A Review of Soil Contaminated with Dioxins and Biodegradation Technologies: Current Status and Future Prospects
Abstract
:1. Introduction
2. Overview of Dioxins
2.1. Sources, Fate, and Transportation of Dioxins in Soil
2.2. Toxicity and Health Risk Assessment
3. Situation of Dioxin-Contaminated Soil and Standard Limits
4. Biodegradation Technologies of Dioxins
4.1. Bioaugmentation
4.2. Biostimulation
4.3. Phytoremediation
5. Prospects for Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kulkarni, P.S.; Du, T. Dioxins. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2019; Volume 2, pp. 83–92. [Google Scholar] [CrossRef]
- Consonni, D.; Sindaco, R.; Alberto, P. Blood levels of dioxins, furans, dioxin-like PCBs, and TEQs in general populations: A review, 1989–2010. Environ. Int. 2012, 44, 151–162. [Google Scholar] [CrossRef] [PubMed]
- USAID. Dioxin Remediation Bien Hoa Airbase Area Project; Final Masterplan—Volume 1; USAID: Washington, DC, USA, 2020; Volume 1. [Google Scholar]
- Mckay, G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: Review. Chem. Eng. J. 2002, 86, 343–368. [Google Scholar] [CrossRef]
- Stanmore, B.R. An Empirical Model for the De Novo Formation of PCDD/F in Medical Waste Incinerators. Environ. Sci. Technol. 2000, 34, 4538–4544. [Google Scholar] [CrossRef]
- Anderson, D.R.; Fisher, R. Sources of dioxins in the United Kingdom: The steel industry and other sources. Chemosphere 2002, 46, 371–381. [Google Scholar] [CrossRef]
- Ahn, Y.; Liu, F.; Fennell, D.E. Biostimulation and bioaugmentation to enhance dechlorination of polychlorinated dibenzo-p-dioxins in contaminated sediments. FEMS Microbiol Ecol. 2008, 66, 271–281. [Google Scholar] [CrossRef]
- Thi, T.; Hanh, T.; Anh, L.V.; Bich, N.N.; Hung, N.V. Environmental health risk assessment by exposure to dioxin in food at dioxin hot site in Da Nang. J. Prev. Med. 2011, 4, 4–6. [Google Scholar]
- Manh, H.D.; Kido, T.; Okamoto, R.; XianLiang, S.; Anh, L.T.; Supratman, S.; Maruzeni, S.; Nishijo, M.; Nakagawa, H.; Honma, S.; et al. Serum Dioxin Levels in Vietnamese Men more than 40 Years after Herbicide Spraying. Am. Chem. Soc. 2014, 48, 3496–3503. [Google Scholar] [CrossRef]
- Haglund, P. Methods for Treating Soils Contaminated with Polychlorinated Dibenzo-p-Dioxins, Dibenzofurans, and Other Polychlorinated Aromatic Compounds. Ambio 2007, 36, 467–474. [Google Scholar] [CrossRef]
- Marklund, S.; Andersson, R.; Tysidind, M.; Bjrkman, K.E.E.; Grigoriadis, V. Emissions of PCDDs and PCDFs in gasoline and diesel fueled cars. Chemosphere 1990, 20, 553–561. [Google Scholar] [CrossRef]
- Mino, Y.; Moriyama, Y. Possible Remediation of Dioxin-Polluted Soil by Steam Distillation. Chem. Pharm. Bull. 2001, 49, 1050–1051. [Google Scholar] [CrossRef] [Green Version]
- Harjanto, S.; Kasai, E.; Terui, T.; Nakamura, T. Formation and transport of PCDD/Fs in the packed bed of soil containing organic chloride during a thermal remediation process. Chemosphere 2002, 49, 217–224. [Google Scholar] [CrossRef]
- Gray, K.A.; Hilarides, R.J. Radiolytic treatment of dioxin contaminated soils. Radiat. Phys. Chem. 1995, 46 Pt 2, 1081–1084. [Google Scholar] [CrossRef]
- Nakamiya, K.; Hashimoto, S.; Ito, H.; Edmonds, J.S.; Yasuhara, A.; Morita, M. Degradation of dioxins by cyclic ether degrading fungus, Cordyceps sinensis. Fed. Eur. Microbiol. Soc. 2005, 248, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Isosaaril, P.; Tuhkanen, T.; Vartiainen, T. Photodegradation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Soil with Vegetable Oil. Environ. Sci. Pollut. Res. 2004, 11, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Isosaari, P.; Laine, O.; Tuhkanen, T.; Vartiainen, T. Photolysis of polychlorinated dibenzo-p-dioxins and dibenzofurans dissolved in vegetable oils: Influence of oil quality. Sci. Total Environ. 2005, 340, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pittman, C.U., Jr.; He, J. Dechlorination of PCBs, CAHs, herbicides and pesticides neat and in soils at 25 °C using Na/NH3. J. Hazard. Mater. 2002, 92, 51–62. [Google Scholar] [CrossRef]
- Alassali, A.; Moon, H.; Picuno, C.; Meyer, R.S.A.; Kuchta, K. Assessment of polyethylene degradation after aging through anaerobic digestion and composting. Polym. Degrad. Stab. 2018, 158, 14–25. [Google Scholar] [CrossRef]
- Nam, I.; Kim, Y.; Murugesan, K.; Jeon, J.; Chang, Y.; Chang, Y. Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst. J. Hazard. Mater. 2008, 157, 114–121. [Google Scholar] [CrossRef]
- Suzuki, S.; Hiraishi, A. Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated. J. Gen. Appl. Microbiol. 2007, 228, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Field, J.A.; Sierra-Alvarez, R. Microbial degradation of chlorinated dioxins. Chemosphere 2008, 71, 1005–1018. [Google Scholar] [CrossRef]
