinical, Clinical and Laboratory Studies. Biochem. Med. 2021, 31, 27–53. [Google Scholar] [CrossRef]
- Zhao, D.; Yuan, S.; Ma, Y.; An, Y.X.; Yang, Y.X.; Yang, J.K. Associations of Maternal Hyperglycemia in the Second and Third Trimesters of Pregnancy with Prematurity. Medicine 2020, 99, e19663. [Google Scholar] [CrossRef]
- Kapustin, R.V.; Alekseyenkova, E.N.; Arzhanova, O.N.; Petyaeva, A.V.; Atayeva, M.G.; Yusenko, S.R. Preterm Birth in Women with Diabetes Mellitus. J. Obstet. Womens Dis. 2020, 69, 17–26. [Google Scholar]
- Geurtsen, M.L.; van Soest, E.E.L.; Voerman, E.; Steegers, E.A.P.; Jaddoe, V.W.V.; Gaillard, R. High Maternal Early-Pregnancy Blood Glucose Levels Are Associated with Altered Fetal Growth and Increased Risk of Adverse Birth Outcomes. Diabetologia 2019, 62, 1880. [Google Scholar] [CrossRef] [Green Version]
- Sewberath Misser, V.H.; Shankar, A.; Hindori-Mohangoo, A.; Wickliffe, J.; Lichtveld, M.; Mans, D.R.A. Prevalence and Safety of Prescription Medicine Use during Pregnancy in the Republic of Suriname in the Year 2017: A Pharmacoepidemiological Analysis. Adv. Pharmacoepidemiol. Drug Saf. 2021, 10, 249. [Google Scholar]
- Loréal, O.; Cavey, T.; Bardou-Jacquet, E.; Guggenbuhl, P.; Ropert, M.; Brissot, P. Iron, Hepcidin, and the Metal Connection. Front. Pharmacol. 2014, 5, 128. [Google Scholar] [CrossRef]
- Hegazy, A.A.; Zaher, M.M.; Abd El-Hafez, M.A.; Morsy, A.A.; Saleh, R.A. Relation between Anemia and Blood Levels of Lead, Copper, Zinc and Iron among Children. BMC Res. Notes 2010, 3, 133. [Google Scholar] [CrossRef] [Green Version]
- Słota, M.; Wąsik, M.; Stołtny, T.; Machoń-Grecka, A.; Kasperczyk, S. Effects of Environmental and Occupational Lead Toxicity and Its Association with Iron Metabolism. Toxicol. Appl. Pharmacol. 2022, 434, 115794. [Google Scholar] [CrossRef]
- Kim, K.N.; Lee, M.R.; Lim, Y.H.; Hong, Y.C. Blood Lead Levels, Iron Metabolism Gene Polymorphisms and Homocysteine: A Gene-Environment Interaction Study. Occup. Environ. Med. 2017, 74, 899–904. [Google Scholar] [CrossRef]
Number * | Proportion | |
---|---|---|
Total number of participants | 380 | 100.0% |
Age categories | ||
16–19 years | 38 | 10.0% |
20–34 years | 284 | 74.7% |
35+ years | 58 | 15.3% |
Region of residence | ||
Urban–coastal | 251 | 66.1% |
Rural–coastal | 85 | 22.4% |
Rural–interior | 44 | 11.6% |
Household income | ||
<USD 75 | 112 | 31.2% |
≥USD 75 | 247 | 68.8% |
Education level | ||
No or primary education | 66 | 17.5% |
Secondary or tertiary education | 312 | 82.5% |
Parity | ||
Nulliparous | 113 | 29.9% |
Multiparous | 265 | 70.1% |
Food consumption | ||
Fish (yes) | 364 | 97.1% |
Rice (yes) | 362 | 96.3% |
Cassava (yes) | 103 | 27.4% |
Plantains (yes) | 93 | 24.7% |
Potatoes (yes) | 137 | 36.4% |
Bread (yes) | 298 | 98.9% |
Leafy vegetables (yes) | 373 | 99.5% |
Blood levels of heavy metals | ||
Mercury | ||
<3.5 µg/L | 226 | 59.5% |
