Identification of Unknown Substances in Ambient Air (PM10), Profiles and Differences between Rural, Urban and Industrial Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent and Chemicals
2.2. Sampling and Site Characterization
2.3. Sample Preparation
2.4. LC-HRMS Analysis
2.5. Acquisition Workflow for Unknown Analysis
2.6. Data Processing
2.7. Identification Criteria
2.8. Quality Assurance/Quality Control
- (i)
- Instrument drift was monitored by analysing the areas of QCRM in the batch. Coefficient of variation (CV (%)) should be lower than 30%.
- (ii)
- To assure the unbiased of the methodology, all samples were injected in the same batch, sample injections were randomized, and sample preparation was performed the same day [45].
- (iii)
- Blank samples results were checked in order to assure that the exclusion list acquired did not contain any contamination.
- (iv)
- The batch acquired in CD was checked to assure that the seven substances added in the QCRM were identified.
3. Results and Discussion
3.1. Identification of Unknown Substances
3.2. Differences between Areas
4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Popescu, F.; Ionel, I. Anthropogenic Air Pollution Sources. In Air Quality; Kumar, A., Ed.; InTech: New Dehli, India, 2010. [Google Scholar] [CrossRef] [Green Version]
- Safieddine, S.A.; Heald, C.L.; Henderson, B.H. The global nonmethane reactive organic carbon budget: A modeling perspective. Geophys. Res. Lett. 2017, 44, 3897–3906. [Google Scholar] [CrossRef] [Green Version]
- Woodrow, J.E.; Gibson, K.E.; Seiber, J.N. Pesticides and related toxicants in the atmosphere. Part Rev. Environ. Contam. Toxicol. Book Ser. 2018, 247, 147–196. [Google Scholar] [CrossRef]
- Jimenez, J.L.; Canagaratna, M.R.; Donahue, N.M.; Prevot, A.S.H.; Zhang, Q.; Kroll, J.H.; DeCarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N.L.; et al. Evolution of Organic Aerosols in the Atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Alburquerque, M.; Coutinho, M.; Borrego, C. Long-term monitoring and seasonal analysis of polycyclic aromatic hydrocarbons (PAHs) measured over a decade in the ambient air of Porto, Portugal. Sci. Total Environ. 2016, 543, 439–448. [Google Scholar] [CrossRef] [PubMed]
- López, A.; Yusà, V.; Muñoz, A.; Vera, T.; Borràs, E.; Ródenas, M.; Coscollà, C. Risk assessment of airborne pesticides in a Mediterranian Region of Spain. Sci. Total Environ. 2017, 574, 724–734. [Google Scholar] [CrossRef]
- López, A.; Coscollà, C.; S-Hernández, C.; Pardo, O.; Yusà, V. Dioxins and dioxin-like PCBs in the ambient air of the Valencian Region. Levels, human exposure and risk assessment. Chemosphere 2021, 267, 128902. [Google Scholar] [CrossRef]
- Beser, M.I.; Beltrán, J.; Yusà, V. Design of experiment approach for the optimization of polybrominated diphenyl ethers determination in fine airborne particulate matter by microwave-assisted extraction and gas chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2014, 1323, 1–10. [Google Scholar] [CrossRef]
- Thurston, G.; Ahn, J.; Cromar, K.; Shao, Y.; Reynolds, H.; Jerrett, M.; Lim, C.; Shanley, R.; Park, Y.; Hayes, R. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP Diet and Health Cohort. Environ. Health Perspect. 2016, 124, 484–490. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, R.; Xiao, C.C.; Xu, Y.C.; Cheng, H.; Zhu, F.R.; Lei, R.Q.; Di, D.S.; Zhao, Q.H.; Cao, J.Y. Association between air pollution and cardiovascular mortality in Hefei, China: A time-series analysis. Environ. Pollut. 2017, 229, 790–797. [Google Scholar] [CrossRef]
