Serum Bilirubin and Sperm Quality in Adult Population
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Sperm Quality Analysis
2.3. Serum Total Bilirubin Measurement
2.4. Covariates
2.5. Statistical Analyses
3. Results
3.1. Characteristics of Participants in Serum Total Bilirubin Quartiles
3.2. Associations between Serum Total Bilirubin and Sperm Quality
3.3. Associations between Serum Total Bilirubin Quartiles and Sperm Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jacobsen, J.; Brodersen, R. Albumin-bilirubin binding mechanism. J. Biol. Chem. 1983, 258, 6319–6326. [Google Scholar] [CrossRef]
- Levitt, D.; Levitt, M. Quantitative assessment of the multiple processes responsible for bilirubin homeostasis in health and disease. Clin. Exp. Gastroenterol. 2014, 7, 307–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sticova, E.; Jirsa, M. New insights in bilirubin metabolism and their clinical implications. World J. Gastroenterol. 2013, 19, 6398–6407. [Google Scholar] [CrossRef] [PubMed]
- Watchko, J.F.; Tiribelli, C. Bilirubin-Induced Neurologic Damage—Mechanisms and Management Approaches. N. Engl. J. Med. 2013, 369, 2021–2030. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, V.K.; Wong, R.J. Bilirubin neurotoxicity in preterm infants: Risk and prevention. J. Clin. Neonatol. 2013, 2, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, D.K.; Vreman, H.J.; Wong, R.J. Bilirubin Production and the Risk of Bilirubin Neurotoxicity. Semin. Perinatol. 2011, 35, 121–126. [Google Scholar] [CrossRef]
- Watchko, J.F. Kernicterus and the Molecular Mechanisms of Bilirubin-Induced CNS Injury in Newborns. NeuroMolecular Med. 2006, 8, 513–530. [Google Scholar] [CrossRef]
- Ahlfors, C.E.; Wennberg, R.P.; Ostrow, J.D.; Tiribelli, C. Unbound (Free) Bilirubin: Improving the Paradigm for Evaluating Neonatal Jaundice. Clin. Chem. 2009, 55, 1288–1299. [Google Scholar] [CrossRef] [Green Version]
- Palmer, N.O.; Bakos, H.W.; Fullston, T.; Lane, M. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis 2012, 2, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Chambers, T.J.; Richard, R.A. The impact of obesity on male fertility. Hormones 2015, 14, 563–568. [Google Scholar] [CrossRef]
- Katib, A. Mechanisms linking obesity to male infertility. Central Eur. J. Urol. 2015, 68, 79–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehala-Aleksejev, K.; Punab, M. The effect of metabolic syndrome on male reproductive health: A cross-sectional study in a group of fertile men and male partners of infertile couples. PLoS ONE 2018, 13, e0194395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leisegang, K.; Udodong, A.; Bouic, P.J.D.; Henkel, R.R. Effect of the metabolic syndrome on male reproductive function: A case-controlled pilot study. Andrologia 2012, 46, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, L.; Wang, B.; Chen, D.; Wang, J. Nonalcoholic fatty liver disease and alteration in semen quality and reproductive hormones. Eur. J. Gastroenterol. Hepatol. 2015, 27, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- WHO. Manual for the Examination of Human Semen and Semencervical Mucus Interaction, 5th ed.; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- WHO. Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization Press: Geneva, Switzerland, 2010. [Google Scholar]
