Nanomaterial Ecotoxicology in the Terrestrial and Aquatic Environment: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Web of Science Analysis
- Aquatic environment
- Terrestrial environment
- Comparative studies among models belonging to different environments
3.2. VosViewer Analysis
4. Discussion
4.1. Significance of Invertebrates as Key Organisms to Assess NMs Ecotoxicity
4.2. Nanoparticles Are the Most Studied NMs in the Environmental Compartments
4.3. The Main Limitations of the Studies Come from the Past
4.4. NMs Behavior Can Be Transformed in the Environment
4.5. Need to Use a Multidisciplinary Approach to Evaluate NMs Ecotoxicity as a Whole
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Commission Recommendation of 18 October 2011 on the definition of nanomaterial Text with EEA relevance. Off. J. Eur. Union 2011, 275, 38–401. [Google Scholar]
- Jennings, V.; Goodhead, R.; Tyler, C.R. Ecotoxicology of nanomaterials in aquatic ecosystems. Chapter 1. In Characterization of Nanomaterials in Complex Environmental and Biological Media—Frontiers of Nanoscience, 1st ed.; Baalousha, M., Lead, J.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 8, pp. 3–45. [Google Scholar] [CrossRef]
- Patra, J.K.; Baek, K.-H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J. Nanomater. 2014, 219, 12. [Google Scholar] [CrossRef] [Green Version]
- Joseph, R.R.; Venkatraman, S.S. Drug delivery to the eye: What benefits do nanocarriers offer? Nanomedicine 2017, 12, 683–702. [Google Scholar] [CrossRef] [Green Version]
- Fytianos, G.; Rahdar, A.; Kyzas, G.Z. Nanomaterials in Cosmetics: Recent Updates. Nanomaterials 2020, 10, 979. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Baskar, V.; Selvaraj, D.; Nile, A.; Xiao, J.; Kai, G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. Nano-Micro Lett. 2020, 12, 45. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the environment: Where do we come from, where do we go to? Environ. Sci. Eur. 2018, 30, 6. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, R.K.; Hayyan, M.; AlSaadi, M.A.; Hayyan, A.; Ibrahim, S. Environmental application of nanotechnology: Air, soil, and water. Environ. Sci. Pollut. Res. 2016, 23, 13754–13788. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Gomes, R.; Justino, C.; Rocha-Santos, T.; Freitas, A.C.; da Costa Duarte, A.; Pereira, R. Review of the ecotoxicological effects of emerging contaminants on soil biota. J. Environ. Sci. Health A Tox. Hazards Subst. Environ. Eng. 2017, 52, 1–16. [Google Scholar] [CrossRef]
- Selck, H.; Handy, R.D.; Fernandez, T.F.; Klaine, S.J.; Petersen, E.J. Nanomaterials in the aquatic environment: A European Union–United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead. Environ. Toxicol. Chem. 2016, 35, 1055–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lead, J.R.; Batley, G.E.; Alvarez, P.J.J.; Croteau, M.-N.; Handy, R.D.; McLaughlin, M.J.; Judy, J.D.; Schirmer, K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects- an updated review. Environ. Toxicol. Chem. 2018, 37, 2029–2063. [Google Scholar] [CrossRef]
- Sahu, S.C.; Hayes, A.W. Toxicity of nanomaterials found in human environment: A literature review. Toxicol. Res. Appl. 2017, 1, 2397847317726352. [Google Scholar] [CrossRef]
- Meho, L.I.; Yang, K. Impact of data sources on citation counts and rankings of LIS faculty: Web of Science, Scopus and Google Scholar. JASIST 2007, 58, 2105–2125. [Google Scholar] [CrossRef]
- Schwermer, H.; Barz, F.; Xablotsji, Y. A literature review on stakeholder Participation in Coastal and Marine Fisheries. In You Mares 9—The Oceans: Our Research, Our Future, Proceeding of the 2018 Conference for YOUng Marine RESearcher in Oldeburg, Germany; Jungblut, S., Liebich, V., Bode-Dalby, M., Eds.; Springer Open: Cham, Switzerland, 2020; ISBN 978-3-030-20388-7. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact; Ding, Y., Rousseay, R., Wolfram, D., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 285–320. [Google Scholar] [CrossRef]