≥3.5 µg/L | 154 | 40.5% |
Manganese | ||
<13.0 µg/L | 137 | 36.1% |
≥13.0 µg/L | 243 | 63.9% |
Lead | ||
<3.5 µg/dL | 299 | 78.9% |
≥3.5 µg/dL | 81 | 21.3% |
Adverse birth outcomes | ||
Adverse birth outcomes | 74 | 19.5% |
Stillbirths | 17 | 4.5% |
Gestational age at birth < 37.0 weeks | 50 | 13.3% |
Birth weight < 2500 g | 43 | 11.6% |
Apgar scores < 7 at 5 min | 19 | 5.2% |
Covariates | ||
Blood glucose level ≥ 6.1 mmol/L (elevated) | 15 | 10.9% |
Blood pressure > 120/80 mm Hg (elevated and high) | 55 | 32.7% |
Anemia < 6.8 mmol/L (severe, moderate, and mild) | 203 | 84.6% |
Prescription medicine use (yes) | 224 | 58.9% |
Alcohol use 3 months before pregnancy (yes) | 173 | 57.8% |
Smoking 3 months before pregnancy (yes) | 18 | 4.8% |
Variables | Live Birth Status | Preterm Birth < 37.0 Weeks | Birth Weight < 2500 g | Apgar Score < 7 at 5 min | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of Women | χ2- Test Result | Number of Women | χ2- Test Result | Number of Women | χ2- Test Result | Number of Women | χ2- Test Result | |||||
Stillbirth | Live Birth | <37 Weeks | ≥37 Weeks | <2500 g | ≥2500 g | Yes | No | |||||
Mercury | ||||||||||||
<3.5 µg/L | 7 | 219 | 2.472, p = 0.134 | 32 | 193 | 0.254, p = 0.648 | 31 | 194 | 2.270 p = 0.144 | 9 | 211 | 1.284, p = 0.337 |
≥3.5 µg/L | 10 | 144 | 19 | 134 | 13 | 137 | 10 | 138 | ||||
Manganese | ||||||||||||
<13.0 µg/L | 9 | 128 | 2.402, p = 0.195 | 13 | 122 | 2.684, p = 0.117 | 13 | 120 | 0,764, p = 0.408 | 9 | 125 | 1.038, p = 0.333 |
≥13.0 µg/L | 8 | 235 | 38 | 205 | 31 | 211 | 10 | 224 | ||||
Lead | ||||||||||||
<3.5 µg/dL | 11 | 288 | 2.073, p = 0.220 | 35 | 263 | 3.682, p = 0.065 | 32 | 262 | 0.974, p = 0.333 | 13 | 275 | 1.140, p = 0.266 |
≥3.5 µg/dL | 6 | 75 | 16 | 64 | 12 | 69 | 6 | 74 | ||||
Age categories | ||||||||||||
16-19 years | 1 | 37 | 0.375, p = 0.918 | 5 | 33 | 0.096, p = 1.000 | 7 | 31 | 1.938, p = 0.358 | 2 | 34 | 0.015, p = 1.000 |
20-34 years | 13 | 271 | 39 | 244 | 30 | 250 | 14 | 261 | ||||
35+ years | 3 | 55 | 7 | 50 | 7 | 50 | 3 | 54 | ||||
Blood glucose levels | ||||||||||||
<6.1 mmol/L | 7 | 116 | 1.281, p = 0.254 | 14 | 108 | 6.139, p = 0.028 | 16 | 106 | 0.001, p = 1.000 | 7 | 113 | 1.696, p = 0.214 |
≥6.1 mmol/L | 2 | 13 | 5 | 9 | 2 | 13 | 2 | 11 | ||||
Blood pressure levels | ||||||||||||
≤120/80 mm Hg | 5 | 108 | 2.542, p = 0.180 | 14 | 98 | 1.764, p = 0.246 | 10 | 102 | 6.719, p = 0.015 | 6 | 103 | 3.146. p = 0.117 |
>120/80 mm Hg | 6 | 49 | 11 | 43 | 13 | 42 | 7 | 44 | ||||
Anemia | ||||||||||||
No anemia ≥ 6.8 mmol/L | 2 | 35 | 0.000, p = 1.000 | 3 | 33 | 2.178, p = 0.224 | 2 | 34 | 1.913, p = 0.273 | 2 | 32 | 0.027 p = 1.000 |
Anemia < 6.8 mmol/L | 11 | 192 | 37 | 165 | 28 | 174 | 13 | 183 | ||||
Previous live births | ||||||||||||
Nulliparous | 5 | 108 | 0.002, p = 1.000 | 10 | 103 | 3.062, p = 0.100 | 13 | 99 | 0.006, p = 1.000 | 6 | 103 | 0.031, p = 0.803 |
