Characteristics of PM2.5 and Its Correlation with Feed, Manure and NH3 in a Pig-Fattening House
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of The Pig House
2.2. Pig Management
2.3. Measurement of Microclimate Variables
2.4. Sample Collection and Component Analysis
2.5. Ultrastructure Observation of the Sample
2.6. DNA Extraction and Bacterial/Fungal Sequencing
2.7. Data Analysis
3. Results and Discussion
3.1. Microclimate Variables in the Pig House
3.2. Microscopic Morphology
3.3. Chemical Components
3.4. Water-Soluble Ions of PM2.5
3.5. Microbial Components of PM2.5
3.6. Correlation with Variables
3.6.1. The Correlation between PM2.5 and NH3
3.6.2. The Correlations between PM2.5 and Environmental Samples (Feed, Manure, and Dust)
4. Conclusions
- Part of the PM2.5 in the piggery derives from secondary particles, but this proportion is very small.
- Most of the PM2.5 in the pig house is produced in the form of primary particles, and feed and manure are the main sources.
- The manure in the pig house can produce elliptical-deposited particles that are common in PM2.5 of pig houses and that easily adhere to other components. In addition, manure has an impact on PM2.5 concentrations and microbial components. Therefore, the relationship between manure management in pig houses and PM2.5 is worth further study in the future.
- Frequent manure removal and a well-maintained feeding system can help reduce PM2.5 concentration in a pig house and the surrounding area.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jahne, M.A.; Rogers, S.W.; Holsen, T.M.; Grimberg, S.J.; Ramler, I.P. Emission and dispersion of bioaerosols from dairy manure application sites: Human health risk assessment. Environ. Sci. Technol. 2015, 49, 9842–9849. [Google Scholar] [CrossRef]
- Dai, C.; Huang, S.; Zhou, Y.; Xu, B.; Peng, H.; Qin, P.; Wu, G. Concentrations and emissions of particulate matter and ammonia from extensive livestock farm in South China. Environ. Sci. Pollut. Res. 2019, 26, 1871–1879. [Google Scholar] [CrossRef]
- Shen, D.; Wu, S.; Li, Z.; Tang, Q.; Dai, P.; Li, Y.; Li, C. Distribution and physicochemical properties of particulate matter in swine confinement barns. Environ. Pollut. 2019, 250, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Falcon-Rodriguez, C.I.; Vizcaya-Ruiz, A.D.; Rosas-Pérez, I.A.; Osornio-Vargas, L.R.; Segura-Medina, P. Inhalation of concentrated PM2.5 from Mexico City acts as an adjuvant in a guinea pig model of allergic asthma. Environ. Pollut. 2017, 228, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Groot, D.; Linsey, E.S.; Liu, D.; Dierdorp, B.S.; Fens, N.; van de Pol, M.A.; Sterk, P.J.; Lutter, R. Ex vivo innate responses to particulate matter from livestock farms in asthma patients and healthy individuals. Environ. Health 2020, 19, 78. [Google Scholar] [CrossRef] [PubMed]
- Anderson, H.R. Implications for the science of air pollution and health. Lancet Respir. Med. 2017, 5, 916. [Google Scholar] [CrossRef]
- Tang, Q.; Huang, K.; Liu, J.; Wu, S.; Li, C. Fine particulate matter from pig house induced immune response by activating TLR4/MAPK/NF-κB pathway and NLRP3 inflammasome in alveolar macrophages. Chemosphere 2019, 236, 124373. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Shu, T. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environ. Int. 2017, 107, 111–130. [Google Scholar] [CrossRef]
- Liu, D.; Wagner, J.G.; Harkema, J.R.; Gerlofs-Nijland, M.E.; Cassee, F.R. Livestock farm particulate matter enhances airway inflammation in mice with or without allergic airway disease. World Allergy Organ. J. 2020, 13, 100114. [Google Scholar] [CrossRef]