- Bunge, M.; Adrian, L.; Kraus, A.; Opel, M. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 2003, 421, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Barkovskii, A.L. Microbial Dechlorination of Historically Present and Freshly Spiked Chlorinated Dioxins and Diversity of Dioxin-Dechlorinating Populations. Appl. Environ. Microbiol. 1996, 62, 4556–4562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narihiro, T.; Kaiya, S.; Futamata, H.; Hiraishi, A. Removal of polychlorinated dioxins by semi-aerobic fed-batch composting with biostimulation of “Dehalococcoides”. J. Biosci. Bioeng. 2010, 109, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Takahashi, N.; Hiraishi, A. Phylogenetic Characterization of a Polychlorinated-Dioxin-Dechlorinating Microbial Community by Use of Microcosm Studies. Appl. Environ. Microbiol. 2005, 71, 4325–4334. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Pan, S.; Zhang, Z.; Lin, X.; Zhang, Y.; Chen, S. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community. Bioresour. Technol. 2016, 224, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Echartea, E.; Macek, T.; Demnerova, K.; Uhlik, O. Bacterial Biotransformation of Pentachlorophenol and Micropollutants Formed during Its Production Process. Int. J. Environ. Res. Public Health 2016, 13, 1146. [Google Scholar] [CrossRef]
- Schnoor, J.L. Phytoremediation of Polychlorinated Biphenyls: New Trends and Promises. Environ. Sci. Technol. 2010, 44, 2767–2776. [Google Scholar]
- Mudhoo, A.; Thayalan, G.; Muthoora, N.J.; Muthoora, M.N.; Oozeer, B.Z. Dioxins and Furans: Sources, Impacts and Remediation; Springer International Publishing: Cham, Switzerland, 2013. [Google Scholar]
- Kulkarni, P.S.; Crespo, J.G.; Afonso, C.A.M. Dioxins sources and current remediation technologies—A review. Environ. Int. 2008, 34, 139–153. [Google Scholar] [CrossRef]
- Chen, W.; Wu, J.; Lin, S.; Chang, J. Bioremediation of polychlorinated-p-dioxins/dibenzofurans contaminated soil using simulated compost-amended landfill reactors under hypoxic conditions. J. Hazard. Mater. 2016, 312, 159–168. [Google Scholar] [CrossRef]
- Feshin, D.; Poberezhnaya, T.; Shelepchikov, A.; Brodsky, E.; Levin, B. PCDD/Fs in emissions of dirt volcano. Organohalogen Compd. 2006, 68, 2240–2243. [Google Scholar]
- Salamanca, M.; Chandía, C.; Hernández, A. Impact of forest fi res on the concentrations of polychlorinated dibenzo-p-dioxin and dibenzofurans in coastal waters of central Chile. Sci. Total Environ. 2016, 573, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Reiner, E.J.; Clement, R.E.; Okey, A.B.; Marvin, C.H. Advances in analytical techniques for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like PCBs. Anal. Bioanal. Chem. 2006, 386, 791–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathna, R.; Varjani, S.; Nakkeeran, E. Recent developments and prospects of dioxins and furans remediation. J. Environ. Manag. 2018, 223, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Holtzer, M.; Dańko, J.; Dańko, R. Possibilities of formation of dioxin and furans in metallurgical processes as well as methods of their reduction. Metalurgija 2007, 46, 285–290. [Google Scholar]
- Committee on the Implications of Dioxin in the Food Supply-National Research Council. Dioxins and Dioxin-Like Compounds; The National Academies Press: Washington, DC, USA, 2003. [Google Scholar]
- Halden, R.U.; Dwyer, D.F.; Halden, R.U.; Dwyer, D.F. Biodegradation of Dioxin-Related Compounds: A Review Biodegradation of Dioxin-Related Compounds: A Review. Bioremediat. J. 2008, 1, 11–25. [Google Scholar] [CrossRef]
- Baveye, P.C.; Otten, W.; Kravchenko, A.; Balseiro-Romero, M.; Beckers, É.; Chalhoub, M.; Darnault, C.; Eickhorst, T.; Garnier, P.; Hapca, S.; et al. Emergent Properties of Microbial Activity in Heterogeneous Soil Microenvironments: Different Research Approaches Are Slowly Converging, Yet Major Challenges Remain. Front. Microbiol. 2018, 9, 1929. [Google Scholar] [CrossRef]
- Booth, S.; Hui, J.; Alojado, Z.; Lam, V.; Cheung, W.; Zeller, D.; Steyn, D.; Pauly, D. Global deposition of airborne dioxin. Mar. Pollut. Bull. 2013, 75, 182–186. [Google Scholar] [CrossRef]
- Dopico, M.; Gómez, A. Review of the current state and main sources of dioxins around the world. J. Air Waste Manag. Assoc. 2015, 65, 1033–1049. [Google Scholar] [CrossRef]
- Nijenhuis, I.; Stollberg, R.; Lechner, U. Anaerobic microbial dehalogenation and its key players in the contaminated Bitterfeld-Wolfen megasite. FEMS Microbiol. Ecol. 2018, 94, fiy012. [Google Scholar] [CrossRef]
- Moon, H.; Choi, M.; Choi, H.; Kannan, K. Severe pollution of PCDD/Fs and dioxin-like PCBs in sediments from Lake Shihwa, Korea: Tracking the source. Mar. Pollut. Bull. 2012, 64, 2357–2363. [Google Scholar] [CrossRef]
- Capanni, F.; Muñoz-Arnanz, J.; Marsili, L.; Fossi, M.C. Assessment of PCDD/Fs, dioxin-like PCBs and PBDEs in Mediterranean striped dolphins. Mar. Pollut. Bull. 2020, 156, 111207. [Google Scholar] [CrossRef] [PubMed]
- Matovu, H.; Mubiru, E.; Ssebugere, P.; Sillanp, M. Human and environmental exposure to PCDD/Fs and dioxin-like PCBs in Africa: A review. Chemosphere 2019, 223, 483–493. [Google Scholar] [CrossRef]