Multiparous | 12 | 253 | 41 | 222 | 31 | 230 | 13 | 244 | ||||
Prescription medicine use | ||||||||||||
Yes | 11 | 213 | 0.244, p = 0.802 | 39 | 184 | 7.443, p = 0.006 | 29 | 195 | 0.790, p = 0.416 | 13 | 202 | 0.824, p = 0.476 |
No | 6 | 150 | 12 | 143 | 15 | 136 | 6 | 147 | ||||
Alcohol use 3 months before pregnancy | ||||||||||||
Yes | 5 | 168 | 2.415, p = 0.141 | 17 | 155 | 4.969, p = 0.034 | 13 | 158 | 6.114, p = 0.015 | 6 | 161 | 2.097, p = 0.164 |
No | 12 | 177 | 34 | 154 | 30 | 156 | 13 | 170 | ||||
Smoking 3 months before pregnancy | ||||||||||||
Yes | 0 | 18 | 0.895, p = 1.000 | 1 | 17 | 1.049, p = 0.487 | 0 | 18 | 2.546, p = 0.146 | 1 | 17 | 0.004, p = 1.000 |
No | 17 | 341 | 50 | 306 | 44 | 309 | 18 | 328 |
Logistic Regression Model Analysis for Preterm Birth | ||||
---|---|---|---|---|
Crude Model | Adjusted Model | |||
Variable | Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value |
Blood lead level | ||||
<3.5 µg/dL | reference | reference | ||
≥3.5 µg/dL | 1.88 (0.98–3.60) | 0.058 | 1.38 (0.40–4.79) | 0.615 |
Blood glucose level | ||||
<6.1 mmol/L | reference | reference | ||
≥6.1 mmol/L | 4.29 (1.26–14.62) | 0.020 | 5.58 (1.38–22.53) | 0.016 |
Prescribed medication | ||||
No | reference | reference | ||
Yes | 2.53 (1.28–5.00) | 0.008 | 2.1 (0.43–10.16) | 0.358 |
Alcohol use 3 months before pregnancy | ||||
No | reference | |||
Yes | 0.50 (0.27–0.93) | 0.028 | 0.36 (0.11–1.145) | 0.083 |
Logistic Regression Model Analysis for Low Birth Weight | ||||
---|---|---|---|---|
Crude Model | Adjusted Model | |||
Variable | Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value |
Blood pressure levels | ||||
≤120/80 mm Hg | reference | reference | ||
>120/80 mm Hg | 3.16 (1.28–7.76) | 0.012 | 2.72 (1.081–6.86) | 0.034 |
Alcohol use 3 months before pregnancy | ||||
No | reference | reference | ||
Yes | 0.43 (0.22–0.85) | 0.015 | 0.47 (0.18–1.23) | 0.124 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sewberath Misser, V.H.; Hindori-Mohangoo, A.D.; Shankar, A.; Wickliffe, J.K.; Lichtveld, M.Y.; Mans, D.R.A. Prenatal Exposure to Mercury, Manganese, and Lead and Adverse Birth Outcomes in Suriname: A Population-Based Birth Cohort Study. Toxics 2022, 10, 464. https://doi.org/10.3390/toxics10080464
Sewberath Misser VH, Hindori-Mohangoo AD, Shankar A, Wickliffe JK, Lichtveld MY, Mans DRA. Prenatal Exposure to Mercury, Manganese, and Lead and Adverse Birth Outcomes in Suriname: A Population-Based Birth Cohort Study. Toxics. 2022; 10(8):464. https://doi.org/10.3390/toxics10080464
Chicago/Turabian StyleSewberath Misser, Vinoj H., Ashna D. Hindori-Mohangoo, Arti Shankar, Jeffrey K. Wickliffe, Maureen Y. Lichtveld, and Dennis R. A. Mans. 2022. "Prenatal Exposure to Mercury, Manganese, and Lead and Adverse Birth Outcomes in Suriname: A Population-Based Birth Cohort Study" Toxics 10, no. 8: 464. https://doi.org/10.3390/toxics10080464