- Wang, X.; Qu, R.; Huang, Q.; Wei, Z.; Wang, Z. Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels. Aquat. Toxicol. 2015, 160, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Bahgat, J.; Zang, L.; Nakayama, Y.; Nishimura, N.; Shimada, Y. Effects of nanoplastic on toxicity of azole fungicides (ketoconazole and fluconazole) in zebrafish embryos. Sci. Total Environ. 2021, 800, 149463. [Google Scholar] [CrossRef]
- Wang, F.; Wang, B.; Qu, H.; Zhao, W.; Duan, L.; Zhang, Y.; Zhou, Y.; Yu, G. The influence of nanoplastics on the toxic effects, bioaccumulation, biodegradation and enantioselectivity of ibuprofen in freshwater algae Chlorella pyrenoidosa. Environ. Pollut. 2020, 263, 114593. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Guo, R.; Li, K.; Ma, B.; Chen, Y.; Lv, Y. Contributions of Zn Ions to ZnO Nanoparticle Toxicity on Microcystis aeruginosa During Chronic Exposure. Bull. Environ. Contam. Toxicol. 2019, 103, 802–807. [Google Scholar] [CrossRef]
- Manzo, S.; Buono, S.; Rametta, G.; Miglietta, M.; Schiavo, S.; Di Francia, G. The diverse toxic effect of SiO2 and TiO2 nanoparticles toward the marine microalgae Dunaliella tertiolecta. Environ. Sci. Pollut. Res. 2015, 22, 15941–15951. [Google Scholar] [CrossRef]
- Marcone, G.P.S.; Oliveira, Á.C.; Almeida, G.; Umbuzeiro, G.A.; Jardim, W.F. Ecotoxicity of TiO2 to Daphnia similis under irradiation. J. Haz. Mat. 2012, 211–212, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Libralato, G.; Minetto, D.; Totaro, S.; Micetic, I.; Pigozzo, A.; Sabbioni, E.; Marcomini, A.; Volpi Ghirardini, A. Embryotoxicity of TiO2 nanoparticles to Mytilus galloprovincialis (Lmk). Mar. Environ. Res. 2013, 92, 71–78. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, L.; Freitas, R.; Oliva, M.; Cuccaro, A.; Manzini, C.; Tardelli, F.; Andrade, M.; Costa, M.; Leite, C.; Morelli, A.; et al. Does salinity variation increase synergistic effects of triclosan and carbon nanotubes on Mytilus galloprovincialis? Responses on adult tissues and sperms. Sci. Total Environ. 2020, 734, 138837. [Google Scholar] [CrossRef]
- Rotini, A.; Tornambè, A.; Cossi, E.; Iamunno, F.; Benvenuto, G.; Berducci, M.T.; Maggi, C.; Thaller, M.C.; Cicero, A.M.; Manfra, L.; et al. Salinity-Based Toxicity of CuO Nanoparticles, CuO-Bulk and Cu Ion to Vibrio anguillarum. Front. Microbiol. 2017, 8, 2076. [Google Scholar] [CrossRef] [PubMed]
- Baun, A.; Sørensen, S.N.; Rasmussen, R.F.; Hartmann, N.B.; Koch, C.B. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat. Toxicol. 2008, 86, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Markovic, M.; Andelkovic, I.; Shuster, J.; Janik, L.; Kumar, A.; Losic, D.; McLaughlin, M.J. Addressing challenges in providing a reliable ecotoxicology data for graphene-oxide (GO) using an algae (Raphidocelis subcapitata), and the trophic transfer consequence of GO-algae aggregates. Chemosphere 2020, 245, 125640. [Google Scholar] [CrossRef] [PubMed]
- Coutris, C.; Hertel-Aas, T.; Lapied, E.; Jpner, E.; Oughton, D.H. Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology 2012, 6, 186–195. [Google Scholar] [CrossRef]
- Deng, Y.; Eitzer, B.; White, J.C.; Xing, B. Impact of multiwall carbon nanotubes on the accumulation and distribution of carbamazepine in collard greens (Brassica oleracea). Environ. Sci. Nano 2017, 4, 149–159. [Google Scholar] [CrossRef]
- De la Torre-Roche, R.; Hawthorne, J.; Deng, Y.; Xing, B.; Cai, W.; Newman, L.A.; Wang, C.; Ma, X.; White, J.C. Fullerene-enhanced accumulation of p,p’-DDE in agricultural crop species. Environ. Sci. Technol. 2012, 46, 9315–9323. [Google Scholar] [CrossRef]
- De la Torre-Roche, J.; Pagano, L.; Majumdar, S.; Eitzer, B.D.; Zuverza-Mena, N.; Ma, C.; Servin, A.D.; Marmiroli, N.; Dhankher, O.P.; White, J.C. Co-exposure of imidacloprid and nanoparticle Ag or CeO2 to Cucurbita pepo (zucchini): Contaminant bioaccumulation and translocation. Nano Impact 2018, 11, 136–145. [Google Scholar] [CrossRef]