- Brito, M.A.; Brondino, C.D.; Moura, J.J.; Brites, D. Effects of Bilirubin Molecular Species on Membrane Dynamic Properties of Human Erythrocyte Membranes: A Spin Label Electron Paramagnetic Resonance Spectroscopy Study. Arch. Biochem. Biophys. 2001, 387, 57–65. [Google Scholar] [CrossRef]
- Brito, M.A.; Brites, D.; Butterfield, D.A. A link between hyperbilirubinemia, oxidative stress and injury to neocortical synaptosomes. Brain Res. 2004, 1026, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.W.R.; Nietsch, L.; Norman, E.; Bjerre, J.V.; Hascoet, J.-M.; Mreihil, K.; Ebbesen, F. Reversibility of acute intermediate phase bilirubin encephalopathy. Acta Paediatr. 2009, 98, 1689–1694. [Google Scholar] [CrossRef]
- Amin, S.B.; Charafeddine, L.; Guillet, R. Transient Bilirubin Encephalopathy and Apnea of Prematurity in 28 to 32 Weeks Gestational Age Infants. J. Perinatol. 2005, 25, 386–390. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, S.M. Chronic bilirubin encephalopathy: Diagnosis and outcome. Semin. Fetal Neonatal Med. 2010, 15, 157–163. [Google Scholar] [CrossRef]
- Fernandes, A.; Falcão, A.S.; Silva, R.F.M.; Gordo, A.C.; Gama, M.J.; Brito, M.A.; Brites, D. Inflammatory signalling pathways involved in astroglial activation by unconjugated bilirubin. J. Neurochem. 2006, 96, 1667–1679. [Google Scholar] [CrossRef]
- Silva, S.L.; Vaz, A.R.; Barateiro, A.; Falcão, A.S.; Fernandes, A.; Brito, M.A.; Silva, R.F.; Brites, D. Features of bilirubin-induced reactive microglia: From phagocytosis to inflammation. Neurobiol. Dis. 2010, 40, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Barateiro, A.; Vaz, A.R.; Silva, S.L.; Fernandes, A.; Brites, R. ER Stress, Mitochondrial Dysfunction and Calpain/JNK Activation are Involved in Oligodendrocyte Precursor Cell Death by Unconjugated Bilirubin. NeuroMol. Med. 2012, 14, 285–302. [Google Scholar] [CrossRef] [PubMed]
- Brito, M.A.; Palmela, I.; Cardoso, F.L.; Sá-Pereira, I.; Brites, D. Blood–Brain Barrier and Bilirubin: Clinical Aspects and Experimental Data. Arch. Med Res. 2014, 45, 660–676. [Google Scholar] [CrossRef] [PubMed]
- Setchell, B.P. Blood-testis barrier, junctional and transport proteins and spermatogenesis. Adv. Exp. Med. Biol. 2008, 636, 212–233. [Google Scholar]
- Boekelheide, K. Mechanisms of Toxic Damage to Spermatogenesis. JNCI Monogr. 2005, 2005, 6–8. [Google Scholar] [CrossRef] [Green Version]
- Griswold, M.D. Interactions Between Germ Cells and Sertoli Cells in the Testis. Biol. Reprod. 1995, 52, 211–216. [Google Scholar] [CrossRef]
- Su, L.; Mruk, D.D.; Cheng, C.Y. Drug transporters, the blood-testis barrier, and spermatogenesis. J. Endocrinol. 2011, 208, 207–223. [Google Scholar] [CrossRef]
- Sodani, K.; Patel, A.; Kathawala, R.J.; Chen, Z.-S. Multidrug resistance associated proteins in multidrug resistance. Chin. J. Cancer 2012, 31, 58–72. [Google Scholar] [CrossRef] [Green Version]
- Klein, D.M.; Wright, S.H.; Cherrington, N.J. Localization of Multidrug Resistance-Associated Proteins along the Blood-Testis Barrier in Rat, Macaque, and Human Testis. Drug Metab. Dispos. 2013, 42, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Cole, S.P.C. Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter. J. Biol. Chem. 2014, 289, 30880–30888. [Google Scholar] [CrossRef] [Green Version]