- Zielinski, M.; Czerska, M.; Urbaniak, M.; Gromadzinska, J. Soil contamination of PCDDs/PCDFs and dl-PCBs in the urban catchment in central Poland. Toxicol. Lett. 2015, 238, S379–S380. [Google Scholar] [CrossRef]
- Liu, G.; Cai, Z.; Wu, Y.; Jiang, G. Dioxin analysis in China. Trends Anal. Chem. 2013, 46, 178–188. [Google Scholar] [CrossRef]
- Stellman, J.M.; Stellman, S.D.; Christian, R.; Weber, T.; Tomasallo, C. The extent and patterns of usage of Agent Orange and other herbicides in Vietnam. Nature 2003, 422, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.J.; Leung, A.O.W.; Jiao, L.P.; Wong, M.H. Polychlorinated dibenzo-p-dioxins and dibenzofurans pollution in China: Sources, environmental levels and potential human health impacts. Environ. Int. 2008, 34, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.G.; Yang, M.; Jia, H.L.; Zhou, L.; Li, Y.F. Levels, distributions and profiles of polychlorinated biphenyls in surface soils of Dalian, China. Chemosphere 2008, 73, 38–42. [Google Scholar] [CrossRef]
- Naile, J.E.; Khim, J.S.; Wang, T.; Wan, Y.; Luo, W.; Hu, W.; Jiao, W.; Park, J.; Ryu, J.; Hong, S.; et al. Sources and distribution of polychlorinated-dibenzo-p-dioxins and -dibenzofurans in soil and sediment from the Yellow Sea region of China and Korea. Environ. Pollut. 2011, 159, 907–917. [Google Scholar] [CrossRef]
- Pan, J.; Yang, Y.; Zhu, X.; Yeung LW, Y.; Taniyasu, S.; Miyake, Y.; Falandysz, J.; Yamashita, N. Science of the Total Environment Altitudinal distributions of PCDD/Fs, dioxin-like PCBs and PCNs in soil and yak samples from Wolong high mountain area, eastern Tibet-Qinghai Plateau, China. Sci. Total Environ. 2013, 444, 102–109. [Google Scholar] [CrossRef]
- Leung, A.O.W.; Wong, A.S. Spatial Distribution of Polybrominated Diphenyl Ethers and Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Soil and Combusted Residue at Guiyu, an Electronic Waste Recycling Site in Southeast China. Environ. Sci. Technol. 2007, 41, 2730–2737. [Google Scholar] [CrossRef]
- Lee, C.C.; Lin, W.T.; Liao, P.C.; Su, H.J.; Chen, H.L. High average daily intake of PCDD/Fs and serum levels in residents living near a deserted factory producing pentachlorophenol (PCP) in Taiwan: Influence of contaminated fish consumption. Environ. Pollut. 2006, 141, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Guo, Y.L.; Kuei, C.H.; Chang, H.Y.; Hsu, J.F.; Wang, S.T.; Liao, P.C. Human PCDD/PCDF levels near a pentachlorophenol contamination site in Tainan, Taiwan. Chemosphere 2006, 65, 436–448. [Google Scholar] [CrossRef] [PubMed]
- Song, A.; Li, H.; Liu, M.; Hu, J.; Sheng, G.; Ying, G. Polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) in soil around municipal solid waste incinerator: A comparison with polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs). Environ. Pollut. 2022, 293, 118563. [Google Scholar] [CrossRef] [PubMed]
- Die, Q.; Lu, A.; Li, C.; Li, H.; Kong, H.; Li, B. Occurrence of dioxin-like POPs in soils from urban green space in a metropolis, North China: Implication to human exposure. Environ. Sci. Pollut. Res. 2021, 28, 5587–5597. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, W. Distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/Fs) and dioxin-like polychlorinated biphenyls (dioxin-like PCBs) in the soil in a typical area of eastern China. J. Hazard. Mater. 2009, 163, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Le, L.T.H.; Dat, N.D.; Minh, N.H.; Nguyen, K.A. Characteristics of PCDD/Fs in soil and sediment samples collected from A-So former airbase in Central Vietnam. Sci. Total Environ. 2019, 661, 27–34. [Google Scholar] [CrossRef]
- Anh, T.; Vu, T.; Tarradellas, J. Dioxin contamination in soils of Southern Vietnam. Chemosphere 2007, 67, 1802–1807. [Google Scholar] [CrossRef]
- Takeda, N.; Takaoka, M. An assessment of dioxin contamination from the intermittent operation of a municipal waste incinerator in Japan and associated remediation. Environ. Sci. Pollut. Res. 2013, 20, 2070–2080. [Google Scholar] [CrossRef]
- Kiguchi, O.; Kobayashi, T.; Wada, Y.; Saitoh, K.; Ogawa, N. Polychlorinated dibenzo-p-dioxins and dibenzofurans in paddy soils and river sediments in Akita, Japan. Chemosphere 2007, 67, 557–573. [Google Scholar] [CrossRef]
- Cho, H.-K. Distribution of PCDD/Fs and PCBs in Soils and Pine Needles in Ulsan, South Korea. Master’s Thesis, Ulsan National Institute of Science and Technology, Ulsan, Korea, 2021. [Google Scholar]
- Liberatori, G.; Cotugno, P.; Sturba, L.; Vannuccini, M.L.; Capasso, G.; Velardo, R.; Besselink, H.; Massari, F.; Tursi, A.; Corbelli, V.; et al. Chemosphere Occurrence and spatial distribution of dioxin and dioxin-like compounds in topsoil of Taranto (Apulia, Italy) by GC-MS analysis and DR-CALUX® bioassay. Chemosphere 2021, 279, 130576. [Google Scholar] [CrossRef]