- Hu, C.Y.; Huang, K.; Fang, Y.; Yang, X.J.; Ding, K.; Jiang, W.; Hua, X.G.; Huang, D.Y.; Jiang, Z.X.; Zhang, X.J. Maternal air pollution exposure and congenital heart defects in offspring: A systematic review and meta-analysis. Chemosphere 2020, 253, 126668. [Google Scholar] [CrossRef]
- Harner, T.; Bidleman, T.F. Octanol-Air Partition Coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environ. Sci. Technol. 1998, 32, 1494–1502. [Google Scholar] [CrossRef]
- Lee, R.M.G.; Jones, K.C. Gas-particle partitioning of atmospheric PCDD/Fs: Measurements and observations on modeling. Environ. Sci. Technol. 1998, 33, 3596–3604. [Google Scholar] [CrossRef]
- Esen, F.; Tasdemir, Y.; Vardar, N. Atmospheric concentrations of PAHs, their possible sources and gas-to-particle partitioning at a residential site of Bursa, Turkey. Atmos. Res. 2008, 88, 243–255. [Google Scholar] [CrossRef]
- Gamble, J.F.; Lewis, R.J. Health and respirable particulate (PM10) air pollution: A causal or statistical association? Environ. Health Perspect. 1996, 104, 838–850. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Wijesiri, B.; Hong, N.; Zhu, P.; Egodawatta, P.; Goonetillleke, A. Understanding re-distribution of road deposited particle-bound pollutants using a Bayesian Network (BN) approach. J. Hazard. Mater. 2018, 355, 56–64. [Google Scholar] [CrossRef]
- Lenschow, P.; Abraham, H.J.; Kutzner, K.; Lutz, M.; Pruß, J.D.; Reichenbächer, W. Some ideas about the sources of PM10. Atmos. Environ. 2001, 35 (Suppl. S1), S23–S33. [Google Scholar] [CrossRef]
- Putaud, J.-P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Hansson, H.C.; et al. A European aerosol phenomenologye: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 2004, 44, 1308–1320. [Google Scholar] [CrossRef]
- Bathmanabhan, S.; Saragur-Madanayak, S.N. Analysis and interpretation of particulate matter-PM10, PM2.5 and PM1 emissions from the hetergoneous traffic near an urban roadway. Atmos. Pollut. Res. 2010, 1, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Chuturkova, R. Particulate matter air pollution (PM10 and PM2.5) in urban and industrial areas. J. Sci. Educ. Innov. 2015, 5, 13–32. [Google Scholar]
- Zhang, W.; Wang, J.; Xu, Y.; Wang, C.; Streets, D.G. Analyzing the spatio-temporal variation of the CO2 emissions from district heating systems with “Coal-to-Gas” transition: Evidence from GTWR model and satellite data in China. Sci. Total Environ. 2022, 803, 150083. [Google Scholar] [CrossRef]
- EEA. Air Quality in Europe-2012 Report. In European Environmental Agency Report. No 4/2012; EEA: Copenhagen, Denmark, 2012. [Google Scholar]
- Harner, T.; Shoeib, M.; Diamond, M.; Stern, G.; Rosenberg, B. Using passive air samplers to assess Urban-Rural trends for Persistent Organic Pollutants. Polychlorinated Biphenyls and Organochlorine Pesticides. Environ. Sci. Technol. 2004, 38, 4474–4483. [Google Scholar] [CrossRef] [PubMed]
- Guéguen, F.; Stille, P.; Millet, M. Persistent organic pollutants in the atmosphere from urban and industrial environments in the Rhine Valley: PCBs, PCDD/Fs. Environ. Sci. Pollut. Res. Int. 2013, 20, 3852–3862. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lu, Z.; Xu, Y.; Wang, C.; Gu, Y.; Xu, H.; Streets, D.G. Black carbon emissions from biomass and coal in rural China. Atmos. Environ. 2018, 176, 158–170. [Google Scholar] [CrossRef]