- Winkel, A.; Mosquera, J.; Koerkamp, P.; Ogink, N.; Aarnink, A.J.A. Emissions of particulate matter from animal houses in the Netherlands. Atmos. Environ. 2015, 111, 202–212. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, W.; Wang, Y.; Li, B.; Wang, Y. Spatiotemporal variations in the association between particulate matter and airborne bacteria based on the size-resolved respiratory tract deposition in concentrated layer feeding operations. Environ. Int. 2021, 150, 106413. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Gao, J.; Pan, K.; Li, D.; Dai, H.; Li, X. More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in PM2.5. Environ. Pollut. 2019, 251, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Shang, B.; Liu, Y.; Dong, H.M.; Tao, X.P.; Yao, H.J. Particulate matter concentrations and emissions of a fattening pig facility in northern China. Atmos. Pollut. Res. 2020, 11, 1902–1911. [Google Scholar] [CrossRef]
- Hamon, L.; Andrès, Y.; Dumont, E. Aerial pollutants in swine buildings: A review of their characterization and methods to reduce them. Environ. Sci. Technol. 2012, 46, 12287–12301. [Google Scholar] [CrossRef]
- Kwon, K.S.; Lee, I.B.; Ha, T. Identification of key factors for dust generation in a nursery pig house and evaluation of dust reduction efficiency using a CFD technique. Biosyst. Eng. 2016, 151, 28–52. [Google Scholar] [CrossRef]
- Lin, X.J.; Cortus, E.L.; Zhang, R.; Jiang, S.; Heber, A.J. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses. Atmos. Environ. 2012, 46, 81–91. [Google Scholar] [CrossRef]
- Le, P.D.; Aarnink, A.; Ogink, N.; Becker, P.M.; Verstegen, M. Odour from animal production facilities: Its relationship to diet. Nutr. Res. Rev. 2005, 18, 3–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Q.; Huang, K.; Liu, J.; Shen, D.; Dai, P.; Li, Y.; Li, C. Seasonal variations of microbial assemblage in fine particulate matter from a nursery pig house. Sci. Total Environ. 2020, 708, 134921. [Google Scholar] [CrossRef]
- Li, K.; Li, C.; Liu, M.; Hu, Y.; Wang, H.; Wu, W. Multiscale analysis of the effects of urban green infrastructure landscape patterns on PM2.5 concentrations in an area of rapid urbanization. J. Clean. Prod. 2021, 325, 129324. [Google Scholar] [CrossRef]
- Pu, S.; Rong, X.; Zhu, J.; Zeng, Y.; Yue, J.; Lim, T.; Long, D. Short-term aerial pollutant concentrations in a Southwestern China pig-fattening house. Atmosphere 2021, 12, 103. [Google Scholar] [CrossRef]
- Wang-Li, L. Insights to the formation of secondary inorganic PM2.5: Current knowledge and future needs. Int. J. Agric. Biol. Eng. 2015, 8, 1–13. [Google Scholar]
- Robarge, W.P.; Walker, J.T.; Mcculloch, R.B.; Murray, G. Atmospheric concentrations of ammonia and ammonium at an agricultural site in the southeast United States. Atmos. Environ. 2002, 36, 1661–1674. [Google Scholar] [CrossRef]
- Cambra-López, M.; Torres, A.G.; Aarnink, A.J.A.; Ogink, N.W.M. Source analysis of fine and coarse particulate matter from livestock houses. Atmos. Environ. 2011, 45, 694–707. [Google Scholar] [CrossRef] [Green Version]
- Satsangi, P.G.; Yadav, S. Characterization of PM2.5 by X-ray diffraction and scanning electron microscopy–energy dispersive spectrometer: Its relation with different pollution sources. Int. J. Environ. Sci. Technol. 2014, 11, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Aloyan, A.E.; Arutyunyan, V.O.; Lushnikov, A.A.; Zagaynov, V.A. Transport of coagulating aerosol in the atmosphere. J. Aerosol Sci. 1997, 28, 67–85. [Google Scholar] [CrossRef]
- Daellenbach, K.R.; Uzu, G.; Jiang, J.; Cassagnes, L.; Leni, Z.; Vlachou, A.; Prévôt, A.S.H. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 2020, 587, 414–419. [Google Scholar] [CrossRef]
- Cambra-López, M.; Hermosilla, T.; Lai, H.T.L.; Aarnink, J.A.A.; Ogink, N.W.M. Particulate matter emitted from poultry and pig houses: Source identification and quantification. Trans. ASABE 2011, 54, 629–642. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Niu, B.; Ni, J.Q.; Xue, W.; Zou, G. New insights into concentrations, sources and transformations of NH3, NOx, SO2 and PM at a commercial manure-belt layer house. Environ. Pollut. 2020, 262, 114355. [Google Scholar] [CrossRef]
- Nakaue, H.; Koelliker, J.; Buhler, D.; Arscott, G. Distribution of inorganic elements in poultry house dust. Poult. Sci. 1981, 60, 1386–1391. [Google Scholar] [CrossRef]