- Henriksson, S.; Hagberg, J.; Bäckström, M.; Persson, I.; Lindström, G. Assessment of PCDD/Fs levels in soil at a contaminated sawmill site in Sweden—A GIS and PCA approach to interpret the contamination pattern and distribution. Environ. Pollut. 2013, 180, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Shelepchikov, A.A.; Brodskii, E.S.; Feshin, D.B.; Zhil’nikov, V.G.; Mir-Kadyrova, E.Y.; Balashova, S.P. Polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in soils of Moscow. Eurasian Soil Sci. 2011, 44, 286–296. [Google Scholar] [CrossRef]
- Eljarrat, E.; Caixach, J.; Rivera, J. Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in soil samples from Spain. Chemosphere 2001, 44, 1383–1387. [Google Scholar] [CrossRef]
- Creaser, C.S.; Fernandes, A.R.; Harrad, S.J.; Cox, E.A. Levels and Sources of PCDDs and PCDFs in urban British soils. Chemosphere 1990, 21, 931–938. [Google Scholar] [CrossRef]
- Creaser, C.S.; Fernandes, A.R.; Al-Haddad, A.; Harrad, S.J.; Homer, R.B.; Skett, P.W.; Cox, E.A. Survey of background levels of PCDDs & PCDFs in UK soils. Chemosphere 1989, 18, 767–776. [Google Scholar] [CrossRef]
- Martínez, K.; Abad, E.; Rivera, J. Surveillance programme on dioxin levels in soils in the Campo de Gibraltar (Southwest Spain). Chemosphere 2006, 65, 382–389. [Google Scholar] [CrossRef]
- Dömötörová, M.; Sejáková, Z.S.; Kočan, A.; Čonka, K.; Chovancová, J.; FabiŠiková, A. PCDDs, PCDFs, dioxin-like PCBs and indicator PCBs in soil from five selected areas in Slovakia. Chemosphere 2012, 89, 480–485. [Google Scholar] [CrossRef]
- Ivory, A.; Mobbs, C. Dioxins levels in Australia: Key findings of studies. Organohalogen Compd. 2004, 66, 3398–3403. [Google Scholar]
- Urban, J.D.; Wikoff, D.S.; Bunch, A.T.G.; Harris, M.A.; Haws, L.C. A review of background dioxin concentrations in urban/suburban and rural soils across the United States: Implications for site assessments and the establishment of soil cleanup levels. Sci. Total Environ. 2014, 466–467, 586–597. [Google Scholar] [CrossRef]
- Rogowski, D.L.; Yake, W. Typical dioxin concentrations in agriculture soils of Washington State and potential sources. Environ. Sci. Technol. 2005, 39, 5170–5176. [Google Scholar] [CrossRef]
- Pius, C.; Sichilongo, K.; Mswela, P.K.; Dikinya, O. Monitoring polychlorinated dibenzo-p-dioxins/dibenzofurans and dioxin-like polychlorinated biphenyls in Africa since the implementation of the Stockholm Convention—An overview. Environ. Sci. Pollut. Res. 2019, 26, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Nieuwoudt, C.; Quinn, L.P.; Pieters, R.; Jordaan, I.; Visser, M.; Kylin, H.; Borge, A.R.; Gieasy, J.P.; Bouwman, H. Dioxin-like chemicals in soil and sediment from residential and industrial areas in central South Africa. Chemosphere 2009, 76, 774–783. [Google Scholar] [CrossRef] [PubMed]
- USEPA. US EPA Region 5 Soil and Sediment Ecological Screening Levels; USEPA: San Francisco, CA, USA, 2003. [Google Scholar]
- USEPA. USEPA Region 9 Preliminary Remediation Goals; US Environmental Protection Agency: San Francisco, CA, USA, 2000.
- Environmental Protection Agency (EPA) of Taiwan. Control Standards of Soil Pollution. 2011. Available online: http://ivy5.epa.gov.tw/%0Aepalaw/search/LordiDispFull.aspx?ltype¼14&lname¼0120 (accessed on 2 February 2022).
- Ministry of Natural Resources and Environment. National Technique Regulation on Allowed Limits of Dioxin in Soils; Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2012.
- UK Department of the Environment Transport and the Regions (DETR). Compilation of EU Dioxin Exposure and Health Data. Task 1—Member State Legislation and Programmes. Report Produced for the European Commission DG. 1999. Available online: http://ec.europa.eu/environment/dioxin/pdf/task1.pdf (accessed on 6 February 2022).
- New Zealand Ministry of Environment. Health and Environmental Guidelines for Selected Timber Treatment Chemicals—Chapter 5. New Zealand. 1997. Available online: http://www.mfe.govt.nz/publications/hazardous/timber-guide-jun97/timber-guide-jun97.pdf (accessed on 23 February 2022).
- Canadian Council of Ministers of the Environment. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health—Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans (PCDD/Fs); Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2002. [Google Scholar]
- Garbisu, C.; Garaiyurrebaso, O.; Epelde, L.; Grohmann, E. Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils. Front. Microbiol. 2017, 8, 1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppotelli, B.M.; Ibarrolaza, A.; del Panno, M.T. Effects of the Inoculant Strain Sphingomonas paucimobilis 20006FA on Soil Bacterial Community and Biodegradation in Phenanthrene-contaminated Soil. Microb. Ecol. 2008, 55, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Lyon, D.Y.; Vogel, T.M.; de Lyon, U. 6.08 Bioaugmentation as a Strategy for the Treatment of Persistent Pollutants, 2nd ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2011; Volume 1. [Google Scholar]
- Lin, C.; Kao, C.; Grasso, D.; Sheu, D.; Lin, T. Thermophilic Biodegradation of Diesel Oil in Food Waste Composting Processes Without Bioaugmentation. Environ. Eng. Sci. 2012, 29, 117–123. [Google Scholar] [CrossRef]