- Lucci, P.; Saurina, J.; Núñez, A. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. Trac-Trends Anal. Chem. 2016, 88, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Bueno, M.J.; Gomez Ramos, M.J.; Bauer, A.; Fernandez-Alba, A.R. An overview of non-targeted screening strategies based on high resolution accurate mass spectrometry for the identification of migrants coming from plastic food packaging materials. Trac-Trends Anal. Chem. 2019, 110, 191–203. [Google Scholar] [CrossRef]
- Yusop, A.Y.M.; Xiao, L.; Fu, S. Determination of phosphodiesterase 5 (PDE5) inhibitors in instant coffee premixes using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Talanta 2019, 204, 36–43. [Google Scholar] [CrossRef]
- Yusà, V.; López, A.; Dualde, P.; Pardo, O.; Fochi, I.; Pineda, A.; Coscollà, C. Analysis of unknowns in recycled LDPE plastic by LC-Orbitrap Tribrid HRMS using MS3 with an intelligent data acquisition mode. Microchem. J. 2020, 158, 1052526. [Google Scholar] [CrossRef]
- Liu, A.; Qu, G.; Zhang, C.; Gao, Y.; Shi, J.; Du, Y.; Jiang, G. Identification of two novel brominated contaminants in water samples by ultra-high performance liquid chromatography-Orbitrap Fusion Tribrid mass spectrometer. J. Chromatogr. A 2015, 1377, 92–99. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, S.; Liu, Z.; Zhao, J.; Ji, B.; Zeng, X.; Yu, Z. The quantification of chlorinated paraffins in environmental samples by ultra-high-performance liquid chromatography coupled with Orbitrap Fusion Tribrid mass spectrometry. J. Chromatogr. A 2019, 1593, 102–109. [Google Scholar] [CrossRef]
- Thermo Scientific. SN65392-EN 0119M. AcquireX, 2019. Available online: https://www.thermofisher.com/es/es/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/lc-ms-data-acquisition-software/acquirex-intelligent-data-acquisition-workflow.html (accessed on 18 June 2020).
- Thermo Scientific. 2019. Available online: https://www.thermofisher.com/es/es/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lcms/lc-ms-software/multi-omics-data-analysis/compound-discoverer-software.html (accessed on 16 June 2020).
- López, A.; Yusà, V.; Millet, M.; Coscollà, C. Retrospective screening of pesticide metabolites in ambient air using liquid chromatography coupled to high-resolution mass spectrometry. Talanta 2016, 150, 27–36. [Google Scholar] [CrossRef]
- Brüggemann, M.; van Pinxteren, D.; Wang, Y.; Yu, J.Z.; Herrmann, H. Quantification of known and unknown terpenoid organosulfates in PM10 using untargeted LC-HRMS/MS: Contrasting summertime rural Germany and the North China Plain. Environ. Chem. 2019, 16, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Spranger, T.; van Pixteren, D.; Reemtsma, T.; Lechtenfeld, O.J.; Hermann, H. 2D Liquid chromatographic fractionation with ultra-high resolution MS analysis resolves a vast molecular diversity of trophospheric particle organics. Environ. Sci. Technol. 2019, 53, 11353–11363. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Kaesler, J.; Peng, C.; Reemtsma, T.; Lechtenfeld, O.J. Online Counter Gradient LC-FT-ICR-MS Enables Detection of Highly Polar Natural Organic Matter Fractions. Anal. Chem. 2021, 93, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Pereira, K.L.; Ward, M.W.; Wilkinson, J.L.; Sallach, J.B.; Bryant, D.J.; Dixon, W.J.; Hamilton, J.F.; Lewis, A.C. An Automated Methodology for Non-targeted Compositional Analysis of Small Molecules in High Complexity Environmental Matrices Using Coupled Ultra Performance Liquid Chromatography Orbitrap Mass Spectrometry. Environ. Sci. Technol. 