- Fan, S.; Zhao, P.; Yu, C.; Pan, C.; Li, X. Simultaneous determination of 36 pesticide residues in spinach and cauliflower by LC-MS/MS using multi-walled carbon nanotubes-based dispersive solid-phase clean-up. Food Addit. Contam. Part. A 2014, 31, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Yang, K.; Lin, D. Pentachlorophenol and ciprofloxacin present dissimilar joint toxicities with carbon nanotubes to Bacillus Subtilis. Environ. Pollut. 2021, 270, 116071. [Google Scholar] [CrossRef] [PubMed]
- Simonin, M.; Cantarel, A.A.M.; Crouzet, A.; Gervaix, J.; Marins, J.M.F.; Richaume, A. Negative Effects of Copper Oxide Nanoparticles on Carbon and Nitrogen Cycle Microbial Activities in Contrasting Agricultural Soils and in Presence of Plants. Front. Microbiol. 2018, 9, 3102. [Google Scholar] [CrossRef] [PubMed]
- Nath, J.; Dror, I.; Berkowit, B. Effect of nanoplastics on the transport of platinum-based pharmaceuticals in water-saturated natural soil and their effect on a soil microbial community. Environ. Sci. Nano 2020, 7, 3178–3188. [Google Scholar] [CrossRef]
- Wang, Q.; Xhang, S.; Feng, J.; Sun, T.; Li, C.; Xie, X.; Shi, Q. Enhanced photodynamic inactivation for Gram-negative bacteria by branched polyethylenimine-containing nanoparticles under visible light irradiation. J. Colloid Interface Sci. 2021, 584, 539–550. [Google Scholar] [CrossRef]
- Lai, D.Y. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials. Food Chem. Toxicol. 2015, 85, 120–126. [Google Scholar] [CrossRef]
- Perreault, F.; Pedroso Melegari, S.; Funghetto Fuzinatto, C.; Bogdan, N.; Morin, M.; Popovic, R.; Matias, W.G. Toxicity of PAMAM-coated gold nanoparticles in different unicellular models. Environ. Toxicol. 2014, 29, 328–336. [Google Scholar] [CrossRef]
- Kiss, L.V.; Hrács, K.; Nagy, P.I.; Seres, A. Effects of Zinc Oxide Nanoparticles on Panagrellus redivivus (Nematoda) and Folsomia candida (Collembola) in Various Test Media. Int. J. Environ. Res. 2018, 12, 233–243. [Google Scholar] [CrossRef]
- Fernandez-Cruz, M.L.; Lammel, T.; Connolly, M.; Conde, E.; Barrado, A.I.; Derick, S.; Perez, Y.; Fernandez, M.; Furger, C.; Navas, J.M. Comparative cytotoxicity induced by bulk and nanoparticulated ZnO in the fish and human hepatoma cell lines PLHC-1 and Hep G2. Nanotoxicology 2013, 7, 935–952. [Google Scholar] [CrossRef] [Green Version]
- Manzo, S.; Rocco, A.; Carotenuto, R.; De Lucia Picione, F.; Miglietta, M.L.; Rametta, G.; Di Francia, G. Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environ. Sci. Pollut. Res. 2011, 18, 756–763. [Google Scholar] [CrossRef]
- Ghosh, M.; Manivannan, J.; Sinha, S.; Chakraborty, A.; Kumar Mallick, S.; Bandyopadhyay, M.; Mukherjee, A. In vitro and in vivo genotoxicity of silver nanoparticles. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2012, 749, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Siciliano, A.; Vitiello, M.; Franci, G.; Del Genio, V.; Galdiero, S.; Guida, M.; Carraturo, F.; Fahmi, A.; Galdiero, E. Ecotoxicity Evaluation of Pristine and Indolicidin-coated Silver Nanoparticles in Aquatic and Terrestrial Ecosystem. Int. J. Nanomed. 2020, 15, 8097–8108. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.R.; Paul, K.B.; Dybowska, A.D.; Valsami-Jpnes, E.; Lead, J.R.; Stone, V.; Fernandes, T.F. Accumulation Dynamics and Acute Toxicity of Silver Nanoparticles to Daphnia magna and Lumbriculus variegatus: Implications for Metal Modeling Approaches. Environ. Sci. Technol. 2015, 49, 4389–4397. [Google Scholar] [CrossRef] [PubMed]
- Environmental Legislation for the Regulatory Control of Nanomaterials. Contract n. 070307/2010/580540/SER/D. Final Report, September 2011. Available online: https://ec.europa.eu/environment/chemicals/nanotech/pdf/review_legislation.pdf (accessed on 2 September 2011).