- Chang, Y. Recent Developments in Microbial Biotransformation and Biodegradation. J. Mol. Microbiol. Biotechnol. 2008, 15, 152–171. [Google Scholar] [CrossRef]
- Xie, H.; Zhu, L.; Wang, J. Combined treatment of contaminated soil with a bacterial Stenotrophomonas strain DXZ9 and ryegrass (Lolium perenne) enhances DDT and DDE remediation. Environ. Sci. Pollut. Res. 2018, 25, 31895–31905. [Google Scholar] [CrossRef]
- Tu, Y.T.; Liu, J.K.; Lin, W.C.; Lin, J.L.; Kao, C.M. Enhanced anaerobic biodegradation of OCDD-contaminated soils by Pseudomonas mendocina NSYSU: Microcosm, pilot-scale, and gene studies. J. Hazard. Mater. 2014, 278, 433–443. [Google Scholar] [CrossRef]
- Lin, J.L.; Lin, W.C.; Liu, J.K.; Surampalli, R.Y.; Zhang, T.C.; Kao, C.M. Aerobic Biodegradation of OCDD by P. Mendocina NSYSU: Effectiveness and Gene Inducement Studies. Water Environ. Res. 2017, 89, 2113–2121. [Google Scholar] [CrossRef]
- Liu, N.; Hou, T.; Yin, H.; Han, L.; Huang, G. Effects of amoxicillin on nitrogen transformation and bacterial community succession during aerobic composting. J. Hazard. Mater. 2018, 362, 258–265. [Google Scholar] [CrossRef]
- Deshmukh, R.; Khardenavis, A.A.; Purohit, H.J. Diverse Metabolic Capacities of Fungi for Bioremediation. Indian J. Microbiol. 2016, 56, 247–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamei, I.; Suhara, H.; Kondo, R. Phylogenetical approach to isolation of white-rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl. Microbiol. Biotechnol. 2005, 69, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Kamei, I.; Kondo, R. Biotransformation of dichloro-, trichloro-, and tetrachlorodibenzo-p-dioxin by the white-rot fungus Phlebia lindtneri. Appl. Microbiol. Biotechnol. 2005, 68, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Takada, S.; Nakamura, M.; Matsueda, T. Degradation of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by the White Rot Fungus Phanerochaete sordida YK-624. Appl. Environ. Microbiol. 1996, 62, 4323–4328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habe, H.; Chung, J.S.; Lee, J.H.; Kasuga, K.; Yoshida, T.; Nojiri, H.; Omori, T. Degradation of Chlorinated Dibenzofurans and Dibenzo-p-Dioxins by Two Types of Bacteria Having Angular Dioxygenases with Different Features. Appl. Environ. Microbiol. 2001, 67, 3610–3617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halden, R.U.; Halden, B.G.; Dwyer, D.F. Removal of Dibenzofuran, Dibenzo-p-Dioxin, and 2-Chlorodibenzo-p-Dioxin from Soils Inoculated with Sphingomonas sp. Strain RW1. Appl. Environ. Microbiol. 1999, 65, 2246–2249. [Google Scholar] [CrossRef] [Green Version]
- Habe, H.; Ide, K.; Yotsumoto, M.; Tsuji, H.; Yoshida, T.; Nojiri, H.; Omori, T. Degradation characteristics of a dibenzofuran-degrader Terrabacter sp. strain DBF63 toward chlorinated dioxins in soil. Chemosphere 2002, 48, 201–207. [Google Scholar] [CrossRef]
- Habe, H.; Ashikawa, Y.; Saiki, Y.; Yoshida, T.; Nojiri, H. Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil. FEMS Microbiol. Lett. 2002, 211, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Kimura, N.; Kitagawa, W.; Mori, T.; Nakashima, N.; Tamura, T.; Kamagata, Y. Genetic and biochemical characterization of the dioxygenase involved in lateral dioxygenation of dibenzofuran from Rhodococcus opacus strain SAO101. Appl. Microbiol. Biotechnol. 2006, 73, 474–484. [Google Scholar] [CrossRef]
- Ishiguro, T.; Ohtake, Y.; Nakayama, S.; Inamori, Y.; Amagai, T.; Soma, M.; Matsusita, H. Biodegradation of Dibenzofuran and Dioxins by Pseudomonas aeruginosa and Xanthomonas maltophilia. Environ. Technol. 2000, 21, 1309–1316. [Google Scholar] [CrossRef]
- Hong, H.; Nam, I.; Murugesan, K.; Kim, Y. Biodegradation of dibenzo-p-dioxin, dibenzofuran, and chlorodibenzo-p-dioxins by Pseudomonas veronii PH-03. Biodegradation 2004, 15, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Nam, I.; Hong, H.; Kim, Y.; Kim, B.; Murugesan, K.; Chang, Y.S. Biological removal of polychlorinated dibenzo-p-dioxins from incinerator fly ash by Sphingomonas wittichii RW1. Water Res. 2005, 39, 4651–4660. [Google Scholar] [CrossRef] [PubMed]
- Widada, J.; Omori, T. Enhanced degradation of carbazole and 2, 3-dichlorodibenzo-p-dioxin in soils by Pseudomonas resinovorans strain CA10. Chemosphere 2002, 49, 485–491. [Google Scholar] [CrossRef]
- Ishii, K.; Furuichi, T. Development of bioreactor system for treatment of dioxin-contaminated soil using Pseudallescheria boydii. J. Hazard. Mater. 2007, 148, 693–700. [Google Scholar] [CrossRef]
- Huang, W.Y.; Ngo, H.H.; Lin, C.; Vu, C.T.; Kaewlaoyoong, A.; Boonsong, T.; Tran, H.-T.; Bui, X.-T.; Vo, T.-D.-H.; Chen, J.-R. Aerobic co-composting degradation of highly PCDD/F-contaminated field soil. A study of bacterial community. Sci. Total Environ. 2019, 660, 595–602. [Google Scholar] [CrossRef]