- Vorović, J.; Passamonti, S. Membrane Transporters for Bilirubin and Its Conjugates: A Systematic Review. Front. Pharmacol. 2017, 8, 887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iorio, A.L.; Da Ros, M.; Fantappiè, O.; Lucchesi, M.; Facchini, L.; Stival, A.; Becciani, S.; Guidi, M.; Favre, C.; De Martino, M.; et al. Blood-Brain Barrier and Breast Cancer Resistance Protein: A Limit to the Therapy of CNS Tumors and Neurodegenerative Diseases. Anti-Cancer Agents Med. Chem. 2016, 16, 810–815. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.; Unadkat, J.D. Role of the Breast Cancer Resistance Protein (BCRP/ABCG2) in Drug Transport—An Update. AAPS J. 2014, 17, 65–82. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Ling, Z.-L.; Zhang, J.; Li, Y.; Shu, N.; Zhong, Z.-Y.; Chen, Y.; Di, X.-Y.; Wang, Z.-J.; Liu, L.; et al. Unconjugated bilirubin elevation impairs the function and expression of breast cancer resistance protein (BCRP) at the blood-brain barrier in bile duct-ligated rats. Acta Pharmacol. Sin. 2016, 37, 1129–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bart, J.; Hollema, H.; Groen, H.J.M.; De Vries, E.G.E.; Hendrikse, N.H.; Sleijfer, D.T.; Wegman, T.D.; Vaalburg, W.; Van Der Graaf, W.T.A. The distribution of drug-efflux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal blood-testis barrier and in primary testicular tumours. Eur. J. Cancer 2004, 40, 2064–2070. [Google Scholar] [CrossRef]
- Kalliokoski, A.; Niemi, M. Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol. 2009, 158, 693–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Steeg, E.; Wagenaar, E.; van der Kruijssen, C.M.; Burggraaff, J.E.; de Waart, D.R.; Elferink, R.P.O.; Kenworthy, K.E.; Schinkel, A.H. Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J. Clin. Investig. 2010, 120, 2942–2952. [Google Scholar] [CrossRef]
- Suzuki, T.; Onogawa, T.; Asano, N.; Mizutamari, H.; Mikkaichi, T.; Tanemoto, M.; Abe, M.; Satoh, F.; Unno, M.; Nunoki, K.; et al. Identification and Characterization of Novel Rat and Human Gonad-Specific Organic Anion Transporters. Mol. Endocrinol. 2003, 17, 1203–1215. [Google Scholar] [CrossRef] [Green Version]
- Augustine, L.M.; Markelewicz, R.J.; Boekelheide, K.; Cherrington, N.J. Xenobiotic and endobiotic transporter mRNA expression in the blood-testis barrier. Drug Metab. Dispos. 2005, 33, 182–189. [Google Scholar] [CrossRef] [Green Version]
Variables | Q1 (n = 2298) | Q2 (n = 2230) | Q3 (n = 2277) | Q4 (n = 2252) | p-Value |
---|---|---|---|---|---|
Continuous variables, mean (SD) | |||||
Age (years) | 32.33 (4.67) | 32.35 (4.89) | 32.01 (4.55) | 32.01 (4.79) | <0.05 |
Total bilirubin | 0.56 (0.10) | 0.79 (0.06) | 1.01 (0.07) | 1.50 (0.38) | <0.05 |
SBP | 119.35 (14.51) | 120.76 (13.04) | 120.72 (11.65) | 118.81 (13.67) | 0.74 |
FPG | 98.52 (12.11) | 98.29 (15.34) | 97.59 (14.30) | 96.60 (11.82) | <0.05 |
AST | 24.35 (11.53) | 24.89 (11.51) | 25.29 (17.24) | 24.94 (18.46) | 0.21 |
CHO | 190.39 (34.52) | 192.53 (35.37) | 190.97 (38.00) | 187.84 (32.82) | <0.05 |
CRP (mg/dL) | 0.28 (0.51) | 0.20 (0.30) | 0.20 (0.62) | 0.18 (0.37) | <0.05 |
Continuous variables, median (IQR) | |||||
Sperm concentration | 49.78 (36.33) | 53.48 (42.29) | 55.46 (44.13) | 53.94 (41.20) | <0.05 |
Sperm total motility (%) | 64.07 (16.16) | 64.71 (16.65) | 64.97 (15.67) | 63.66 (16.71) | <0.05 |
Sperm progressive motility (%) | 45.49 (16.56) | 46.42 (17.27) | 46.53 (16.60) | 45.29 (16.92) | <0.05 |
Sperm normal morphology (%) | 66.16 (16.69) | 66.91 (16.44) | 67.55 (15.83) | 67.50 (16.86) | <0.05 |
Category variables, (%) | |||||
HTN (%) | 54 (2.4) | 53 (2.4) | 47 (2.1) | 58 (2.8) | 0.80 |
DM (%) | 13 (0.6) | 12 (0.5) | 13 (0.6) | 6 (0.3) | 0.19 |
Cigarette smoking (%) | 239 (40.9) | 266 (50.2) | 304 (52.6) | 364 (58.4) | <0.05 |