- Water Framework Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community Action in the field of water policy. Off. J. Eur. Communities 2000, 327, 1–82.
- European Commission 2012. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee, Second Regulatory Review on Nanomaterials; COM 20129 572 Final; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Ganzleben, C.; Foss Hansen, S. Nanomaterials as priority substances under the Water Framework Directive. Elni Rev. 2012, 2, 38–45. [Google Scholar] [CrossRef]
- Migula, P.J. Ecotoxicology, Invertebrate. In Encyclopedia of Toxicology, 2nd ed.; Wexler, P., Ed.; Academic Press: Cambridge, MA, USA; Elsevier Inc.: Amsterdam, The Netherlands, 2005; ISBN 9780080548005. [Google Scholar]
- Lagadic, L.; Caquet, T. Invertebrates in Testing of Environmental Chemicals: Are they alternatives? Environ. Health Persp. 1998, 106, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Clift, M.J.D.; Jenkins, G.J.S.; Doak, S.H. An Alternative Perspective towards Reducing the Risk of Engineered Nanomaterials to Human Health. Small 2020, 16, e2002002. [Google Scholar] [CrossRef]
- Braakhuis, H.M.; Kloet, S.K.; Kezic, S.; Kuper, F.; Park, M.V.; Bellmann, S.; van der Zand, M.; Le Gac, S.; Krystek, P.; Peters, R.J.B.; et al. Progress and future of in vitro models to study translocation of nanoparticles. Arch. Toxicol. 2015, 89, 1469–1495. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Cruz, M.L.; Hernández-Moreno, D.; Catalán, J.; Cross, R.K.; Stockmann-Juvala, H.; Cabellos, J.; Lopes, V.R.; Matzke, M.; Ferraz, N.; Izquierdo, J.J.; et al. Quality evaluation of human and environmental toxicity studies performed with nanomaterials—the GUIDEnano approach. Environ. Sci. Nano 2018, 5, 381. [Google Scholar] [CrossRef]
- Heiligtag, F.J.; Niederberger, M. The fascinating world of nanoparticle research. Mater. Today 2013, 16, 262–271. [Google Scholar] [CrossRef]
- Boros, B.-V.; Ostafe, V. Evaluation of Ecotoxicology Assessment Methods of Nanomaterials and their effects. Nanomaterials 2020, 10, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.G.; Xia, Y.N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, S.; Kalaichelvan, P.T. Ecotoxicity of nanoparticles. ISRN Toxicol. 2013, 2013, 574648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulenos, M.R.; Liu, J.; Lujan, H.; Guo, B.; Lichtfouse, E.; Sharma, V.K.; Sayes, C.M. Copper, silver, and titania nanoparticles do not release ions under anoxic conditions and release only minute ion levels under oxic conditions in water: Evidence for the low toxicity of nanoparticles. Environ. Chem. Lett. 2020, 18, 1319–1328. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Motellier, S.; Clavaguera, S.; Nowack, B. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ. Int. 2015, 77, 132–147. [Google Scholar] [CrossRef] [Green Version]
- Pachapur, V.L.; Larios, A.D.; Cledón, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Behavior and characterization of titanium dioxide and silver nanoparticles in soils. Sci. Tot. Environ. 2016, 563–564, 933–943. [Google Scholar] [CrossRef]
- Yoon, Y.; Truong, P.L.; Lee, D.; Ko, S.H. Metal-Oxide Nanomaterials Synthesis and Applications in Flexible and Wearable Sensors. CS Nanosci. 2022, 2, 64–92. [Google Scholar] [CrossRef]