- Huy, P.Q.; Thoa, N.K.; Thi, D.; Ha, C. Degradation of 2,3,7,8-TCDD by a consortium of bacterial strains isolated from heavil herbicide/Dioxin contaminated soil in Bienhoa airbase. J. Biotechnol. 2018, 16, 777–784. [Google Scholar]
- Nakamiya, K.; Furuichi, T.; Ishii, K. Isolation of a fungus from denitrifying activated sludge that degrades highly chlorinated dioxins. J. Mater. Cycles Waste Manag. 2002, 4, 127–134. [Google Scholar]
- Kasai, N.; Ikushiro, S.; Shinkyo, R.; Yasuda, K.; Hirosue, S. Metabolism of mono- and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450. Appl Microbiol Biotechnol. 2010, 86, 773–780. [Google Scholar] [CrossRef]
- Kaewlaoyoong, A.; Cheng, C.; Lin, C.; Chen, J.; Huang, W.; Sriprom, P. Science of the Total Environment White rot fungus Pleurotus pulmonarius enhanced bioremediation of highly PCDD/F-contaminated fi eld soil via solid state fermentation. Sci. Total Environ. 2020, 738, 139670. [Google Scholar] [CrossRef]
- Tachibana, M.K.S.; Kiyota, Y. Bioremediation of Dioxin-Contaminated Soil by Fungi Screened from Nature. Pak. J. Biol. Sci. 2007, 10, 486–491. [Google Scholar] [CrossRef] [Green Version]
- Pinedo-Rivilla, C.; Aleu, J.; Collado, I.G. Pollutants Biodegradation by Fungi. Curr. Org. Chem. 2009, 13, 1194–1214. [Google Scholar] [CrossRef]
- Zafar, U.; Nzeram, P.; Langarica-Fuentes, A.; Houlden, A.; Heyworth, A.; Saiani, A.; Robson, G.D. Bioresource Technology Biodegradation of polyester polyurethane during commercial composting and analysis of associated fungal communities. Bioresour. Technol. 2014, 158, 374–377. [Google Scholar] [CrossRef]
- Obuekwe, C.O.; Al-jadi, Z.K.; Al-saleh, E.S. International Biodeterioration & Biodegradation Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. Int. Biodeterior. Biodegrad. 2009, 63, 273–279. [Google Scholar] [CrossRef]
- Laine, M.M.; Ahtiainen, J.; Wågman, N.; Öberg, L.G.; Jørgensen, K.S. Fate and toxicity of chlorophenols, polychlorinated dibenzo-p-dioxins, and dibenzofurans during composting of contaminated sawmill soil. Environ. Sci. Technol. 1997, 31, 3244–3250. [Google Scholar] [CrossRef]
- Lin, C.; Kaewlaoyoong, A.; Vu, C.T.; Huang, W.Y. Treatment of dioxin-contaminated soil by organic waste co-composting system. Springer Proc. Phys. 2018, 207, 619–623. [Google Scholar] [CrossRef]
- Alkorta, I.; Garbisu, C. Phytoremediation of organic contaminants in soils. Bioresour. Technol. 2001, 79, 273–276. [Google Scholar] [CrossRef]
- Macek, J.K.T.; Macková, M. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 2000, 18, 23–34. [Google Scholar] [CrossRef]
- Reichenauer, T.G.; Germida, J.J. Phytoremediation of Organic Contaminants in Soil and Groundwater. ChemSusChem 2008, 8, 708–717. [Google Scholar] [CrossRef]
- Kurzawová, M.M.V.; Uhlík, O.; Macek, T. Interactions of microorganisms and plants in soil contaminated with PCBs and their importance in phyto/rhizoremediation. Remediat. Phytoremediation Technol. 2010, 126, 396–398. [Google Scholar]
- Hanano, A.; Almousally, I.; Shaban, M. Chemosphere Phytotoxicity effects and biological responses of Arabidopsis thaliana to 2, 3, 7, 8-tetrachlorinated dibenzo-p-dioxin exposure. Chemosphere 2014, 104, 76–84. [Google Scholar] [CrossRef]
- Inui, H.; Wakai, T.; Gion, K.; Kim, Y.; Eun, H. Chemosphere Differential uptake for dioxin-like compounds by zucchini subspecies. Chemosphere 2008, 73, 1602–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, R.; Hori, T.; Tobiishi, K.; Iida, T.; Tsutsumi, T.; Sasaki, K.; Toyoda, M. Levels and tissue-dependent distribution of dioxin in Japanese domestic leafy vegetables—From the 1999 national investigation. Chemosphere 2002, 48, 247–256. [Google Scholar] [CrossRef]
- Uegaki, R.; Seike, N.; Otani, T. Dioxin-like polychlorinated biphenyls in rice plants: Possible contaminated pathways. Chemosphere 2006, 65, 1537–1543. [Google Scholar] [CrossRef] [PubMed]
- Urbaniak, M.; Zieliński, M.; Wyrwicka, A. The influence of the Cucurbitaceae on mitigating the phytotoxicity and PCDD/PCDF content of soil amended with sewage sludge. Int. J. Phytoremediation 2017, 19, 207–213. [Google Scholar] [CrossRef]
- Campanellaand, B.; Paul, R. Presence, in the Rhizosphere and Leaf Extracts of Zucchini (Cucurbita pepo L.) and Melon (Cucumis melo L.), of Molecules Capable of Increasing the Apparent Aqueous Solubility of Hydrophobic Pollutants. Int. J. Phytoremediation 2006, 2, 145–158. [Google Scholar] [CrossRef]
- Hulster, A.; Muller, J.F.; Marschner, H. Soil-Plant Transfer of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans to Vegetables of the Cucumber Family (Cucurbitaceae). Environ. Sci. Technol. 1994, 28, 1110–1115. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Ni, Y.; Zhang, Q.; Zhao, L. Chemosphere Uptake by roots and translocation to shoots of polychlorinated dibenzo-p-dioxins and dibenzofurans in typical crop plants. Chemosphere 2009, 76, 740–746. [Google Scholar] [CrossRef]
Country | Year | Type of Soil | Source Area | Concentration | References |
---|---|---|---|---|---|
China (Sichuan) | 2013 | Soil | High mountain area | 2.48–4.30 ppt | [53] |