2021, 55, 7365–7375. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.Y.; Park, Y.M.; Lee, H.J.; Kim, H.; Kim, D.H.; Kim, I.G.; Kim, S.M.; Do, Y.S.; Seok, K.S.; Kwon, J.H. Nontarget screening using passive air and water sampling with a level II fugacity model to identify unregulated environmental contaminants. Int. J. Environ. Sci. 2017, 62, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Dubocq, F.; Bjurlid, F.; Ydstal, D.; Titaley, I.A.; Reiner, E.; Wang, T.; Ortiz-Almirall, X.; Kärrman, A. Organic contaminants formed during fire extinguishing using different firefighting methods assessed by nontarget analysis. Environ. Pollut. 2020, 265, 114834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Saini, A.; Hao, C.; Harner, T. Passive air sampling and nontargeted analysis for screening POP-like chemicals in the atmosphere: Opportunities and challenges. Trends Anal. Chem. 2020, 132, 116052. [Google Scholar] [CrossRef]
- Yusà, V.; López, A.; Dualde, P.; Pardo, O.; Fochi, I.; Miralles, P.; Coscollà, C. Identification of 24 Unknown Substances (NIAS/IAS) from Food Contact Polycarbonate by LC-Orbitrap Tribrid HRMS-DDMS3: Safety Assessment. Int. J. Anal. Chem. 2021, 2021, 6654611. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Hur, M.; Campbell, A.A.; Almeida-de-Macedo, M.; Li, L.; Ransom, N.; Jose, A.; Crispin, M.; Nikolau, B.J.; Wurtele, E.S. A global approach to analysis and interpretation of metabolic data for plant natural product discovery. Nat. Prod. Rep. 2013, 30, 565–583. [Google Scholar] [CrossRef] [Green Version]
- Broadhurst, D.; Goodacre, R.; Reinke, S.N.; Kuligowski, J.; Wilson, I.D.; Lewis, M.R.; Dunn, W.B. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 2018, 14, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemspider Webpage. 2021. Available online: http://www.chemspider.com/ (accessed on 31 July 2021).
- Thermo Fisher Scientific. Mass Frontier Spectral Interpretation Software. Available online: https://www.thermofisher.com/es/es/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/mass-frontier-spectral-interpretation-software.html (accessed on 19 October 2020).
- Katajamaa, M.; Orseic, M. Data processing for mass spectrometry-based metabolomics. J. Chromatogr. A 2007, 1158, 318–328. [Google Scholar] [CrossRef] [PubMed]
- López, A.; Dualde, P.; Yusà, V.; Coscollà, C. Retrospective analysis of pesticide metabolites in urine using liquid chromatography coupled to high-resolution mass spectrometry. Talanta 2016, 160, 547–555. [Google Scholar] [CrossRef]
- Ladji, R.; Yassaa, N.; Balducci, C.; Cecinato, A.; Meklati, B.Y. Annual variation of particulate organic compounds in PM10 in the urban atmosphere of Algiers. Atmos. Res. 2009, 92, 258–269. [Google Scholar] [CrossRef]
- Yadav, S.; Tandom, A.; Attri, A.K. Timeline trend profile and seasonal variations in nicotine present in ambient PM10 samples: A four year investigation from Delhi region, India. Atmos. Environ. 2014, 98, 89–97. [Google Scholar] [CrossRef]