- Schneider, T.; Schlunssen, V.; Vinzents, P.S.; Kildeso, J. Passive sampler used for simultaneous measurement of breathing zone size distribution, inhalable dust concentration and other size fractions involving large particles. Ann. Occup. Hyg. 2002, 46, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Cambra-López, M.; Aarnink, A.J.A.; Zhao, Y.; Calvet, S.; Torres, A.G. Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environ. Pollut. 2010, 158, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zheng, K.; Meng, L.; Liu, X.; Hartung, E.; Roelcke, M.; Zhang, F. Concentrations and emissions of particulate matter from intensive pig production at a large farm in North China. Aerosol Air Qual. Res. 2016, 16, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Khoder, M.I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 2020, 49, 675–684. [Google Scholar] [CrossRef]
- Roumeliotis, T.S.; Dixon, B.J.; Heyst, B. Characterization of gaseous pollutant and particulate matter emission rates from a commercial broiler operation part I: Observed trends in emissions. Atmos. Environ. 2010, 44, 3770–3777. [Google Scholar] [CrossRef]
- Dumas, M.D.; Polson, S.W.; Don, R.; Jacques, R.; Jack, G.; Robin, M.; Anthony, G.J. Impacts of poultry house environment on poultry litter bacterial community composition. PLoS ONE 2011, 6, e24785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valeriano, V.; Balolong, M.; Kang, D.-K. Probiotic roles of Lactobacillus sp. in swine: Insights from gut microbiota. J. Appl. Microbiol. 2017, 122, 554–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Huang, X.; Fang, S.; Xin, W.; Huang, L.; Chen, C. Uncovering the composition of microbial community structure and metagenomics among three gut locations in pigs with distinct fatness. Sci. Rep. 2016, 6, 27427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Y.; Liang, Z.; Zhang, Y. Evolution of physicochemical properties and bacterial community in aerobic composting of swine manure based on a patent compost tray. Bioresour. Technol. 2022, 343, 126136. [Google Scholar] [CrossRef] [PubMed]
- Birgit, S.N.; Ursula, D.; Verena, P.L.; Raphaela, R.; Michael, B. The spectrum of fungal allergy. Int. Arch. Allergy Immunol. 2008, 145, 58–86. [Google Scholar]
- White, J.K.; Nielsen, J.L.; Madsen, A.M. Microbial species and biodiversity in settling dust within and between pig farms. Environ. Res. 2019, 171, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Carolino, E.; Sabino, R.; Viegas, S.; Veríssimo, C. Fungal contamination in swine: A potential occupational health threat. J. Toxicol. Environ. Health 2013, 76, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Aarnink, A.J.A.; De Jong, M.C.M.; Groot Koerkamp, P.W.G. Airborne microorganisms from livestock production systems and their relation to dust. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1071–1128. [Google Scholar] [CrossRef]
- Zhiping, W.; Malmberg, P.; Larsson, B.M.; Larsson, K.; Saraf, A. Exposure to bacteria in swine-house dust and acute inflammatory reactions in humans. Am. J. Respir. Crit. Care Med. 1996, 154, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Tang, Q.; Huang, K.; Liu, J.; Jin, X.; Li, C. Distribution characteristics of bioaerosols inside pig houses and the respiratory tract of pigs. Ecotoxicol. Environ. Saf. 2021, 212, 112006. [Google Scholar] [CrossRef]
- Reche, I.; DOrta, G.; Mladenov, N.; Winget, D.M.; Suttle, C.A. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 2018, 12, 1154–1162. [Google Scholar] [CrossRef] [Green Version]
- Dee, S.; Otake, S.; Oliveira, S.; Deen, J. Evidence of long distance airborne transport of porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Vet. Res. 2009, 40, 39. [Google Scholar] [CrossRef] [Green Version]
- Arango, T.; Besteiro, R.; Ortega, J.A.; Castro, Á.; Rodríguez, M.R.; Fernández, M.D. Linear models for the prediction of animal zone ammonia in a weaned piglet building. Agronomy 2021, 11, 1927. [Google Scholar] [CrossRef]