China (mainland Hong Kong and Tai wan) | 2008 | Soil | Schistosomiasis disease area | 244.8–33,660 ppt | [50] |
Soil | E-waste recycling | 799,000–967,500 ppt | [50,54] | ||
Paddy soil | E-waste recycling | 2552–2726 ppt | [50] | ||
Soil | Pentachlorophenol manufacturing factory | 606,000 ppt | [50,55,56] | ||
South China | 2022 | Surface Soil | Municipal solid waste incinerator | 114–2440 ppt | [57] |
North China | 2020 | Soil | Urban green space in a metropolis | 11.5–91.4 ppt | [58] |
Eastern China | 2009 | Surface Soil | Electronic solid-waste with incinerators | 0.017–5.04 ppt | [59] |
North China | 2011 | Topsoil | Coastal areas | 6.78–12.3 ppt | [52] |
Central Vietnam | 2019 | Surface soil | The storage of Agent Orange in A-So Airbase during the Vietnam War | 2.7 to 746 ppt | [60] |
Southern Vietnam | 2007 | Topsoil | Bien Hoa Airbase was a former storage depot for Agent Orange | 4.6–184 ppt | [61] |
Japan (Osaka) | 2013 | Surface soil | Incineration plant | >1000 ppt | [62] |
Paddy field soil | Former herbicide use | 38–110 ppt | |||
Japan (Akita) | 2007 | Paddy soil | Agricultural area | 18,000–540,000 ppt | [63] |
Non-agricultural soil samples | Parks | 950–1400 ppt | |||
South Korea | 2021 | Soil | Industrial sites | 77.73 ppt | [64] |
West Korea | 2011 | Topsoil | Coastal areas | 14.2–27 ppt | [52] |
Country | Year | Type of Soil | Source Area | Concentration | References |
---|---|---|---|---|---|
Sweden | 2013 | Soil | Contaminated sawmill site | 0.62–690,000 ppt | [66] |
Russia | 2011 | Soil | Urban site | 8.2 ppt | [67] |
Poland | 2015 | Soil | Urban site | 475.48–3039.27 ppt | [47] |
Germany | 2007 | Soil | Alluvial flood plain of the river | 7680 ppt | [57] |
Spain | 2006 | Topsoil | High industrial activity zones | 0.33–9.99 ppt | [71] |
Slovakia | 2012 | Topsoil | Industrial site | 0.34 to 18.05 ppt | [72] |
Austria | 2004 | Soil | Agricultural site | 0.05–23 ppt | [73] |
National | Standard Limitation | Comments | Regulation/Guideline Values | References |
---|---|---|---|---|
US EPA Region 5 | 11 ppt 38.6 ppt | PCDD in soil PCDFs in soil | US EPA Region 5 ecological screening levels | [78] |
US EPA Region 9 | 39 ppt | Residential soil | US EPA Region 9 preliminary remediation goal for 2,3,7,8-TCDD | [79] |
China (Taiwan) | 1000 ppt | General soil | The standard limit—Taiwan EPA | [80] |
Vietnam | 100 ppt 300 ppt 1200 ppt | Forest soil Agricultural soil Commercial soil | National technical regulation on the permissible limit of dioxins in soil | [81] |
Finland | 500 ppt | Agricultural and residential soil | Finland Ministry of the Environment, Department for Environmental Protection | [82] |
Sweden | 10 ppt 250 ppt | Land with sensitive use, Land with less sensitive use and groundwater extraction | Sweden Generic Guidance Value | [82] |
Netherlands | 10 ppt 1000 ppt | Dairy farming Agricultural and residential soil | The Netherlands Guidelines | [82] |
Germany | 5–40 ppt 100 ppt 1000 ppt 10,000 ppt | Agriculture Landscape Residential soil Industrial soil | Germany regulatory limit and recommendation | [82] |
New Zealand | 100 ppt 1500 ppt 18,000 ppt 90,000 ppt 21,000 ppt | Agricultural soil Residential soil Industrial soil Industrial-paved soil Maintenance | New Zealand Interim Acceptance Criteria | [83] |
Canada | 4 ppt | Alert soil | Canadian Environmental Quality Guidelines | [84] |
Bacterial Strains | PCDD/Fs Congeners | Concentration | Removal Average (%) | Time | References |
---|---|---|---|---|---|
Terrabacter sp. strain DBF63 | 2-CDD | 10 μg/mL | 75 | 18 h | [98] |
2,3-CDD | 80 | ||||
2-CDF | 82.5 | ||||
2,8-DCDF | 85 | ||||
Pseudomonas sp. strain CA10 | 2-CDF | 60 | |||
Pseudomonas sp. strain CA10 | 2-CDD | 1 μg/mL | 97 | 5 d | [98] |
2,3-CDD | 89 | ||||
Sphingomonas sp. strain RW1 | DD | 10 ppm | 90 | 24 h | [99] |
2-CDD | 90 | ||||
Sphingomonas sp. strain KA1 | 2-CDD | 1 μg/g | 96 | 7 d | [100,101] |
2,3-DCDD | 70 | ||||
Rhodococcus opacus SAO 101 | 1-CDD | 1 ppm | 92 | 7 d | [102] |
Dioxin (DD) | 97 | ||||
Pseudomonas aeruginosa | 3,6-DCDF | 10 mg/L | 60 | 5 d | [103] |
1,2,3,4-TCDD | 84 | ||||
DBF | 90 | ||||
Pseudomonas veronii PH-03 | 1-MCDD | 1 μM | 88.3 | 60 h | [104] |
2-MCDD | 78.6 | ||||
DD | 90.7 | ||||
DF | 79.7 | ||||
Sphingomonas sp. wittichi RW1 | DD | 1 mM | 81 | 72 h | [105] |
PCDD | 29 ppt | 75.5 | 15 d | ||
Pseudomonas resinovorans strain CA10 | 2,3-DCDD | 1 μg/kg | 90.95 | 7–14 d | [106] |
Pseudomonas resinovorans strain CA10 | 2,3-DCDD | 1000 μg/L | 100 | 14 d | [106] |
Pseudomonas sp. CA10 | 2-CDD | 10,000 μg/L | 98.5 | 7 d | [99] |
Pseudallescheria boydii | 2,3,7,8-TCDD | 125 ng/g | 92 | 15 d | [107] |
Stropharia rugosoannulata | 1,2,3,4,6,7,8-HpCDF | 200 μg/L | 64 | 3 m | [91] |
Bacillus-Firmicutes | 2,3,7,8-TCDD | 136.33 ng/g | 75 | 42 d | [108] |
Bosea BHBi7 | 2,3,7,8-TCDD | 170 ng/g | 59.1 | 21 d | [109] |
Hydrocarboniphaga BHBi4 | |||||
Pseudomonas mendocina NSYSU | OCDD | 20.1 mg/kg | 74 | 60 d | [92] |