- Van der Ploeg, M.J.C.; Baveco, J.M.; van der Hout, A.; Bakker, R.; Rietjens, I.M.C.M.; van den Brink, N.W. Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics. Environ. Pollut. 2011, 159, 198–203. [Google Scholar] [CrossRef]
- Vieira Sanches, M.; Oliva, M.; De Marchi, L.; Cuccaro, A.; Puppi, D.; Chiellini, F.; Freitas, R.; Pretti, C. Ecotoxicological screening of UV-filters using a battery of marine bioassays. Environ. Pollut. 2021, 290, 118011. [Google Scholar] [CrossRef]
- Amiano, I.; Olabarrieta, J.; Vitorica, J.; Zorita, S. Acute toxicity of nanosized TiO(2) to Daphnia magna under UVA irradiation. Environ. Toxicol. Chem. 2012, 31, 2564–2566. [Google Scholar] [CrossRef]
- European Commission 2021. European Commission Pathway to a Healthy Planet for All. EU Action Plan: Towards Zero Pollution for Air, Water and Soil. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0400&qid=1623311742827 (accessed on 17 June 2021).
- Gottschalk, F.; Sun, T.; Nowack, B. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environ. Pollut. 2013, 181, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Forest, V. Combined effects of nanoparticles and other environmental contaminants on human health—An issue often overlooked. NanoImpact 2021, 23, 100344. [Google Scholar] [CrossRef] [PubMed]
- Todgham, A.E.; Stillman, J.H. Physiological responses to shifts in multiple environmental stressors: Relevance in a changing world. Integr. Comp. Biol. 2013, 53, 539–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, P.M. Ecological Risk and Weight of Evidence Assessments. In Marine Ecotoxicology; Blasco, J., Chapman, P.M., Campana, O., Hampel, M., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 257–271. [Google Scholar]
- Manfra, L.; Maggi, C.; d’Errico, G.; Rotini, A.; Catalano, B.; Maltese, S.; Moltedo, G.; Romanelli, G.; Sesta, G.; Granato, G.; et al. A Weight of Evidence (WOE) Approach to Assess Environmental Hazard of Marine Sediments from Adriatic Offshore Platform Area. Water 2021, 13, 1691. [Google Scholar] [CrossRef]
- Regoli, F.; d’Errico, G.; Nardi, A.; Mezzelani, M.; Fattorini, D.; Benedetti, M.; Di Carlo, M.; Pellegrini, D.; Gorbi, S. Application of a Weight of Evidence Approach for Monitoring Complex Environmental Scenarios: The Case-Study of Off-Shore Platforms. Front. Mar. Sci. 2019, 6, 377. [Google Scholar] [CrossRef]
- Salieri, B.; Barruetabeña, L.; Rodríguez-Llopis, I.; Raun Jacobsen, N.; Manier, N.; Trouiller, B.; Chapon, V.; Hadrup, N.; Sánchez Jiménez, A.; Micheletti, C.; et al. Integrative approach in a safe by design context combining risk, life cycle and socio-economic assessment for safer and sustainable nanomaterials. NanoImpact 2021, 23, 100335. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambardella, C.; Pinsino, A. Nanomaterial Ecotoxicology in the Terrestrial and Aquatic Environment: A Systematic Review. Toxics 2022, 10, 393. https://doi.org/10.3390/toxics10070393
Gambardella C, Pinsino A. Nanomaterial Ecotoxicology in the Terrestrial and Aquatic Environment: A Systematic Review. Toxics. 2022; 10(7):393. https://doi.org/10.3390/toxics10070393
Chicago/Turabian StyleGambardella, Chiara, and Annalisa Pinsino. 2022. "Nanomaterial Ecotoxicology in the Terrestrial and Aquatic Environment: A Systematic Review" Toxics 10, no. 7: 393. https://doi.org/10.3390/toxics10070393