Variables | Model 1 a β (95% CI) | p Value | Model 2 a β (95% CI) | p Value | Model 3 a β (95% CI) | p Value | Model 4 a β (95% CI) | p Value |
---|---|---|---|---|---|---|---|---|
Sperm Concentration | ||||||||
Total bilirubin | −6.40 (−35.10, 22.31) | 0.66 | 1.44 (−26.60, 29.47) | 0.92 | 3.50 (−25.58, 32.57) | 0.81 | 3.02 (−27.80, 33.85) | 0.84 |
Sperm Motility | ||||||||
Total bilirubin | −7.41 (−20.68, 5.86) | 0.27 | −12.11 (−24.45, 0.23) | <0.05 | −12.13 (−24.74, 0.47) | <0.05 | −13.82 (−26.99, −0.64) | <0.05 |
Sperm Progressive Motility | ||||||||
Total bilirubin | −8.28 (−22.25, 5.69) | 0.24 | −12.06 (−25.71, 1.60) | 0.08 | −10.91 (−25.21, 3.38) | 0.13 | −12.73 (−27.70, 2.24) | 0.09 |
Sperm Normal Morphology | ||||||||
Total bilirubin | −16.75 (−27.53, −5.96) | <0.05 | −17.89 (−29.01, −6.76) | <0.05 | −17.46 (−28.95, −5.97) | <0.05 | −18.38 (−30.46, −6.29) | <0.05 |
Variables | Model 1 a OR b (95% CI) | p Value | Model 2 a OR b (95% CI) | p Value | Model 3 a OR b (95% CI) | p Value | Model 4 a OR b (95% CI) | p Value |
---|---|---|---|---|---|---|---|---|
Sperm Concentration | ||||||||
Q2 vs. Q1 | 7.13 (−25.46, 39.72) | 0.66 | 7.78 (−23.25, 38.81) | 0.62 | 11.55 (−20.55, 43.65) | 0.47 | 11.98 (−20.98, 44.94) | 0.47 |
Q3 vs. Q1 | 9.06 (−20.88, 39.00) | 0.55 | 12.57 (−16.09, 41.24) | 0.38 | 23.91 (−7.61, 55.43) | 0.13 | 25.76 (−7.26, 58.77) | 0.12 |
Q4 vs. Q1 | −9.80 (−42.39, 22.79) | 0.55 | −2.14 (−33.87, 29.59) | 0.89 | −2.81 (−34.93, 29.30) | 0.86 | −4.18 (−37.26, 28.91) | 0.80 |
Sperm Motility | ||||||||
Q2 vs. Q1 | 2.67 (−12.49, 17.83) | 0.72 | 2.26 (−11.39, 15.91) | 0.74 | 5.14 (−8.77, 19.05) | 0.46 | 5.25 (−8.90, 19.40) | 0.46 |
Q3 vs. Q1 | 0.74 (−13.19, 14.67) | 0.92 | −1.45 (−14.06, 11.16) | 0.82 | 2.23 (−11.43, 15.89) | 0.74 | 3.67 (−10.51, 17.84) | 0.60 |
Q4 vs. Q1 | −7.93 (−23.09, 7.23) | 0.30 | −12.72 (−26.68, 1.24) | 0.07 | −13.31 (−27.22, 0.61) | 0.06 | −14.15 (−28.36, 0.06) | <0.05 |
Sperm Progressive Motility | ||||||||
Q2 vs. Q1 | −5.53 (−21.64, 10.57) | 0.49 | −5.85 (−21.20, 9.50) | 0.45 | −3.67 (−20.01, 12.67) | 0.65 | −3.72 (−20.42, 12.98) | 0.65 |
Q3 vs. Q1 | −4.01 (−18.81, 10.78) | 0.59 | −5.73 (−19.91, 8.45) | 0.42 | −2.56 (−18.61, 13.49) | 0.75 | −0.99 (−17.72, 15.74) | 0.91 |
Q4 vs. Q1 | −9.83 (−25.94, 6.27) | 0.23 | −13.58 (−29.28, 2.11) | 0.09 | −13.22 (−29.57, 3.12) | 0.11 | −13.99 (−30.76, 2.77) | 0.10 |
Sperm Normal Morphology | ||||||||
Q2 vs. Q1 | −7.32 (−19.68, 5.05) | 0.24 | −7.40 (−19.84, 5.03) | 0.24 | −4.78 (−17.30, 7.75) | 0.44 | −5.04 (−17.84, 7.75) | 0.43 |
Q3 vs. Q1 | −3.81 (−15.17, 7.55) | 0.50 | −4.28 (−15.76, 7.21) | 0.46 | 0.46 (−11.83, 12.76) | 0.94 | 1.65 (−11.17, 14.46) | 0.80 |
Q4 vs. Q1 | −18.62 (−30.98, −6.25) | <0.05 | −19.64 (−32.35, −6.92) | <0.05 | −20.79 (−33.32, −8.26) | <0.05 | −21.15 (−33.99, −8.30) | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-Y.; Chen, W.-L. Serum Bilirubin and Sperm Quality in Adult Population. Toxics 2022, 10, 295. https://doi.org/10.3390/toxics10060295
Chen Y-Y, Chen W-L. Serum Bilirubin and Sperm Quality in Adult Population. Toxics. 2022; 10(6):295. https://doi.org/10.3390/toxics10060295
Chicago/Turabian StyleChen, Yuan-Yuei, and Wei-Liang Chen. 2022. "Serum Bilirubin and Sperm Quality in Adult Population" Toxics 10, no. 6: 295. https://doi.org/10.3390/toxics10060295
APA StyleChen, Y. -Y., & Chen, W. -L. (2022). Serum Bilirubin and Sperm Quality in Adult Population. Toxics, 10(6), 295. https://doi.org/10.3390/toxics10060295