- Balducci, C.; Green, D.C.; Romagnoli, P.; Perilli, M.; Johansson, C.; Panteliadis, P.; Cecinato, A. Cocaine and cannabinoids in the atmosphere of Northern Europe cities, comparison with Southern Europe. Env. Int. 2016, 97, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Wang, B.; Li, W.; Wang, L.; Song, X.; Guo, C.; Li, Y.; Liu, F.; Zhu, F.; Wang, Q.; et al. Systemic application of 3-methyladenine markedly inhibited atherosclerotic lesion in ApoE-/- mice by modulation autophagy, foam cell formation and immune-negative molecules. Cell Death Dis. 2016, 7, e2498. [Google Scholar] [CrossRef] [Green Version]
- Schterev, I.G.; Delchev, V.B. Excited state deactivation channels via internal conversions in two positions isomers of hydroxyl-methyl-pyridine: A theoretical study. J. Phys. Org. Chem. 2015, 28, 681–689. [Google Scholar] [CrossRef]
- Mastroianni, N.; Postigo, C.; López de Alda, M.; Viana, M.; Rodríguez, A.; Alastuey, A.; Querol, X.; Barceló, D. Comprehensive monitoring of the occurrence of 22 drugs and transformation products in airborne particulate matter in the city of Barcelona. Sci. Total Environ. 2015, 532, 344–352. [Google Scholar] [CrossRef]
- Singh, G.; Saroa, A.; Girdhar, S.; Rani, S.; Choquesillo-Lazarte, D.; Chandra-Sahoo, S. Incorporation of azo group at axial position of silatranes: Synthesis, characterization and antimicrobial activity. Appl. Organometal. Chem. 2015, 29, 549–555. [Google Scholar] [CrossRef]
Sampling Site | Latitude | Longitude | Description |
---|---|---|---|
Burriana | 39°53′52″ | 0°03′54″ | Rural and agricultural area surrounded by citrus groves (orange trees). Samples collected about 20 m above sea level. |
Onda | 39°57′46″ | 0°15′00″ | Industrial area. Samples collected about 160 m above sea level. |
Valencia-Viveros | 39°28′46″ | 0°22′10″ | Commercial and urban area and inside a park (Viveros) with gardens. Samples collected at 11 m above sea level. |
Level | Parameter | Criteria |
---|---|---|
Level 1 | Molecular formula (Predicted composition) 1 | Full match |
∆ mass (ppm) 2 | <0.5 ppm | |
Isotope profile (SFit) 3 | >70% | |
MzCloud Match 4 | >70% | |
MS2 Data 5 | Yes | |
RT (min) | Consistent with the predicted RT (min) (±2 min)/analytical standard * | |
Level 2 | Molecular formula (Predicted composition) 1 | Full match |
∆ mass (ppm) 2 | <0.5 ppm | |
Isotope profile (SFit) 3 | 50–70% | |
MzCloud Match 4 | 50–70% | |
MS2 Data 5 | Yes | |
RT (min) | Consistent with the predicted RT (min) (±2 min) | |
Level 3 | Molecular formula (Predicted composition) 1 | Full match |
∆ mass (ppm) 2 | <0.5 ppm | |
MS2 Data 5 | Yes | |
Level 4 | Molecular formula (Predicted composition) 1 | Full match |
∆ mass (ppm) 2 | <0.5 ppm | |
MS2 Data 5 | No | |
Predicted substance 6 | Name | |
Level 5 | Molecular formula (Predicted composition) 1 | Full match |
∆ mass (ppm) 2 | <0.5 ppm | |
MS2 Data 5 | No | |
Predicted substance 6 | No Name |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López, A.; Fuentes, E.; Yusà, V.; Ibáñez, M.; Coscollà, C. Identification of Unknown Substances in Ambient Air (PM10), Profiles and Differences between Rural, Urban and Industrial Areas. Toxics 2022, 10, 220. https://doi.org/10.3390/toxics10050220
López A, Fuentes E, Yusà V, Ibáñez M, Coscollà C. Identification of Unknown Substances in Ambient Air (PM10), Profiles and Differences between Rural, Urban and Industrial Areas. Toxics. 2022; 10(5):220. https://doi.org/10.3390/toxics10050220
Chicago/Turabian StyleLópez, Antonio, Esther Fuentes, Vicent Yusà, María Ibáñez, and Clara Coscollà. 2022. "Identification of Unknown Substances in Ambient Air (PM10), Profiles and Differences between Rural, Urban and Industrial Areas" Toxics 10, no. 5: 220. https://doi.org/10.3390/toxics10050220