Fungi sp. Name | Pollutants Compounds | Nutrients/Conditions | Removal (%) | Time | References |
---|---|---|---|---|---|
Cordyceps sinensis strain A | DD | Glucose or 1,4-dioxane | 50 | 4 d | [15] |
2,3,7-CDD | 50 | ||||
octaCDD | 50 | ||||
Phanerochaete sordida YK-624 | 2,3,7,8-TetraCDD | Glucose | 70 | 7 d | [97] |
1,2,3,7,7-PentaCDD | 70 | ||||
1,2,3,4,7,8-HexaCDD | 75 | ||||
1,2,3,4,6,7,8-HeptaCDD | 70 | ||||
1,2,3,4,6,7,8,9-OctaCDD | 70 | ||||
2,3,7,8-TetraCDF | 45 | ||||
1,2,3,7,8-PentaCDF | 45 | ||||
1,2,3,4,7,8-HexaCDF | 75 | ||||
1,2,3,4,6,7,8-HeptaCDF | 70 | ||||
1,2,3,4,6,7,8,9-OctaCDF | 70 | ||||
Acremonium sp. strain 622 | T4CDD | Activated sludge and effluent | 73 | 24 h | [110] |
P5CDD | 85 | ||||
H6CDD | 79 | ||||
H7CDD | 76 | ||||
O8CDD | 88 | ||||
T4CDF | 81 | ||||
P5CDF | 88 | ||||
H6CDF | 84 | ||||
H7CDF | 84 | ||||
O8CDF | 71 | ||||
Phanerochaete chrysosporium strain PcCYP11a3 | 1-MCDD | Glucose | 100 | 2 h | [111] |
2-MCDD | 38.2 | ||||
2,3-DCDD | 6.1 | ||||
Pleurotus pulmonarius strain BCRC36906 | HexaCDD/Fs | Solid state fermentation (SSF) | 80 | 72 d | [112] |
HeptaCDD/Fs | 97 | ||||
OctaCDD/Fs | 90 | ||||
Phlebia radiata strain 267 | 1,2,3,4,7,8-H6CDD | Laccase, Tween-80 50 mL | 28 | 30 d | [113,114] |
1,2,3,7,8-P5CDF | 29 | ||||
2,3,7,8-T4CDF | 60 | ||||
Phlebia radiata strain PL1 | 1,2,3,7,8-P5CDD | Laccase, 50 mL Tween-80 | 76.3 | 30 d | [113,114] |
1,2,3,4,7,8-H6CDD | 75.6 | ||||
1,2,3,6,7,8-H6CDD | 79.4 | ||||
1,2,3,7,8,9-H6CDD | 79.3 | ||||
1,2,3,4,6,7,8-H7CDD | 79 | ||||
octaCDD | 80 | ||||
1,2,3,4,7,8-H6CDF | 100 | ||||
1,2,3,6,7,8-H6CDF | 100 | ||||
2,3,4,6,7,8-H6CDF | 82.3 | ||||
1,2,3,4,6,7,8-H7CDF | 70.2 | ||||
1,2,3,4,7,8,9-H7CDF | 100 | ||||
octaCDF | 67.4 | ||||
P. brevispora strain BMC3014 | 2,7-DiCDD | Glucose and ammonium tartrate | 33.8 | 14 d | [95,114] |
2,3,7-TriCDD | 20 | ||||
1,2,8,9-TetraCDD | 15 | ||||
1,2,6,7-TetraCDD | 18 | ||||
P. brevispora strain BMC9152 | 2,7-DiCDD | 54 | |||
2,3,7-TriCDD | 30 | ||||
1,2,8,9-TetraCDD | 16.5 | ||||
1,2,6,7-TetraCDD | 26 | ||||
P. brevispora strain BMC9160 | 2,7-DiCDD | 40 | |||
2,3,7-TriCDD | 27 | ||||
1,2,8,9-TetraCDD | 23 | ||||
1,2,6,7-TetraCDD | 16.5 |
Initial Concentration | Mechanical Components | Materials | Removal (%) | Time (days) | Conditions | References |
---|---|---|---|---|---|---|
16,004 ng-TEQ/kg | Sandy loam | Food waste, sawdust, and compost | 75 | 42 | Aerobic | [108] |
840–5300 ng-TEQ/kg | Sandy | Wood chips and compost | 85 | 360 | Semi-aerobic | [25] |
30,000–60,000 ng-TEQ/kg | Sandy loam | Lime granules, Nutrients, and bark | 21 | 175 | Anaerobic | [117] |
88.8–912.7 μmol/kg | Sandy loam | Sewage sludge | 61.2 | 42 | Aerobic | [32] |
Leaves | 36.8 | |||||
Animal manure | 32.5 | |||||
Sewage sludge and compost | 53 | 280 | ||||
Sewage sludge and animal manure | 79 | |||||
6048 ng-TEQ/kg | Sandy loam | Food waste, sawdust, and compost | 70 | 49 | Aerobic | [118] |
300–660 ngTEQ/kg | Sandy loam | Straw manure, bark chips, and wood chips | 75 | 175 | Semi-aerobic | [91] |
Names | Pollutant Compounds | Concentration | Removal (%) | Time | References |
---|---|---|---|---|---|
Arabidopsis thaliana | TCDD | 10 ppt | 72 | 30 d | [123] |
50 ppt | 58 | ||||
100 ppt | 55 | ||||
Black Beauty | Total PCDDs | 43 ppt-TEQ | 46 | 32 d | [124] |
Total PCDFs | 50 | ||||
Gold Rush | Total PCDDs | 45 ppt-TEQ | 60 | 32 d | |
Total PCDFs | 62 | ||||
Spinach | Total PCDDs | 3.42 ppt | 48.6 | ND | [125] |
Total PCDFs | 0.519 ppt | 37.9 | |||
Garland Chrysanthemum | Total PCDDs | 0.543 ppt | 36.1 | ||
Total PCDFs | 0.622 ppt | 48.8 | |||
Mitsuba | Total PCDDs | 0.765 ppt | 38 | ||
Total PCDFs | 0.161 ppt | 43.8 | |||
Chingentsuai | Total PCDDs | 0.268 ppt | 39.2 | ||
Total PCDFs | 0.166 ppt | 41.6 | |||
Rice leaf and stem | Total dioxins | 317 ppt | 90 | 5 m | [126] |
Rice paddy chaff | Total dioxins | 44 ppt | 98 | ||
Atena Polka | PCDD/Fs | 7 ppt-TEQ dw | 66 | 5 w | [127] |
Zucchini | PCDD/Fs | 155 ppt-TEQ dw | 37 | 5 w | [127,128] |
Cucumber | PCDD/Fs | 122 ppt-TEQ dw | 24 | 5 w | |
Zucchini | 2,4,8-TrCDF | 0.0089 TSCF | 64 | 4 d | [129,130] |
2,3,7,8-TeCDD | 70 | ||||
Pumpkin | 2,4,8-TrCDF | 0.0064 TSCF | 77 | ||
2,3,7,8-TeCDD | 79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nhung, N.T.H.; Nguyen, X.-T.T.; Long, V.D.; Wei, Y.; Fujita, T. A Review of Soil Contaminated with Dioxins and Biodegradation Technologies: Current Status and Future Prospects. Toxics 2022, 10, 278. https://doi.org/10.3390/toxics10060278
Nhung NTH, Nguyen X-TT, Long VD, Wei Y, Fujita T. A Review of Soil Contaminated with Dioxins and Biodegradation Technologies: Current Status and Future Prospects. Toxics. 2022; 10(6):278. https://doi.org/10.3390/toxics10060278
Chicago/Turabian StyleNhung, Nguyen Thi Hong, Xuan-Tung Tan Nguyen, Vo Dinh Long, Yuezou Wei, and Toyohisa Fujita. 2022. "A Review of Soil Contaminated with Dioxins and Biodegradation Technologies: Current Status and Future Prospects" Toxics 10, no. 6: 278. https://doi.org/10.3390/toxics10060278