- Philippe, F.X.; Laitat, M.; Canart, B.; Vandenheede, M.; Nicks, B. Comparison of ammonia and greenhouse gas emissions during the fattening of pigs, kept either on fully slattedfloor or on deep litter. Livest. Sci. 2007, 111, 144–152. [Google Scholar] [CrossRef]
- Hristov, A.N. Technical note: Contribution of ammonia emitted from livestock to atmospheric fine particulate matter (PM2.5) in the United States. J. Dairy Sci. 2011, 94, 3130–3136. [Google Scholar] [CrossRef]
- Höpfner, M.; Ungermann, J.; Borrmann, S.; Wagner, R.; Spang, R.; Riese, M.; Wohltmann, I. Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons. Nat. Geosci. 2019, 12, 608–612. [Google Scholar] [CrossRef]
- Kabelitz, T.; Ammon, C.; Funk, R.; Münch, S.; Biniasch, O.; Nübel, U.; Amon, T. Functional relationship of particulate matter (PM) emissions, animal species, and moisture content during manure application. Environ. Int. 2020, 143, 105577. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Li, Y.; Geng, S.; Hu, L.; Fu, X.; Han, X. Effects of dietary fresh fermented soybean meal on growth performance, ammonia and particulate matter emissions, and nitrogen excretion in nursery piglets. J. Zhejiang Univ. Sci. B 2017, 18, 1083–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | PM2.5 (μg·m−3) | NH3 (mg·m−3) | H2S (mg·m−3) | CO2 (mg·m−3) | Humidity (%) | Temperature (°C) | |
---|---|---|---|---|---|---|---|
Before feeding in the morning (7:00–8:00) | Mean ± SD | 34 ± 9 ac | 19.48 ± 1.71 a | 0.28 ± 0.35 | 2020 ± 209 a | 64.48 ± 3.89 | 24.25 ± 1.28 |
Max | 52 | 22.05 | 0.84 | 2283 | 70.94 | 25.94 | |
Min | 18 | 16.97 | 0 | 1758 | 59.02 | 22.52 | |
After feeding in the morning (9:00–10:00) | Mean ± SD | 57 ± 26 b | 16.16 ± 3.49 b | 0.21 ± 0.31 | 2066 ± 263 a | 65.45 ± 4.34 | 24.59 ± 1.10 |
Max | 136 | 18.97 | 0.78 | 2463 | 72.84 | 26.19 | |
Min | 28 | 9.32 | 0 | 1773 | 58.21 | 22.68 | |
Before feeding in the afternoon (14:00–15:00) | Mean ± SD | 50 ± 19 b | 17.63 ± 4.58 b | 0.47 ± 0.46 | 2341 ± 468 a | 64.90 ± 4.93 | 25.46 ± 1.23 |
Max | 82 | 21.54 | 1.06 | 2894 | 72.05 | 26.89 | |
Min | 19 | 8.94 | 0 | 1512 | 56.72 | 23.47 | |
After feeding in the afternoon (16:00–17:00) | Mean ± SD | 58 ± 20 b | 14.97 ± 4.05 b | 0.15 ± 0.20 | 1870 ± 485.53 ab | 66.21 ± 4.71 | 25.54 ± 1.10 |
Max | 92 | 19.79 | 0.52 | 2732.18 | 85.56 | 26.94 | |
Min | 24 | 9.43 | 0 | 1130.53 | 56.91 | 23.79 | |
Rest at night (20:00–21:00) | Mean ± SD | 39 ± 16 c | 17.17 ± 2.80 b | 0.53 ± 0.38 | 2530 ± 275 b | 66.73 ± 4.67 | 25.06 ± 1.09 |
Max | 76 | 21.05 | 1.14 | 2912 | 74.39 | 26.49 | |
Min | 10 | 12.88 | 0 | 2125 | 59.38 | 23.44 |
Sample | Cu | Zn | Cr | Cd | Pb |
---|---|---|---|---|---|
dust (mg·kg−1) | 82.3 ± 9.4 a | 1290.7 ± 71.0 b | 13.01 ± 0.14 c | 0.35 ± 0.02 d | 1.90 ± 0.53 d |
feed (mg·kg−1) | 43.3 ± 5.3 a | 139.3 ± 3.1 b | 2.75 ± 0.05 c | 0.05 ± 0.03 d | ND |
manure (mg·kg−1) | 156.3 ± 9.7 a | 610.9 ± 18.7 b | 8.96 ± 1.12 c | 0.22 ± 0.04 d | 0.30 ± 0.14 d |
PM2.5 (ng·m−3) | 20.8 ± 4.2 a | 548.8 ± 90.0 b | 44.84 ± 6.72 c | 0.41 ± 0.09 d | 0.15 ± 0.06 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, S.; Peng, S.; Zhu, J.; Liu, Z.; Long, D.; Lim, T. Characteristics of PM2.5 and Its Correlation with Feed, Manure and NH3 in a Pig-Fattening House. Toxics 2022, 10, 145. https://doi.org/10.3390/toxics10030145
Pu S, Peng S, Zhu J, Liu Z, Long D, Lim T. Characteristics of PM2.5 and Its Correlation with Feed, Manure and NH3 in a Pig-Fattening House. Toxics. 2022; 10(3):145. https://doi.org/10.3390/toxics10030145
Chicago/Turabian StylePu, Shihua, Siyi Peng, Jiaming Zhu, Zuohua Liu, Dingbiao Long, and TengTeeh Lim. 2022. "Characteristics of PM2.5 and Its Correlation with Feed, Manure and NH3 in a Pig-Fattening House" Toxics 10, no. 3: 145. https://doi.org/10.3390/toxics10030145
APA StylePu, S., Peng, S., Zhu, J., Liu, Z., Long, D., & Lim, T. (2022). Characteristics of PM2.5 and Its Correlation with Feed, Manure and NH3 in a Pig-Fattening House. Toxics, 10(3), 145. https://doi.org/10.3390/toxics10030145